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Abstract: Batch process optimization is of great significance in industrial applications. This paper 

proposes an iterative optimization method for batch processes through online modeling, in which, local 

models are iteratively developed to guide a trust-region optimization. The characteristics of the method are 

demonstrated through a numerical simulation. This method is also successfully implemented to the quality 

control of injection molding process with satisfactory performance and high efficiency. 



1. INTRODUCTION 

Batch process optimization is of great significance in 

reducing production costs, improving product quality, and 

meeting the requirements of different users. Model-based 

optimization (MBO) (Srinivasan et al., 2003) is widely used 

to seek the optimal operating conditions for batch processes. 

This approach initially establishes a process model, which 

correlates operating conditions and product quality. An 

optimization algorithm is then used to determine the optimal 

solution. The model accuracy is of great importance for 

implementation. A number of studies have been reported in 

batch process modeling techniques, which can be categorized 

into two types, the first-principle models (Hangos & 

Cameron, 2001; Bonvin, 1998) and data-driven models 

(Chen, Nguang, & Chen et al., 2004; Chen & Xi, 1998; 

Jaeckle & MacGregor, 1996, 2000; Sebzalli, 2001; Kulkarni, 

2004). However, as a batch process requires a wide operation 

range, deriving an accurate model for a complex process is 

always difficult. Model-free optimization (MFO) (Box & 

Draper, 1987) is another technique for batch process 

optimization. Kong et al. proposed such a technique for rapid 

and low-cost batch processes (Kong et al., 2011). Instead of 

building a process model, online measurements were directly 

used to guide the system toward the optimal solution. 

Efficient algorithms were also employed in the searching 

process. Owing to the existence of the measurement noise 

and process disturbance, MFO also faces a convergence 

challenge. 

To overcome the limitations in MBO and MFO, a novel 

method called iterative modeling and trust-region-based 

optimization (IM&TO) is proposed for batch process 

optimization in this paper. Rather than building an accurate 

model for the whole range of a batch process, a local model 

(Bachtadze, et al., 2007, 2010, 2011) based on limited run 

data is used. Trust-region optimization (Nocedal & Wright, 

1999) is adapted to seek the optimal solution within a 

bounded range. After achieving new data running on the local 

solution, a new model can be obtained through an iterative 

modeling technique, based on which the optimization can be 

further conducted in the updated trust region. This process 

will be repeated until the model is no longer updated. 

Compared with MBO, the modeling cost, either the 

experimental cost for data-driven models or process 

knowledge for first-principle models, is reduced significantly 

because of the local accurate model. Good extrapolation and 

adaptability to changing conditions are achieved through 

iterative learning and modeling. Compared with MFO, the 

experimental cost in optimization is reduced, and the 

optimization direction is guaranteed with model guidance.  

2.  IM&TO METHOD 

In this paper, the authors propose a new method called 

IM&TO for batch process optimization. To avoid the 

difficulties in building an accurate model for the whole range 

in traditional MBO methods, the method uses local models 

for optimization. The flowchart of the proposed method is 

shown in Fig. 1. With limited experimental data, a local 

model is first developed based on data-driven modeling 

techniques. The model is accurate only in a limited range. 

Thus, optimization is next conducted with a bounded trust 

region to ensure a reasonable step. After the experimental test 

on the derived solution, the model is updated with newly 

obtained data. The trust-region optimization can thus be 

conducted again within an updated region. The method stops 

when the local model is no longer updated. Iterative 

modeling and trust-region optimization are two keys to the 

proposed method and are elaborated as below.  

2.1  Iterative modeling technique 

A key to the proposed method is to use local models for 

optimization. An iterative modeling technique is used to 

ensure the local accuracy of the model and to move the local 

model toward the optimal point through iterative 

optimization.    

Surrogate models based on experimental data are used during 

the optimization. The models are updated iteratively by least 

squares regression with new data. The surrogate model can 

employ several types of structure; a quadratic polynomial 

model is selected for its simplicity and efficiency.  
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Fig. 1. Flowchart of IM&TO method  

A complete quadratic polynomial model with n variables is 

shown in Equation (1), where kt


 is the model structure 

vector consisting of polynomial terms in the k-th iteration, 

and k is the relevant parameter to be estimated. 
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 (1) 

The model is obtained based on limited data. Thus, iterative 

modeling is proposed to describe the process locally and to 

guide optimization. Consequently, the local model 

approaches the optimal zone through iterative optimization. 

During the iteration of optimization, both the model structure 

and modeling data are updated until optimization converges. 

In model structure updating, a strategy to set the priority of 

each polynomial term is necessary when the available data 

are limited to obtain a complete quadratic polynomial model, 

in which polynomial terms are chosen according to their 

importance based on the knowledge obtained from prior 

experiments. In data set updating, a strategy correlating the 

size and distance between the sample data and the current 

iterate is proposed. For example, in the k-th iteration, kP  is 

the sample set with S samples, and kt  is the model structure 

obtained based on the accumulated knowledge. A surrogate 

model kf  with n variables is obtained by least squares 

regression based on kP and kt . A new sample ( , )newp x y is 

obtained after optimization on kf and an experiment on 

solution x . In the (k+1)-th iteration, sample set and model 

structure will be updated to 1kP   and 1kt  based on the 

strategies (2) and (3), respectively. 

In strategy (2), data set kP is updated according to its size (S) 

and the data contained. If S+1N, S=S+1. N is the upper 

limit of the data size that satisfies N > (n+1)(n+2)/2. The 

sample data are added to the data set without losing any data. 

Otherwise, S=N, the size of the data set remains unchanged. 

The farthest point (except the trial point) from the current 

iterate is replaced by the newly added trial point, and the 

sample data are updated.  

In strategy (3), model structure vector kt is adjusted 

according to the size (S) of the current data set 
kP , and 

knowledge from prior experiments, which is reflected from 

the parameters estimated by least squares regression. If S   

n+1, linear terms are selected, and (S-1) variables are selected 

for the regression. If n+1<S<(n+1)(n+2)/2, nonlinear terms 

are selected based on the accumulated prior knowledge. 

Important terms should be added to the model structure as 

soon as possible during run-to-run optimization. Otherwise, 

S   (n+1)(n+2)/2, and a complete quadratic polynomial 

model is obtained. 
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 (3)  

2.2  Trust-region optimization based on iterative modeling 

The surrogate model is built with limited data, making it 

unreliable in a large region. Thus, rather than search for the 

optimal solution on the whole range, optimization with a trust 

region is proposed to restrict the step length. In the traditional 

trust-region method, the objective function, f , is given. The 

approximate model 
k

m  is commonly chosen as the second 

Taylor-series expansion of f . Optimization is conducted on 

the approximate model 
k

m  with a trust region. The region 

size and region center are updated based on the agreement 

k  between the approximate model 
k

m  and the original 

model f  within two iterates. The trust region not only 

restricts the step length, but also guarantees good reduction 

in f . As shown in Fig. 2, the irregular contours illustrate the 

curvature of the original model f . The elliptical contours 

illustrate the approximate model, 
k

m , which is built around 

the current iterate, 
k

x . If no trust region exists, the line 

search method based on the approximate model searches 

along the step direction to the minimizer of 
k

m  as a new 

iterate
1

'
k

x


, which results an increase in the objective 

model f . Bounded with a trust region, as shown by the 

dotted circle, the line search steps to the minimizer of  
k

m  

with a significant reduction in f as a better iterate
1k

x


.  

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10446



 

 

     

 

Fig. 2.  Trust region methods 

Unlike traditional trust-region optimization, the original 

model, f , in this case is unknown. However, we can still 

borrow this idea for iterative optimization. A local model is 

first built based on experimental data. By adding a trust 

region, iterative optimization can be conducted on the local 

model, which takes the role of the approximate model in 

traditional trust-region optimization. After obtaining the new 

iterate, the local model can be updated with newly obtained 

experimental data. This process continues until the model can 

no longer be updated. 

In the IM&TO trust-region method, a reasonable region
k

 , 

which is used to restrict the step length, is defined around the 

current iterate
k

x and moves along iterates from batch to 

batch. In model updating, F is the unknown process model, 

the quadratic polynomial model
k

f is trusted to be a good 

approximation of F in the region, which is updated 

iteratively. The two main steps of the method are described 

as follows: 1. Subproblem solving. The region size 
k

  

remains a reasonable value, and the region center moves 

along with iterates. The current local model 
k

f  is minimized 

within the trust region to obtain the next iterate 
1k

x


. 2. 

Model updating. Model 
k

f is updated with new data added. 

The subproblem is then solved again based on an updated 

model within a new trust region. 

During the iterations, the local model accuracy is improved 

due to three aspects. First, an increasing amount of data is 

collected and used for modeling through run-to-run 

optimization, where the size of the data set is limited to an 

upper bound. Second, modeling data density increases 

through trust-region optimization and a data set updating 

strategy, where the step length is restricted in obtaining a new 

iterate, and the data far from the current iterate are discarded. 

The residual (R) defined in Eq. (4) describes the resemblance 

of the local model (SF) to the original model (OF) within the 

trust region, which is averaged on the verification points. 

Finally, the local model is modified in terms of structure and 

parameters with data accumulation. 

1

( )
1

( )
m

i i

i

R SF x OF x
m 

   (4) 

where m is the sampling number of verification points x , 

which are evenly distributed within the trust region. We set 

the interval to be one-tenth of the trust region, m=11. 

The differences between the traditional and IM&TO trust-

region methods are listed in Table 1. 

2.3  IM&TO Algorithm 

The detailed algorithm of the proposed IM&TO method is 

described below. 

Step0 (initialization): Choose an initial point ox , an initial 

data set oY , and an initial model 0 ( )f x  derived from oY .   

Set a reasonable trust-region radius . Set  =10
-6

. Set k = 0. 

Step1 (step calculation and stopping criterion): Compute 

1kx   to minimize the objective function ( )
k

f x  by solving the 

trust-region subproblem with bound constraint (5). If the 

stopping criterion (6) is satisfied under a stable model 

structure, the algorithm stops. Otherwise, go to the next step. 
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Step2 (experiment): conduct an experiment on 1kx  to 

obtain  1kF x 
. F is the real process. Obtain [ 1kx  ,  1kF x 

] 

as the new sample data and 1kx   as the trial point.  

Step3 (model updating):  

a. Data set is updated according to the size (S) of the current 

data set kY and the points contained: 

If S+1N, S=S+1. where N is the upper limit of the data size 

that satisfies N > (n+1)(n+2)/2 with n variables. The sample 

data are added to the data set without losing any data. 

Otherwise, S=N, the size of the data set remains unchanged. 

The farthest point (except the trial point) from the current 

iterate is replaced by the newly added trial point. The sample 

data are updated. 

b. Model structure is adjusted according to the current data 

size and knowledge from prior experiments: 

If S  n+1, linear terms are selected, and (S-1) variables are 

chosen to conduct the regression. The parameters estimated 

by least squares regression reflect the importance of each 

term, which is accumulated as knowledge to guide the 

upcoming term selection.  

Else if n+1<S<(n+1)(n+2)/2, nonlinear terms are selected 

based on the accumulated prior knowledge. Important terms 

should be added to the model structure as soon as possible 

during run-to-run optimization.  

Else, S  (n+1)(n+2)/2, a complete quadratic polynomial 

model is obtained. 

Step4 (trust region updating):  

trust region step 

line search 

step 

contours of ( )
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Region size remains unchanged. The trial point is accepted 

and the iterate moves to 
1k

x


as the region center in the next 

optimization. Increase k by one, and go to step 1. 

3.  SIMULATION 

A numerical simulation is conducted first to illustrate the 

proposed IM&TO method. A quadratic polynomial model SF 

is used to approximate a cubic model OF locally to determine 

the minimum of the OF in an iterative manner. Models are 

set below.  

Objective function, 3 2
10 ( 5 5)OF x x x       with 

minimizer (0,0), which is assumed to be the unknown process 

model; Surrogate Function, 2
(1) (2) (3)SF p x p x p   . The 

algorithm stops when the difference between the current SF 

and the prior one is less than the tolerance, =10
-6

. 

Initializations and the steps are detailed as follows: Set the 

trust region  =2. Set initial iterate x1=-3. Three data sets (s1, 

s2, and s3), as shown in Run #1 of Table 2, are obtained 

randomly before optimization. Based on these data, a 

quadratic polynomial model is first obtained. By conducting 

trust region optimization on this local model, a new iterate, 

x1*=-2, can be obtained. With the newly obtained data, the 

local model is updated. Further trust region optimization 

iterates to a new point, x2*=-1. After the third iteration, the 

accumulated data number exceeds the maximum data number 

used for modeling, and the farthest point from current iterate 

will be replaced by the new data. As shown in Run # 3 and 

Run # 4 of Table 2, point s1=-5, which is the farthest point 

from the current iterate, x4=-0.3653, is replaced by s1’=-

0.3653 in the fourth iteration. This iterative trust-region 

optimization repeats until it converges at Run #14, when a 

preset tolerance is reached, resulting in a stable local model 

and the optimal solution s13=[-4.8882e-6, 2.3895e-10]. The 

detailed procedure is listed in Table 2, where column 1 

denotes the run number, column 2 is the current iterate, 

columns 3 to 7 denote the data set used for modeling, column 

8 is the optimal result obtained at each iteration, and column 

9 is the step calculated within two iterates. 

Several characteristics of the IM&TO method are illustrated 

by this simulation. First, a good optimization direction is 

obtained through IM&TO, as the iterate x moves toward the 

optimal solution with a stable trend. Second, the method 

performs well from different initials. In another test, a similar 

process is conducted with a different initial iterate x1’=3, and 

the optimal solution s12=[9.4670e-005, 8.9626e-008] is 

ultimately obtained within 12 iterations. Third, the local 

model accuracy is improved significantly to describe the true 

process within the trust region better. As shown in Fig. 3, 

during the model verification, the residual decreases to a 

stable value from the third iteration with small oscillations as 

the sample data become denser with iterative modeling 

strategy, which indicates better resemblance.  

4.  APPLICATION TO INJECTION MOLDING PROCESS 

Injection molding is a typical batch process to produce plastic 

parts at a high production rate with tight tolerances. As a 

major plastic processing technique for converting 

thermoplastic into all types of products, injection molding 

consists of four stages: filling, packing, holding, and cooling. 

For each cycle, the plastic resin is melted and then injected 

into a mold with the desired shape. High pressure is 

maintained to compensate for the shrinkage during the 

packing and holding stages. When the molded part is cooled 

and sufficiently rigid, the mold is opened, and the product is 

ejected. The cycle is then repeated to manufacture more 

products. Similar to other batch processes, quality 

optimization is a critical issue for successful molding. Given 

the machine, mold, and material, product quality is 

determined by the operating conditions. Optimal settings of  
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Fig. 3. Residual in model verification within trust region 

the key process variables are essential to obtain quality 

products. The rapidly varying market requires a flexible 

manufacturing system with which molds and materials have 

to be changed frequently, resulting in difficulties in first-

principle model development and application. Meanwhile, as 

each cycle of the injection molding process is normally short 

with relatively low costs, this example is suitable to 

demonstrate the online optimization method proposed in this 

project. In addition, the experiment results of MFO method 

under the same experimental environment is stated for 

comparison. 

4.1 Problem Formulation 

In the following experimental test, the target is to obtain the 

optimal settings to achieve a satisfactory quality requirement. 

Injection and holding are two major phases for the product 

quality. Thus, five process variables (operation range), 

including first injection pressure (90bar-120bar), second 

injection pressure (90bar-120bar), switch point (30%-60%), 

holding pressure (60bar-75bar), and holding time (5s-9s), are 

selected as the variables to be optimized. The weight of the 

product is set as the quality target variable, which is a good 

indication of process stability and has close relationship with 

other quality properties. wQ  is the desired weight, which is 

the quality requirement. ( )f x  is the map between the 

optimized variables and the target variable. The min-max 

normalization is used to ensure the equal weighting of each 

variable during data pre-processing. As described above, the 

optimal setting problem, aiming at moving the weight as 

close as possible to the target value, can be formulated as (7). 

2
min ( )

. . 0 1 ( 1,2,...,5)

w

i

J f x Q

s t x i

  

     

  
(7) 

An ordinary round plastic part is chosen as the molding 

product, which well reflects the process characteristics. The 

machine used is the Hai-Tai reciprocating screw injection 

molding machine HTL68/JD with a shot weight of 82 g, 

which is a typical low-end machine with an open-loop 

controller. The material used is polymethyl methacrylate. 

During the experimental test, six random initial experiments 

are designed before optimization. 

4.2 Results and Analysis  

The experimental results are shown in Figs. 4 and 5, where 

Fig. 4 shows the trajectory of the optimized variables, 

whereas Fig. 5 plots two different optimization paths with 

two significantly different initial points. Fig. 4 shows that the 

first to the sixth iterates were considered to form the initial 

model with five optimized variables. After the initial model is 

obtained, the trust region optimization is guided consistently 

toward the optimal. After only six rounds of IM&TO, i.e., in 

the 12
th

 iteration, the stopping criterion is met, and the 

optimization is terminated. The resultant product weight 

trajectory is shown by the solid curve in Fig. 5. 

During the iteration of optimization shown in Fig. 4, iterates 

from the 6
th

 to 11
th

 iterations approach the desired target 

stably and rapidly, which indicates a clear optimization 

direction and high efficiency through the IM&TO method. 

The dotted curve in Fig. 5 shows the optimization procedure 

with a significantly different initial setting. The result again 

shows a consistent and efficient convergence to the target 

value, proving that the IM&TO works well for different 

initial points. 

Fig.6 shows the different optimization procedures by 

applying MFO and IM&TO under the same experimental 

environment. After obtaining the same initial model with the 

first 6 iterates, the trajectories differ until the optimal 

requirement of quality weight is met, respectively. It is 

obvious that IM&TO method reduces the experiment cost to 

get the desired product, and the optimization direction is 

much clearer and more stable. 

Table 2. Samples and iterates 

runs iterate(x) s1 s2 s3 s4 s5 s[x*, y] step 

1 -3 -5(s1) 2 -3 - - -2 32 1 

2 -2 -5 2 -3 -2 - -1 9  1 

3 -1 -5 2 -3 -2 -1 -0.3653 1.2859 0.6347 

4 -0.3653 -0.3653(s1’) 2 -3 -2 -1 -0.2885 0.8084 0.0768 

5 -0.2885 -0.3653 2 -0.2885 -2 -1 -0.2015 0.3979 0.087 

6 -0.2015 -0.3653 -0.2015 -0.2885 -2 -1 0.1979 0.3994 0.3994 

7 0.1979 -0.3653 -0.2015 -0.2885 0.1979 -1 0.0027 7.1838e-05 -0.1952 

8 0.0027 -0.3653 -0.2015 -0.2885 0.1979 0.0027 -0.0023 5.4649e-05 -0.005 

9 -0.0023 -0.0023(s1’’) -0.2015 -0.2885 0.1979 0.0027 -0.0023 5.4649e-05 0 

10 -0.0023 -0.0023 -0.2015 -0.0023 0.1979 0.0027 -0.0019 3.6420e-05 0.0004 

11 -0.0019 -0.0023 -0.2015 -0.0023 -0.0019 0.0027 -4.888e-06 2.3895e-10 0.0019 

12 -4.888e-06 -0.0023 -4.888e-06 -0.0023 -0.0019 0.0027 -4.888e-06 2.3895e-10 0 

13 -4.888e-06 -0.0023 -4.888e-06 -0.0023 -0.0019 -4.888e-06 -4.888e-06 2.3895e-10 0 

14 -4.888e-06 -0.0023 -4.888e-06 -0.0023 -0.0019 -4.888e-06    
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Fig. 4. Trajectories of optimized variables 

 

Fig. 5. Weight trajectories from different initials 

 

Fig. 6. Weight trajectories of  IM&TO and MFO 

5. CONCLUSIONS 

An iterative modeling and trust-region-based optimization 

method for batch processes is proposed in this paper. The 

proposed method uses a local accurate model to guide trust-

region optimization with an iterative modeling technique. 

The cost of solving optimization problems using the IM&TO 

method is reduced significantly. Moreover, the optimal 

direction is reliable during the iterations, and good 

extrapolation and performance with different initials are 

achieved through iterative modeling and optimization. The 

method has been demonstrated through a numerical 

simulation and an industrial example, both of which confirm 

the good performance of the proposed approach. 
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