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Abstract: The realization of advanced control concepts for parallel kinematic machines (PKM)
requires the knowledge of system states. Despite the fact that the direct kinematic problem
(DKP) is not explicitly solvable for PKMs they need not to be measured directly. This can
be achieved by the usage of state estimation techniques, which can also be extended for
disturbance estimation and hence allow for disturbance compensation - a possibility that direct
measurement devices or iterative algorithms to solve the DKP cannot provide for. Subsequently,
two possibilities for the realization of adequate estimation are presented: a new approach
for the state and disturbance estimation for PKMs via sliding mode techniques and a more
classical approach based on continuous Kalman filtering. Their suitability for the usage within
an advanced state control scheme is validated simulatively with models of different complexity
of a hydraulically actuated hexapod intended to be used as a motion simulator for automotive
testing purposes.
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1. INTRODUCTION

In comparison to serial kinematic structures, parallel kine-
matic machines (PKMs) are advantageous for applications
with testing purposes. They have small moving masses
leading to a great potential for the realization of dynamic
excitations in different mechanical degrees of freedoms
(DOF). However, the exploitation of this potential requires
advanced control strategies considering the structural spe-
cialties in a model based control approach. Here, control
schemes in global Cartesian coordinates can assumed to
be more suitable compared to the ones in joint space
coordinates, as many authors, e.g. Merlet [2002] and
Paccot et al. [2009], agree. Despite this, mostly controls
in joint space coordinates are used in real applications,
because joint space measurement data can be obtained
more easily.

Paccot et al. [2009] name two possibilities for the direct
measurement of the global Cartesian end effector position
of PKMs: camera and laser based methods. However, the
authors point out that these optical measurement devices
are cost intensive and/or hard to implement and have
not been applied for the usage within advanced dynamic
control systems, yet. An intuitive approach to cope with
this difficulty is the calculation of the needed feedback
data in global Cartesian coordinates from the available
joint space measurement data. But the correlation between
joint space and Cartesian coordinates, the so-called direct
kinematic problem (DKP), generally cannot be formulated
explicitly for PKMs, see Merlet [2006]. Hence, this forms

a challenge that needs to be tackled for the realization of
control schemes in global Cartesian coordinates.

For the solution of the DKP for PKMs the usage of iter-
ative algorithms is well established, e.g. different methods
can be found in Merlet [2006]. However, Abdellatif et al.
[2008] point out that the suitability of iterative solutions is
limited for control purposes, especially, if velocity feedback
is needed, too. This is computed from the iterative solution
by differentiation and has to be filtered because of the
resulting noise level. This leads to phase delay and hence
results in the limitation of the reachable bandwidth for the
closed control loop.

Further approaches consist of the application of estimation
techniques, which has been proposed by several authors
to overcome the above mentioned realization problems.
The suggested methods can basically be divided into dis-
continuous and continuous approaches. One of the latter
is described by Chen et al. [2013], where the application
of a nonlinear observer to solve the DKP for a six DOF
Stewart platform, is presented. There, the concept is to
apply a nonlinear state transformation by the calculation
of Lie derivatives to transform the system in a linear
description. Afterwards the design of the observer gain
matrix can be performed easily. In Kang et al. [1998] a
nonlinear robust estimator, which considers nonlinearity
and uncertainty in the system, is proposed. The authors
analyze and prove the observer stability with a Lyapunov
function. In Fraguela et al. [2012] the authors make use of
sliding mode estimation techniques. They investigate high
order sliding mode (HOSM) observers for state estimation
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and unknown input identification for a Stewart platform
with three DOF, while position measurement data of the
upper platform is assumed to be available. To date, we are
not aware of any applications of sliding mode observers to
solve the DKP for a six DOF Stewart platform.

References for the application of more classical continuous
estimation techniques applied for the solution of the DKP
for PKMs are e.g. Fasse et al. [2000] or Flottmeier et al.
[2013], where different Kalman filtering approaches are
used. In Flottmeier et al. [2013] it is shown, that a
nonlinear observer model can be used with a constant
observer gain matrix for the state estimation of a six DOF
Steward platform, also called hexapod, despite the system’s
nonlinearities. This makes the observer easy to implement
for realtime purposes.

The main issue of this article is the presentation of two
approaches for the state and disturbance estimation, appli-
cable within advanced motion control strategies for PKMs.
For the realization of both approaches the measurement of
joint space data, which in general can be easily obtained, is
sufficient. First, in terms of discontinuous observation, we
present a new hierarchical sliding mode observer approach.
Basically, the proposed observer is based on the observer
structure for controlled nonlinear systems with a single
output from Drakunov et al. [2011]. Here, we present the
applicability of the observer for nonlinear multiple input
multiple output (MIMO) systems, e.g. PKMs. Secondly, in
terms of more classical approaches, the continuous Kalman
filter, which has been presented in Flottmeier et al. [2013],
is extended for disturbance estimation. The feasibility of
the proposed observers can be shown via various simula-
tion results.

The article is structured as follows: Section 2 deals with
the system model, Section 3 is dedicated to an advanced
state control scheme for the motion control of PKMs. In
Section 4 we present a new approach for sliding mode
estimation and a more classical estimation approach based
on Kalman filtering. In Section 5, simulation results are
shown, which have been generated with a simple six DOF
model and a complex multi body system (MBS) model
of a hydraulically actuated hexapod to demonstrate and
compare the effectiveness of the estimation approaches.
The article ends with a short future outlook in Section 6.

2. SYSTEM MODEL

The target system consists of a hydraulically actuated
hexapod, whose structure is pictured schematically in
Fig. 1. It shall be used as a motion simulator for automo-
tive testing purposes and is currently installed in the lab of
the Heinz Nixdorf Institute at the University of Paderborn.
In terms of control performance the goal is to achieve a
bandwidth up to 80Hz for the position controlled system
for small amplitudes < 1mm.

For the controller and observer design a system model
is required. In this section, the state space model of the
hexapod is described. The main system parameters are
listed in Table 1, while the locations of the used coordinate
systems are shown in Fig. 1. The fixed inertial Cartesian
coordinate system N is located in the center of the base
platform, whereas the moving coordinate system E is fixed

Fig. 1. Target system: Hexapod

to the end effector platform and located in its center of
mass.

Table 1. System parameters

base platform radius rB 750mm

end effector platform radius rE 450mm

end effector platform mass mG 217 kg

minimum actuator length lmin 785mm

maximum actuator stroke lmax 230mm

The hexapod has six actuators and six DOF, hence six
differential equations of second order can be derived to
describe the dynamic motion of the end effector relative
to N . These equations of motion can be formulated via
the Lagrange formalism resulting in

M(x)v̇ + C(x, v)v +G = Fact,N . (1)

Here, M(x) ∈ R6×6 denotes the inertia matrix of the
end effector. It depends on the current posture of the end
effector, described by the position vector

x = [ pCM,x pCM,y pCM,z α β γ ]T , (2)

where pCM,x, pCM,y and pCM,z are the x-, y- and z-
coordinates of the center of mass in N and α, β and γ are
the rotation angles of the coordinate system E with respect
to N around its three axes in the xN -yN -zN -sequence,
respectively. The translational and rotational velocities of
the center of mass of the end effector inN form the velocity
vector

v = [ vCM,x vCM,y vCM,z ωx ωy ωz ]T . (3)

The relation between the velocity vector v and the time
derivatives of x is given by the kinematic matrix H(x):

v = H(x) · ẋ, (4)

where H(x) is defined as

H(x) =
∂v

∂ẋ
. (5)

It can be calculated using the tilde matrix of angular
velocities for the movement of E with respect to N , which
is defined as follows (cf. Roberson et al. [1988], p. 81):

N ω̃NE(x, ẋ) =

[
0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

]
= ṪNE(x, ẋ) · TTNE(x).

(6)
Here, the rotation sequence is considered by the rotation
matrix TNE(α, β, γ), which can be used to transform arbi-
trary vectors from E , e.g.Er, to N , e.g. Nr = TNE · Er,
and its time derivative ṪNE(α, β, γ, α̇, β̇, γ̇).

The joint space coordinates q1 . . . q6 (lengths of the actu-
ators) are collected in the vector

q = [ q1 . . . q6 ]T . (7)

In contrast to the DKP, the relation between x and q
can be formulated explicitly for PKMs. This is referred
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to as the inverse kinematics problem (IKP) and can be
expressed by the nonlinear function q(x).

The velocity vector v is related to the time derivative q̇ of
the joint coordinates via

v = J(x) · q̇, (8)

where J(x) denotes the Jacobian. Its inverse J−1(x) can
be symbolically calculated via

J−1(x) =
∂q(x)

∂x
·H−1(x). (9)

For the target system, J(x) can be obtained by inversion,
as J−1(x) is regular for the entire effective workspace.

The vector C(x, v)v ∈ R6 contains the Coriolis- and
centrifugal forces, whereas G ∈ R6 represents the vector

of gravitational force. Fact,N = [ Fx Fy Fz Mx My Mz ]
T

denotes the vector of forces and torques in N , acting at
the center of mass of the end effector. It results from the
single actuator forces Fact = [ f1 . . . f6 ]T . They form the
joint forces, whose relation to Fact,N again is given by the
Jacobian J (x):

Fact,N = J−T (x) · Fact . (10)

For control and observer design purposes a nonlinear state
space representation of the equations of motion, cf. (1),
is needed. In order to achieve this, the system can be
formulated as a MIMO nonlinear control affine system as
follows:

ż = f(z) + g(z)u (11)

y = h(z) , (12)

where
z = [ xT vT ]T , (13)

z ∈ R12, denotes the state vector consisting of the global
position coordinates x and the velocity vector v, and the
input vector u ∈ R6 consists of the actuator forces

u = Fact. (14)

The system output y is given by the measurable joint
coordinates q:

y = q(x). (15)

By means of (1)-(10), the state space equations, cf. (11)-
(12), yield

f(z) =

[
0 H−1(x)
0 −M−1(x)C(x, v)

]
z +

[
0

−M−1(x)G

]
, (16)

g(z) =

[
0

M−1(x)J−T (x)

]
, (17)

h(z) = q(x) . (18)

3. ADVANCED STATE CONTROL STRATEGY

Common approaches for the control of PKM base on exact
linearization techniques, where the nonlinear behavior of
the target system is compensated for via online calculation
of the inverse dynamics. As it can be seen from the section
above, the current system states have to be known for this
purpose. If they are used for linearization, it is referred
to as feedback linearization, if the reference variables are
used instead, as feed forward linearization, cf. Kolbus et al.
[2010]. This can be applied for joint space control to
avoid the necessity to solve the DKP. However, Kolbus

et al. [2010] also point out that the usage of feedback
linearization and state control is advantageous in terms
of decoupling, which is also confirmed by Paccot et al.
[2009]. We also prefer the feedback linearization approach
and suggest the usage of pole assignment techniques for
the control design, whose major aspects for the usage
within the motion control of six DOF PKMs are described
subsequently.

For the application of pole assignment techniques, a full
decoupling of the dynamic system behavior is required,
resulting in a double integrative behavior for each me-
chanical DOF. This can be achieved by exact feedback lin-
earization. In order to obtain adequate linearization terms,
the equations of motion introduced in the previous section
have to be modified to depend on x and its derivatives.
This can be achieved by the usage of (4) and its derivative

v̇ = Ḣ (x, ẋ) ẋ+H (x) ẍ (19)

and substituting them with (10) into (1), resulting in the
following equations of motion:

M(x)H(x)ẍ+
(
M(x)Ḣ(x, ẋ) + C(x, ẋ)H(x)

)
ẋ+G

= J−T (x)Fact. (20)

The desired trajectory is supposed to be specified by xref
and its derivatives ẋref and ẍref . Hence, the linearizing ac-
tuator forces Fact,lin can be determined via (20) according
to the desired acceleration ẍref and, in terms of feedback
linearization via the usage of estimation techniques, the
estimated x̂ and ˙̂x as follows:

Fact,lin =JT (x̂)(M(x̂)H(x̂)ẍref (21)

+ (M(x̂)Ḣ(x̂, ˙̂x) + C(x̂, ˙̂x)H(x̂)) ˙̂x+G).

If the estimated variables x̂ and ˙̂x are assumed to comply
with the current states, the linearized system behavior can
be expressed by the following state equations:[

ẋ
ẍ

]
=

[
0 I6×6

0 0

] [
x
ẋ

]
+

[
0

I6×6

]
ẍref , (22)

representing a double integrative behavior for each me-
chanical DOF and with the linearized state ξ = [xT ẋT ]T .

The feedback controller can then be designed to result in
a second order lag behavior for the closed loop system
for each mechanical DOF, i = 1 . . . 6, with the natural
frequency ωi and damping Di. The complying controller
matrix R ∈ R6×12 consists of two diagonal 6× 6 matrices
and can be determined as follows:

R =
[
diag

(
ω2
i

)
diag (2Diωi)

]
. (23)

For the target system the following design parameters were
chosen:

Di = 1, i = 1 . . . 6

ωi = 314 rad/s, i = 1 . . . 6.

The observer based exact feedback linearization and state
feedback control can be combined so as to result in a so-
called two-degree-of-freedom (2 DOF) control structure as
pictured in Fig. 2. Here, the desired ẍref is fed forward
to ensure a suitable tracking performance, while a state
feedback path compensates for model inaccuracies and
disturbances. The input for the feedback matrix complies
with the difference between the linearized reference state
ξref = [xTref ẋ

T
ref ]T delayed according to the expected
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Fig. 2. Control scheme

actuator dynamics, which has also been suggested simi-
larly by Kolbus et al. [2010], and the estimated linearized

state ξ̂ref . The entire controller output uC can then be
determined using (21), resulting in

uC =JT (x̂)
(
M(x̂)H(x̂)(ẍref +R(ξref − ξ̂)) (24)

+(M(x̂)Ḣ(x̂, ˙̂x) + C(x̂, ˙̂x)H(x̂)) ˙̂x+G
)
.

The estimated linearized state ξ̂ can be computed from the
estimated state ẑ by means of (4). Moreover, if the observer
also provides for disturbance estimation, the estimated
disturbing forces F̂act,dis can be compensated for via
addition to the controller output uC . If the actuators are
assumed to be force controlled, the desired actuator forces
Fact,des can be determined via

Fact,des = uC + F̂act,dis. (25)

The generation of ẑ and F̂act,dis via nonlinear estimation
techniques from the measured joint forces Fact,meas and
coordinates qmeas is treated subsequently.

4. STATE AND DISTURBANCE ESTIMATION

As mentioned above, the current states and disturbances
for the usage within the proposed state control strategy
shall be generated by means of estimation techniques
based on qmeas and Fmeas. Subsequently, a novel approach
for the application of sliding mode techniques for this
purpose is introduced and its realization for the target sys-
tem is described. Afterwards, a more classical estimation
approach based on Kalman filtering is presented.

4.1 Sliding Mode Observer Preliminaries

Generally, sliding mode algorithms are mainly associated
with sliding mode controllers, belonging to robust con-
trol systems. Their major disadvantage consists of the
chattering effect causing high mechanical stress within
the actuators due to the fast switching signals. However,
sliding mode techniques can also be applied for estimation
purposes where this decisive problem does not occur, as
the discontinuous function only impacts on the numerical
computation, cf. Spurgeon [2008]. Further advantages of
sliding mode observers are the reduced order of the ob-
server dynamics during sliding motion and their robust-
ness against model and parameter uncertainties. Moreover,
the possibility of using the equivalent or “average” value of
the discontinuous observer feedback signal, which will be
explained later, allows to obtain helpful information, e.g.

for fault reconstruction or disturbance rejection (Spurgeon
[2008]). In literature, various observer structures for dif-
ferent classes of systems can be found. In Spurgeon [2008]
the authors give an overall summary on sliding mode ob-
servation and their key properties. Extensive information
about general sliding mode algorithms, especially for slid-
ing mode control, and other aspects like chattering can be
found in Utkin [1992], Utkin et al. [1999] and Perruquetti
et al. [2002].

The here concerned observer structure is often referred
to as a hierarchical sliding mode observer. Such kind of
observers were first suggested in Drakunov [1992] and
they need the afore mentioned equivalent values explicitly
to establish sliding motion. In Drakunov et al. [2011]
an extended observer structure to Drakunov [1992] was
proposed, which also considers system inputs and plant
disturbances. The main advantage of such observers is
that the design can be accomplished in original system
states and a nonlinear state transformation is not required,
which usually has to be performed in order to realize
common sliding mode observer approaches. As stated in
Drakunov et al. [2011], the conditions of applicability for
a nonlinear state transformation are more restrictive than
observability conditions, e.g. of local observability, which
have to be considered for the design of the hierarchical
observer. In fact, this issue is a restriction for PKMs,
because a state transformation would lead to a system
description with joint space coordinates as system states,
which is indeed undesirable. A further advantage is that
the equivalent feedback values can easily be used to obtain
additional information out of the system for disturbance
identification.

In the following the basic notion of a hierarchical sliding
mode observer is briefly presented. According to Drakunov
et al. [2011], the concept is demonstrated for nonlinear
control affine systems, cf. (11)-(12), but with a single
output, i.e. p = 1. In Section 4.2 the observer equations are
extended to be used for systems with multiple outputs and
hence for the usage within the proposed control scheme for
PKMs.

Firstly, a vector function is defined with

Φ(z) = [ h1(z) . . . hn(z) ]T , (26)

where h1(z) = h(z) is the output equation, cf. (12), and

hi(z) =
∂hi−1(z)

∂z
f(z) = Li−1

f h(z), i = 2, ..., n , (27)

are Lie derivatives of h(z) along f(z). For systems where
the relative degree corresponds with the number of system
states, the Lie derivatives correspond to:
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hi(z) = ḣi−1(z), i = 2, ..., n . (28)

Deriving Φ(z) by the state vector z, the observability
matrix is obtained with:

Q(z) =
∂Φ(z)

∂z
. (29)

As stated in Drakunov et al. [2011], the observer can be
applied for systems satisfying following condition:

∂

∂z
(Q(z) g(z)) = 0 . (30)

The hierarchical observer for a nonlinear control affine
system with a single output is then given by

˙̂z = f(ẑ) + g(ẑ)u+Q−1(ẑ)ρ(ẑ)sign(V (t)) . (31)

The matrix ρ(ẑ) represents the observer gains and contains
positive diagonal entries as follows

ρ(ẑ) = diag (ρ1(ẑ) . . . ρn(ẑ)) . (32)

The sign function for vector arguments is defined as:

sign(V (t)) = [ sign(ν1(t)) . . . sign(νn(t)) ]T , (33)

where V (t) = [ ν1(t) . . . νn(t) ]T .

As mentioned in Drakunov [1992], with a suitable choice
of the individual ρi(ẑ) sliding modes take place on the
respective sliding function νi(t) = 0 and after finite
time the estimation error converges identical to zero, i.e.
ẑ(t) ≡ z(t). In general, to provide a sliding motion on, e.g.,
s(t) = 0 the content of the sign function has to correspond
to that sliding function, i.e. sign(s(t)). At the hierarchical
observer, the first sliding motion takes place on the sliding
function ν1(t) = 0, which contains the difference of the
output quantities, with ν1(t) = y(t)−h(ẑ). The subsequent
entries of V (t) are:

νi+1(t) = {ρi(ẑ)sign(νi(t))}eq , i = 1, ..., n− 1 . (34)

The operator {. . .}eq represents an equivalent value of the
discontinuous function during sliding motion. According
to Utkin et al. [1999] and Spurgeon [2008], this notion can
be briefly explained as follows: After an estimation error
trajectory, e.g. ν1(t), reaches its respective sliding function,
e.g. ν1(t) = 0, the discontinuous feedback signal switches
theoretically with infinite frequency, which is indeed a
certain idealization. In reality, due to imperfections and
delays in every system, the trajectory remains in a small
region along the sliding path, whereas the feedback signal
switches with finite frequency. These oscillations consist
of high and low frequency components. However, the slow
components are decisive for the dynamics during sliding
motion. After removing the high frequency components
out of the injection, e.g. by applying an appropriate low-
pass filter, a continuous equivalent value can be obtained.
In the field of sliding mode control the approach of deriving
the equivalent value is well known as equivalent control
method. For the observer in (31) the equivalent values
characterize a discrepancy between the plant and the
observer model, which can be used to identify disturbances
in the plant.

4.2 Sliding Mode Observer Design

By including minor modifications and assumptions, the
hierarchical observer concept from Drakunov et al. [2011],
which was introduced in Section 4.1, can be applied to the
nonlinear control affine system equations of the hexapod,

cf. (11)-(18). In order to begin with the observer design,
two considerations need to be taken into account. Firstly,
the observer in (31) can only be implemented directly
for systems with a single output. However, the considered
system has six outputs, the position measurements of the
actuators. Therefore, we have to define an appropriate
observability matrix Q(z) and show that sliding mode can
occur, which allows convergence of the estimation error.
Secondly, we have to consider the influence of the system
input on the convergence, even though the condition (30)
cannot be fulfilled.

Regarding the first point, some ideas and assumptions
presented in Chen et al. [2013] can be adapted for the
target system. There, the authors performed a nonlinear
state transformation to design an asymptotic observer for
a hexapod. It can be shown that the relative degree for
each output is two and thus the relative degree for the
whole nonlinear system is twelve. Hence, for deriving the
observability matrix for the system in (11)-(18) the output
quantities and their first order derivative are required.
They are put together in

Φ(z) =

[
q(x)
q̇(z)

]
=

[
q(x)

J−1(x) · v

]
. (35)

The Jacobian of the vector function yields the observabil-
ity matrix Q(z) ∈ R12×12, cf. (29):

Q(z) =
∂Φ(z)

∂z
=

 J−1(x)H(x) 0
∂(J−1(x) · v)

∂x
J−1(x)

 . (36)

Because of the block matrix structure and the regularity
of J(x) and H(x) for the effective workspace of the
target system, Q(z) has full rank and the inverse can be
calculated with

Q−1(z) =

 H−1(x)J(x) 0

−J(x)
∂(J−1(x) · v)

∂x
H−1(x)J(x) J(x)

 .
(37)

Due to the fact that the observability matrix is invertible
it follows that the nonlinear system is locally observable,
see Hermann et al. [1977].

The matrix with the observer gains ρ(ẑ) is selected as
follows:

ρ(ẑ) = ρ =

[
ρ1 · I 0

0 ρ2 · I

]
, (38)

where I is a 6×6 identity matrix. Since the values are gains
for similar sign functions, the first six and secondary six
diagonal entries can be chosen equally. Also it turned out
that constant gains are sufficient to guarantee convergence
of the observer. The vector of estimated states consists
of the estimated position vector x̂ and the estimated
velocity vector v̂, with ẑ = [ x̂T v̂T ]T . In the following
the difference of the measured and observed outputs is
denoted with eq(t) = qmeas(t)− q(x̂).

The matrix V (t), which includes the output differences and
the equivalent values, consists of two vectors ν1(t) ∈ R6

and ν2(t) ∈ R6, with

V (t) =

[
ν1(t)
ν2(t)

]
=

[
eq(t)

{ρ1sign(eq(t))}eq

]
. (39)

Finally, the suggested observer for the PKM has the same
structure as in (31) but consists of suitable matrices, cf.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

186



(35)-(39), and u corresponds to Fmeas. In our case the
condition in (30) can not be satisfied, because

Q(z) g(z) =

[
0

J−1(x)M−1(x)J−T (x)

]
, (40)

depends on x. However, it can be shown that the proposed
observer still converges. The key facts are that the first six
rows of (40) are zero and the matrix is nearly constant in
the considered workspace of the target system. Addition-
ally, the input appears only in the last six estimation error
equations, which can be seen in the following.

The feasibility of the proposed observer can be demon-
strated by means of the convergence proof from Drakunov
[1992]. There it is shown that convergence of the estimated
outputs and their repeated derivatives represents conver-
gence of the estimated states. Indeed, this is the case if
the Jacobian of the map Φ(z), cf. (35), is regular. For
convergence analysis the time derivative of the estimation
error eΦ = (Φ(z)− Φ(ẑ)) is relevant:

ėΦ =
d

dt
(Φ(z)− Φ(ẑ)) = Q(z)ż −Q(ẑ) ˙̂z

= Q(z) (f(z) + g(z)u)
− Q(ẑ) (f(ẑ) + g(ẑ)u)− ρ sign(V (t)) .

(41)

Firstly, the first six rows of the differential equation are

investigated. Since eΦ =
[
eTq eTq̇

]T
, the first vector of eΦ

corresponds to the estimation error of the outputs and
accordingly of the actuator lengths. By means of (16) and
(17) the time derivative yields:

ėq = J−1(x)v − J−1(x̂)v̂ − ρ1sign(eq) . (42)

In (42) it can be seen that for sufficiently large ρ1, in partic-
ular ρ1 ≥ max

∣∣J−1(x)v − J−1(x̂)v̂
∣∣, sliding mode occurs

on eq = 0. During sliding motion the equivalent value
is given by ν2 = {ρ1sign(eq)}eq = J−1(x)v − J−1(x̂)v̂.

According to (8), the equivalent value ν2 corresponds to
the difference of the actuator velocities eq̇.

For sake of simplicity, we will not write down the error
equations for the second part of (41). After some matrix
multiplications it results a structure similar to (42). The
error equation can be expressed with

ėq̇ = q̈(z, u)− q̈(z, u)|z=ẑ − ρ2sign(eq̇) , (43)

where q̈(z, u) and q̈(z, u)|z=ẑ represent the real and es-
timated actuator accelerations. And again, for sufficiently
large ρ2 sliding mode takes place on the function eq̇ = 0. In
a first approximation the concrete values for the individual
ρi can be obtained by considering the initial conditions. As
shown above, sliding mode will occur successively and in
two steps the output estimation error will converge, which
leads to successful state estimation.

In the following, it is demonstrated how a mismatch
between the plant and observer can be identified just
by using the equivalent values. Here, we assume that a
disturbance φ(t), which is bounded, will appear in the
last error functions in (43), e.g. caused by unknown forces
and and torques in the plant. As mentioned above, the
observer will converge for sufficiently large ρ2, even if
disturbances exist. After the observer has reached the
second sliding function eq̇ = 0, the equivalent observer
feedback corresponds to:

{ρ2sign(eq̇)}eq = φ(t) . (44)

In order to obtain the disturbances φ(t) simply the high
frequency components of the discontinuous function in
(43) have to be filtered out. Then, the disturbing forces
and momentums at the center of mass of the end effector
in N , denoted by s(t) = [s1(t) . . . sη(t)]T , can be calculated
with:

s(t) = M(x̂)J(x̂)φ(t). (45)
Here, instead of using low pass filters to avoid additional
delays in the observer, an alternative approach is applied.
According to Tan et al. [2003], the equivalent observer
feedback signals can be approximated, e.g. for the first
component of vector ν2 in (39), with:

ν2,1 = {ρ1sign(eq,1)}eq ≈ ρ1
eq,1

|eq,1|+ δ
, (46)

where δ is a small positive constant, characterizing the
accuracy of the equivalent values. Additionally, chattering
reduction is accomplished by using this approximation of
the discontinuous functions. For details and restrictions
see Tan et al. [2003] and the references therein.

4.3 Continuous State and Disturbance Estimation

The subsequently presented estimation approach bases
upon the one we already presented in Flottmeier et al.
[2013]. Here, the Kalman-Bucy filter is extended by a dis-
turbance estimation part. The complying observer equa-
tions are given by

˙̂zd = fd(ẑd) + gd(ẑd)u+K(y − ŷd) (47)

ŷd = h(ẑd). (48)

Here, u corresponds to Fmeas and y to qmeas. The vector
ẑd ∈ R18 represents the observer state vector with

ẑd = [x̂T v̂T ŝT ]T , (49)

where sT = [s1 . . . s6]T represents the vector of disturbing
forces and torques acting at the center of mass of the end
effector in N . The dynamic behavior of s is assumed be
characterized by the following differential equation:

ṡ = 0. (50)

Accordingly, fd(ẑd) and gd(ẑd) can be generated by exten-
sion of (16) and (17), resulting in

fd(ẑd) =

0 H−1(x̂) 0
0 −M−1(x̂)C(x̂, v̂) M−1(x̂)
0 0 0

 ẑd
+

 0
−M−1(x̂)G

0

 , (51)

g(ẑd) =

 0
M−1(x̂)J−T (x̂)

0

 , (52)

h(ẑd) =q(x̂) . (53)

The design of the observer gain matrix K ∈ R6×18 bases
upon a linearized system representation, which is used to
solve the algebraic Riccati equation

PCTlinS
−1
KFClinP − PA

T
lin −AlinP −QKF = 0. (54)

The required linearized system matrices Alin and Clin
can be calculated from (47) and (48) by a Taylor series
truncated after the first term:

Alin =
∂ ˙̂zd
∂ẑd

∣∣∣∣∣
ẑd,0,u0

Clin =
∂ŷd
∂ẑd

∣∣∣∣
ẑd,0

(55)
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Table 2. Plant model properties

6 DOF model

end effector platform mass 217 kg

MBS model

end effector platform mass 169 kg

effective piston area 742mm2

mass of one piston rod 8 kg

nominal flow rate 38 l/min

nominal pressure drop (per control edge) 35 bar

servo valve cut-off frequency 350Hz

supply pressure 280 bar

with ẑd,0 = [x̂T0 0T 0T ]T , x̂0 located in the center of the
workspace and u0 = JT (x̂0)G. The weighting matrices
define the trade-off between confidence in model accuracy
(QKF ) and measurement data (SKF ).

Actually, due to the system’s nonlinearities it would be
intuitive to apply an Extended Kalman filter. However,
the effective workspace of the hexapod is limited due to
the mechanical boundary conditions. In Flottmeier et al.
[2013] it was shown by the analysis of eigenvalues that the
usage of a constant K does not lead to instabilities for
the pure state estimation task. This can be shown for the
extension of the Kalman filter by disturbance estimation,
too.

For the usage within the above presented state control
scheme, ŝ can be transfered to F̂act,dis via

F̂act,dis = JT (x̂) · ŝ. (56)

5. ANALYSIS

The effectiveness of the presented estimation approaches
was evaluated via simulations with plant models of differ-
ent complexity. At first, simulations with a six DOF model
were carried out to proof the general functionality and
allow a first comparison of the estimation performance.
Here, the difference between the observer and plant model
only consisted of the additional consideration of actuator
dynamics and Coulomb friction forces within the plant
model. Secondly, a complex MBS model with 13 masses
and considering the nonlinearities due to the hydraulic
actuation was used to test the control and estimation
performance more realistically. The geometric parameters
of the plant models correspond to the ones given in Table 1;
additional properties are listed in Table 2.

5.1 Simulation Results with Six DOF Plant Model

Simulations with the six DOF plant model were carried
out using continuous reference variables representing a
sinusoidal movement of the TCP with 1 cm amplitude and
a frequency of 10Hz in the x-direction of N . In order to
prevent discontinuities at the beginning of the movement,
the reference variables were filtered by a second order lag
element with a cut-off frequency of 80Hz. The x-direction
represents a poorly actuated DOF, hence movements in
this direction allow a suitable analysis of the control and
estimation performance in terms of decoupling.

At first, simulation data was generated to investigate the
general state estimation performance of the Kalman filter
(KF) and sliding mode observer (SM) without disturbance
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Fig. 3. Reference variable and system response in
x-direction
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Fig. 4. Reference variable, sytem response and estimated
system response in β-direction

estimation and control impacts. In order to achieve this,
the plant state was used for feedback purposes instead of
the estimated state (this setup will be called ideal control
subsequently) and disturbances were not compensated for.
Fig. 3 shows the corresponding response for the above
mentioned excitation in the x-direction. Here no major
differences between the real and estimated variables occur,
the deviations are within a range of 10−6m. Therefore, the
estimated variables are not shown.

This is different for the movement around the y-axis (in
the β-direction), which is highly coupled to the one in the
x-direction due to the kinematic structure, cf. Fig. 1. The
complying results are shown in Fig. 4. Here, the reference
variable is actually zero, while deviations in the system be-
haviour and the estimated behavior occur. The bad control
tracking behavior results from the Coulomb friction forces,
not having been considered explicitely within the control
design. It can be observed that the overall estimation

performance of the sliding mode observer (β̂SM ) is clearly

better than the one of the Kalman filter (β̂KF ), as its
curve exactly lies on top of the one of the simulated system
response. Hence, it seems to be more robust in terms of
input disturbances. Consequently, if the estimated states
of the sliding mode observer are used for control purposes
(still without disturbance compensation), the tracking per-
formance is almost the same as for the control with the
ideal states and clearly better compared to the control
based on the states estimated by the Kalman filter, which
is shown in Fig. 5.

The presented estimation approaches also allow for distur-
bance estimation. In order to investigate this, the Coulomb
friction forces of 85N having been considered within the
plant model can be used. They should be identified appro-
priately, as they represent the major difference between
plant and observer model. In Fig. 6 the complying simu-
lation results are shown. As it can be seen, the friction
forces are estimated correctly by both observers, while
the Kalman filter is slightly slower and shows a small
overshoot.
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However, the consideration of disturbances within the
Kalman filter also leads to better state estimation per-
formance for this estimation approach. This can be seen
in Fig. 7, where the estimated states are shown for control
based on the ideal state and without disturbance com-
pensation, again (the same experiment as in Fig. 4, but
with disturbance estimation). The estimator curves lay on
top of the system response, so now the state estimation
performance of the Kalman filter is as good as the one of
the sliding mode observer.

Finally, the overall control performance for the realization
of the entire control scheme with disturbance compensa-
tion as pictured in Section 3 is analyzed for both esti-
mation approaches. Fig. 8 shows the complying system
behavior, again in β-direction. The tracking performance
is clearly better than the one for the ideal state feedback,
cf. Fig. 4, or the one for the observer based control without
disturbance estimation and compensation, cf. Fig. 5. In
comparison, the controlled system based on Kalman filter
estimation shows higher oszillations, while the one based
on sliding mode estimation has a small steady state error.
As for the Kalman filter, this can be assumed to result from
the overshoot in the disturbance estimation that impacts
the system behaviour via the disturbance compensation. In
terms of the sliding mode observer, the small steady state
error may result from the fact that there is no feedback
from the estimated disturbances to the state estimation.
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Fig. 8. System response in β direction for observer based
control with disturbance compensation
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trol with disturbance compensation and MBS plant
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5.2 Simulation Results with MBS Plant Model

In a second step, the suitability of the estimation ap-
proaches within the advanced state control structure was
evaluated by means of simulations with a complex MBS
plant model, also considering the nonlinearities due to the
hydraulic actuation. The MBS model consists of 13 masses,
so it also allows the evaluation of the control performance
considering model inacurracies, as it clearly differs from
the six DOF model that has been used for the control
and observer design. The single actuators were modeled to
be locally force controlled by a suitable nonlinear control
approach according to Rost et al. [2012]. The reference
variables were chosen just like the ones used in Section
5.1.

The reference variables and the complying system re-
sponses for ideal and observer based control are shown
in Fig. 9. Again, the control performance of the observer
based control with disturbances compensation is clearly
better than the one of the ideal control without dis-
turbance compensation. Moreover, the control with the
Kalman filter shows higher oszillations than the one with
the sliding mode observer, again. However, differences con-
cerning the steady state error that ocurred previously (cf.
Fig. 8) cannot be recognized.
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The differences between the plant and the model used for
control and observer design do not lead to major deviations
or instabilities. Hence, the proposed state control scheme
and both estimation approaches for its realization are
assumed to be suitable for the usage within the planned
application. However, differences in the control perfor-
mance occur and leave open questions to be answered in
the future.

6. FUTURE OUTLOOK

The characteristics of the presented estimation approaches
still have to be further investigated. One aspect to be
analyzed is the fact that disturbances, which are estimated
from the measured actuator forces and displacements,
can be estimated very fast according to the observer
dynamics. However, if they shall be compensated for, the
actuator dynamics limit the bandwidth of the disturbance
compensation. Hence, this could lead to instabilities and
probably has to be treated by the usage of some kind of
anti aliasing filter.

A second aspect to be investigated is the impact of the
fact that the sliding mode observer model is of second
order, while the model used for the Kalman filter with
disturbance estimation is of third order. This has to be
regarded in terms of realtime application, as it can be
assumed to influence the required integration stepsize and
computational effort.

The potential of the sliding mode estimation approach
has not been fully examined and exploited, yet. It will
be analyzed considering the impact of noisy measurement
signals. Additionally, the application of super twisting
algorithms (STA), which base on second order sliding
mode techniques, will be examined in order to enhance
performance of the estimation.

The above presented control approach will be further
investigated in terms of the impact of limitations due
to the hydraulic actuation. Finally, the entire control
structure will be tested at the target system, which is
currently build up at the Heinz Nixdorf Institute of the
University of Paderborn.
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