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Abstract: In this paper, a fuzzy control-based method is provided to solve the unilateral contact between 
two elastic structures under static loads and multiple contact pairs, modeled by finite element methods. To 
the best author’s knowledge, this problem has been not exploited in previous literature under this 
approach. The objective is to achieve an important reduction of time simulation with respect to previous 
existing approaches for this problem. As seen in the paper, the complexity of controller is independent of 
the number of degree of freedom and its design does not depend on the value of external static loads. 
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1. INTRODUCTION 

In the context of mechanical engineering, the unilateral 
contact between two elastic structures under external static 
loads is recognized as one of the most common contact 
problems. The main difficulty is to determine rapidly the 
value of the existing contact loads in the contact surface such 
that both structures are well balanced. 

In this field, many available solutions based on Finite 
Element Method (FEM) can be found in the literature: 
classical approaches, such as the popular penalty 
approximation (Arnold, 1982) and «mixed » or « trial-and-
error » methods, and Lagrange multiplier methods (Carpenter 
et al., 1991) (Hild and Renard, 2010) and their modifications 
(Bussetta et al., 2012). However, these methods require high 
cost simulation for complex problems: for instance, the 
number of Lagrange multipliers is essentially determined by 
the number of contacting entity pairs and can considerably 
increase the size of the system to solve. Although in the past 
decade, substantial progresses have been made in the analysis 
of contact problems using finite element procedures 
(Wriggers, 1995), it is well known that this kind of solutions 
for this problem are still time consuming: although the 
exponential growth of the computer power allows to perform 
more sophisticated problems, the size (the number of 
unknowns) of industrial models and the complexity and the 
cost of simulations (multi-scale, multi-physics, uncertainty, 
…) increase at the same time. 

Recently, in (Gonzalez et al., 2013), a first approach based on 
robust control theory was proposed to solve this problem, 
illustrating promising results in terms of reduction of time 
simulation. However, this work deals with the case of one 
single contact pair in the contact surface. The proposed 
control model is formed by a discrete-time uncertain linear 

system in which all the nonlinearities are embedded into 
uncertainties in the system matrices and a static state 
feedback control. The control law is optimized in terms of 
decay rate performance, with the aim to reduce the number of 
iterations. 

The objective of this work is to extend the ideas of (Gonzalez 
et al., 2013) to the case of multiple contact pairs. Moreover, 
an output transformation is proposed with the aim to reduce 
the complexity of the control design, by means of the 
separation principle. On the other hand, it is well known the 
advantages of Takagi-Sugeno (T-S) models (Takagi and 
Sugeno, 1985): (i) T-S fuzzy models provide a systematic 
procedure to exactly represent in a compact set nonlinear 
models by means of the sector nonlinearity approach (Tanaka 
and Wang, 2001) and (ii) the last advances in linear system 
theories can be integrated into the framework of nonlinear 
control. Therefore, the problem is addressed in two steps: 
first, a discrete-time fuzzy model with uncertainties of the 
contact problem will be obtained via sector nonlinearity, and 
second, a fuzzy parallel distributed compensation control 
PDC scheme (see (Cao and Frank, 2000) and references 
therein). Finally, after time simulation, the steady-state will 
provide the contact loads of the well balanced setting. Recall 
that this control takes advantage of the knowledge of the 
nonlinearities, achieving a good compromise between 
complexity and decay-rate performance in the control design. 

Notation and materials: In this paper, the shortcut zX is used 

to denote
1

(.)
r

z i i
i

X Xθ
=

= ∑ , where iX denotes any matrices and 

(.)iθ  denotes a positive scalar function such 0 (.) 1iθ≤ ≤  that 

and 
1

(.) 1
r

i
i

θ
=

=∑ . Analogously, 
1 1

(.) (.)
r r

zz i j i j
i j

X X Xθ θ
= =

= ∑∑ . 
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The next lemma is a sufficient condition to ensure the 
negativeness (or positiveness) of multiple convex sum: 

Lemma 1: (Tanaka and Wang, 2001) The inequality 0zzΓ <  
is fulfilled providing the following conditions hold, 
for 2, ri j ∈S , { } { }2 1,.., 1,..,r r r= ×S  

0iiΓ < ,              2 0,
1 ii ij ji i j

r
Γ + Γ + Γ < ≠

−
 (1) 

Remark 1: The relaxation in Lemma 1 is chosen in this paper 
because it is a good compromise between accuracy and 
complexity. However, other more powerful relaxations might 
be chosen leading to less conservativeness (Thierry Marie 
Guerra et al., 2009). 

2. PROBLEM STATEMENT 

Let us consider two mechanical structures S1 and S2 in 
contact (see Fig. 1). After applying the finite element method, 
we obtain a set of nodes that defines the discrete finite 
element mesh for both structures. Every node is described by 
its x-y coordinates in 2D plane ( ), , 1, 2,..,i ix y i N= . , where 
N  is the total number of nodes of the finite element mesh 
corresponding to both structures. Then, we define the initial 
position vector l iP  containing all the x-y coordinates of every 
node as: 

l ( )1 1 2 2 ... T
i i i i i iN iNP x y x y x y=  (2) 

 

Fig. 1. Left-side, FEM of two elastic beams (initial position), 
right-side, FEM of two elastic beams (well balanced). 

Let us introduce the following additional parameters: (i) The 
well-balanced position vector lP , (ii) A constant and known 
matrix R, whose value depends on the stiffness and mass 
matrices and modal bases of structures in contact (Cazier et 
al., 2012), (iii) The vector lF  containing the x-y components 
of the external loads, and (iv) The vector containing the x-y 
components of the contact loads l cF  applied over every node. 

The discrete equilibrium equation is: 

l l l l( )ciP P R F F− = + ,  (3) 

l ( )1 1 2 2 ... T
N NP x y x y x y=  

The contact pair (see Fig. 2) is defined by the following 
contact nodes: 

( )M P
T

PP x y= ,  ( )M q

T

qQ x y= ,  ( )S s
T

sP x y=  

Let us define their respective index nodes , ,p q sι ι ι such that: 
l l(2 ), (2 1)x P y Pζ ζ ζ ζι ι= = + ,    , ,p q sζ =  

The nodes MP  and MQ  belong to the master structure (S2) 

and both define the master segment M MP Q
JJJJJJG

. The node SP  
belongs to the slave structure S1. Now, the following 
parameters are defined (see Fig. 2) 

 2 2( ) ( )M M q p q pd P Q x x y y= = − + −
JJJJJJJJG

 (4) 

 ,x yn n x n y= +
G G G     ( ) /x p qn y y d= −     , ( ) /y q pn x x d= −  

( )1 ( ) ( )p s y p s xx x n y y n
d

α = − − −     

The vector nG  is defined as the normal vector. Note that 
1n =

G . 

The normal gap ng  is defined as the scalar product between 

nG  and M MP Q
JJJJJJG

: 

( ) ( )n m s s p x s p yg P P n x x n y y n= = − + −
JJJJG G

  

Now, accordingly to the notation in Fig. 2, we define the 
contact load cF  as a vector containing the x-y components of 
the components , ,CP CS CQf f f  applied over the contact nodes 

, ,M S MP P Q  respectively: 

( )
( ) ( )( )

( )
( )

,

1 1

TT T T
c n N N CP CS CQ

T

CP x y

T

CS x y

T

CQ x y

F f F F f f f

f n n

f n n

f n n

α α

α α

= =

= − − × − − ×

=

= − × − ×

 (5) 

 

Fig. 2. Geometric description of the contact pair. 

The scalar parameter nf  is defined as the normal load. Note 
that the problem of finding the contact load cF  is reduced to 
the problem of finding the normal load nf .  

On the other hand, the localisation matrix L is defined as a 
matrix of dimension 6 2N×  formed by 0/1 entries. This 
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matrix is built accordingly to the index nodes , ,p q sι ι ι . Then, 

by means of L  is possible to find the x-y components of the 
contact nodes MP , SP  and QP , respectively by searching 

L such that 0 1α≤ ≤ , where: 

l
CP L P= ,      ( )C

T

p p s s q qx y x y x yP =  (6) 

The condition 0 1α≤ ≤ means that the slave node SP  must 

be contained into the master segment M MP Q
JJJJJJG

. Note also that 
the contact surface might be formed by more than one contact 
pair. So, we define CN  as the number of contact pairs. Then, 
all the defined parameters linked to the thp  contact pair can 
be identified by the superscript ( )p . For instance: 

( )( )
, ,

p

p q sι ι ι , ( )p
ng  and ( )p

nf  are the index nodes, the normal 

gap and the normal load of the thp  contact pair, respectively, 
where 1,2,..., cp N=  

Definition 1: The structures S1 and S2 are defined to be well 
balanced if and only if the following equations are satisfied 
for 1,2,..., cp N= : 

l l l l( )( ) ( ) ( )p p p
ciL P L P L R F F− = + ,  (7) 

l ( )( ) ( ) ( )

1

Nc Tj j j
nc N

j

FF f L
=

= ∑ ,        ( ) 0p
ng = ,     ( )0 1pα≤ ≤  

Therefore, this problem is reduced to find ( )pL and ( )p
nf such 

that equations in (7) are satisfied. 

3. MAIN RESULTS 

Let us introduce the following notation ( 1,2,..., cp N= ): 

( ) ( )( )TT T

xy fφ φ φ=   (8) 

( ) ( ) ( )( )(1) ( ) ( ),..., ,...,xy xy xy

TT T Tp Nc
xyφ φ φ φ=  

( )(1) ( ) ( ),..., ,...,
Tp Nc

f n n nf f fφ =  

l ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
xy

Tp p p p p p p p
p p s s q qL P x y x y x yφ = =  

Then, (7) can be rewritten in a compact form as: 

( ) 0xyC Wφ φ + =   (9) 

( )
( )

1 1

2 2

( )
0

g xg xy

xy

xy g xg

I F
C

G

φ
φ

φ

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

,     1 26 ,c cg N g N= =  

( ) i ( ) ( )( )1 2xy xy xyF R G Gφ φ φ= − + Λ  

( ) (1) ( ) ( )( ( ),..., ( ),..., ( ))p Nc
xy xy xy xyG diag G G Gφ φ φ φ=  

i i( ) iT
R L RL= , i ( ) ( )( )( )(1) ... c

TTT NL L L=  

( ) ( ) ( )( )( )(1) ,..., cN
d xy d xy d xyG diag G Gφ φ φ= ,  1, 2d =  

( ) ( )( ) ( ) ( ) ( ) ( )
1 0 0p p p p p

xy x y x yG n n n nφ = − −  

( ) ( )( ) ( ) ( ) ( ) ( )
2 0 0p p p p p

xy x y x yG n n n nφ = − −  

( )( ) ( ) ( ) ( ) ( )( ) 0 0p p p p p
xy x y x yG n n n nφ = − −  

( )(1)( ,..., )cNdiag α αΛ =  

( )0
xy

T
TW W= ,        i( ) l l( )T

xy iW L P RF= − +  

3.1 A closed-loop control model 

The objective of this section is to provide a control method 
based on a reduced closed-loop discrete-time model to obtain 
the normal loads ( )p

nf  satisfying (9).  

Let us define the following discrete-time system: 

1k k kuφ φ+ = + , ,( )k xy k ke C Wφ φ= +  (10) 

Note that the steady-state kφ  of the stabilized system (10)
contains the contact loads ( )p

nf  that satisfy (9) since 
lim 0kk

e
→∞

→ . Therefore, a stabilizing control law ( )k uc ku f e=  

must be obtained such that (0) 0ucf =  and ( ) 0, 0ucf e e≠ ∀ ≠ . 

3.2 Model reduction for stabilization 

Note that 3 3
,( ) g g

xy kC Rφ ×∈ , where 3 7 cg N= . In order to 
simplify the control design, the following reduction method 
is proposed: first, the output error ke  is pre-multiplied by the 
following regular matrix: 

( )
1 1 1 2

,
, 2 2

0
( )

g xg g xg
xy k

xy k g xg

I
T

G I
φ

φ

⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠

 

Thus, the new matrix , , ,( ) ( ) ( )t xy k xy k xy kC T Cφ φ φ=  is 

( )
( )

1 1 ,

,

,

( )
0

g xg xy k

t xy k

r xy k

I F
C

C

φ
φ

φ

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

( ) ( ) ( ), , ,r xy k xy k xy kC G Fφ φ φ= − ×  

So, the new output error can be redefined as: 

, , ,( ) ( ) ( )k xy k k t xy k k t xy kT e C Wε φ φ φ φ= = +   (11) 

, ,( ) ( )t xy k xy kW T Wφ φ=  
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Taking into account that 1
,( )xy kT φ−∃ , ,xy kφ∀ , it is easy to see 

that lim 0kk
ε

→∞
→  if and only if lim 0kk

e
→∞

→ . Taking a control 

law such as ,( )k xy k ku Y φ ε= , the closed-loop control of system 
(10) with the new output error (11) and the above defined ku , 
can be expressed as: 

( )1 , ,( ) ( )k xy k t xy k k kI Y C wφ φ φ φ+ = + + ,    , ,( ) ( )k xy k t xy kw Y Wφ φ=  

Note that kw δ≤  for some positive δ < ∞ , since ( ) 1p
xn ≤  

and ( ) 1p
yn ≤ . Choosing , , ,( ) ( ( ), ( ))xy k xy xy k f xy kY diag Y Yφ φ φ= , 

by virtue of the block-triangular form of ,( )t xy kC φ , the 
separation principle (Yoneyama et al., 2001) can be applied. 
On the other hand, take into account that: (i) the input kw  is 
bounded and (ii) when k → ∞ , kw  reaches a constant 
steady-value because it depends on ,xy kφ . Then, the input kw  
does not affect the stability of the system  (10). Therefore, the 
stability of  (10) is ensured if the following subsystems are 
stable: 

( ), 1 , ,( )xy k xy xy k xy kI Yφ φ φ+ = +  (12) 

, 1 , ,f k f k f kuφ φ+ = + , , , ,( )f k f xy k f ku Y φ ζ=  (13)  

Where , , ,( )f k r xy k f kCζ φ φ= .Therefore, ,( )xy xy kY φ  and ,( )f xy kY φ  
can be designed separately: the control gain ( )xy kY φ  can be 
fixed arbitrarily such that the poles of system (12) are located 
inside the unit circle (thereafter, we choose ,( )xy xy kY Iφ = −  to 
ensure the maximum convergence speed), and then, only the 
control ,f ku  must be designed such as  (13) is stabilized.  

3.3 A fuzzy PDC-based control 

Let us write ( )r xyC φ  as: 

( ) ( ) i ( ) ( )( ), , 1 , 2 ,r xy k xy k xy k xy k kC G R G Gφ φ φ φ= + Λ  

( ) ( ) ( )( )( )(1)
, , ,,..., cN

d xy k d xy k d xy kG diag G Gφ φ φ= ,  1, 2d =  

( ) ( )( ) ( ) ( ) ( ) ( )
1 , 0 0p p p p p

xy k xk yk xk ykG n n n nφ = − −  

( ) ( )( ) ( ) ( ) ( ) ( )
2 , 0 0p p p p p

xy k xk yk xk ykG n n n nφ = − −  

i i iT
R L RL= , i ( ) ( )( )( )(1) ... c

TTT NL L L=  

( )(1)( ,..., )cN
k k kdiag α αΛ = ,  ( ) ( )cos( )p p

xk nkn τ= , ( ) ( )sin( )p p
yk nkn τ=  

Now, consider the following assumptions: 

Assumption 1: Let us define the angle of the normal vector 
as ( ) ( ) ( )( / )p p p

nk yk xkarctg n nτ = . The normal angle deviation along 

all possible trajectories is assumed to be bounded: 
( ) ( )

0
p p

nk nτ τ λ− ≤ , for a given 0λ > . 

Assumption 2: The parameter [ ]( ) ,1p
kα χ χ∈ − + 0k∀ ≥ , for 

a given 0χ ≥ . (Introduction of parameter χ  is discussed 
Remark 3). 

The following uncertain T-S model with 2 cNr =  rules is built 
for system  (13). The sector nonlinearity method (Tanaka and 
Wang, 2001) is applied here considering the state subspace 

xyΩ  ( , , 0xy k xy kφ ∈ Ω ∀ ≥ ) defined from Assumptions 1 and 2: 

( ), ,
1

( ) ( )
r

ii ir xy k i xy k k
i

C C M Nφ θ φ
=

= + Δ∑  (14)       

( )1
2

i Mi miC C C= + ,        iM I= ,        i iN Iγ=  

1 max
2

Mi mii C Cγ
∞

= −  

( )

max ( ( ))
ixy xy

Mi r xyC C
φ

φ
∈Ω

Λ=Λ

= ,          
( )

min ( ( ))
ixy xy

mi r xyC C
φ

φ
∈Ω

Λ=Λ

=    

(1) ( , .., )diag χ χ χΛ = − − − , (2) (1 , ..., )diag χ χ χΛ = + − −  
(3) ( ,1 ,.., )diag χ χ χΛ = − + − , …, ( ) (1 , ,..,1 )r diag χ χΛ = + +  

Where the membership functions ,( )i xy kθ φ  are built by taking 

the 2 p  possible combinations of kΛ  by taking the minimum 
and maximum value for every ( )p

kα , 1,..., cp N=  

( )
1 1 1(.) Nc p

p kθ μ== Π ,             (1) ( )
2 2 2 1(.) Nc p

k p kθ μ μ== Π  

(1) (2) ( )
3 1 2 3 1(.) Nc p

k k p kθ μ μ μ== Π , …, ( )
1 2(.) Nc p

r p kθ μ== Π  

( )
( )
1

1
1 2

p
p k

k
α χ

μ
χ

− +
=

+
,      ( ) ( )

2 11p p
k kμ μ= −  

The proposed control law to stabilize (13) is the following 
PDC control scheme:  

, , ,( )f k f xy k f ku Y φ ζ= ,     l
,

1

( ) ( )
r

f k i xy k i
i

Y Yφ θ φ
=

= ∑  (15) 

3.4 Closed-loop stabilization 

This section provides a LMI-based sufficient condition to 
design ,( )f xy kY φ : 

Theorem 1: System (10) with control law ( ),k xy k ku Y φ ε= , 

kε  defined in (11) and ( ) ( )( ), ,,xy k f xy kY diag I Yφ φ= − is stable 

and guarantees a decay-rate performance β  if there exists a 
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symmetric matrix 0Q > , and matrices iX  such that LMI’s 
in (1) are satisfied, with ijΓ  defined as: 

2 (*) (*) (*)

(*) (*)
0 (*)

0 0

j i
ij T T

i j

i

Q

Q X C Q
M X I

N I

β⎛ ⎞−
⎜ ⎟

+ −⎜ ⎟Γ = ⎜ ⎟−⎜ ⎟
⎜ ⎟−⎝ ⎠

 

Furthermore, the stabilizing controller gain (15) can be 
computed as l 1

i iY Q X−= . 

Proof: Let us consider the quadratic Lyapunov function 
, ,

T
k xy k xy kV Qφ φ=  and the return difference defined as 
( ) 2

1k k kV V Vβ β+Δ = − . The condition ( ) 0kVβΔ <  ensures the 
stability of system (13) with decay rate performance β , that 

is, 2
, ,0xy k xyφ β φ≤ . Taking into account (13), denoting 

l
i iX QY= , and applying the cross-product lemma, the return 

difference ( )
kVβΔ  can be expressed as: 

( )
2

( )

2
1

(*) 0
0 (*)

(*) 0 0
0 0

k z
z zz z

TT T T
z z

z z z zz z

Q
V N

X MQ X C Q

Q N N
X M X MQ X C Q

β β

β
ν ν −

⎛ ⎞− ⎛ ⎞
Δ = + Δ + <⎜ ⎟ ⎜ ⎟⎜ ⎟+ − ⎝ ⎠⎝ ⎠

⎛ ⎞− ⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ − ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

 

Where ν  is some positive scalar. Note that, without loss of 
generality, ν  can be set to 1. Then, applying Schur 
complement, we obtain: 

2

1 1

(*) (*) (*)

(*) (*)(.) (.) 0
0 (*)

0 0

r r
j i

i j T T
i j i j

i

Q

Q X C Q
M X I

N I

β

θ θ
= =

⎛ ⎞−
⎜ ⎟

+ −⎜ ⎟ <⎜ ⎟−⎜ ⎟
⎜ ⎟−⎝ ⎠

∑∑  (16) 

The negativeness of the double convex sum (16) is ensured 
by virtue of Lemma 1. Finally, applying the separation 
principle discussed in Section 3.2, the stability of (10) is 
ensured. The proof is completed. 

Remark 2: The localisation matrix iL  has been assumed to 
be time-constant in the discrete-time system (10). Note that 
iL  can be set in advance by searching, 1,.., cp N∀ = , the 

initial master segments 
( )p

m mP Q
JJJJJG

 (computed by means of the 

initial coordinates, available in liP ) with matches with the 
initial slave nodes ( )p

SP , such that ( )
00 1pα≤ ≤ . Therefore, it is 

reasonable to set the initial state condition i l
,0xy iPLφ = . Note 

also that ,0xy xyφ ∈ Ω  for any arbitrarily values for , 0χ λ > , so 
the proposed ,0xyφ  always verify Assumptions 1 and 2. 

Remark 3: If the localisation matrix of the well-balanced 
structures is different from the initial one obtained as 
explained in Remark 2, after simulation we will obtain 

( ) [0,1]pα ∉  for some 1,..., cp N= . This fact explains why is 
interesting to choose 0χ > . Thus, the convergence of the 
proposed algorithm is ensured even if the localisation 
matrix iL  of the well-balanced setting is located at the 
neighbourhood of the initial iL . In this case, the simulation 
should be repeated by setting a new initial localisation matrix 
iL  depending on ( )pα . The discussion about how to address 

this topic has been intentionally left out of the scope of this 
paper for lack of space. 

4. EXAMPLES 

Let us consider the following structures, modelled by 2D 
finite elements in plane stress of Fig. 3. The master and slave 
structures (S1 and S2), consist of an elastic and a rigid beam, 
respectively. 

 

Fig. 3. Structures S1 and S2 before applying the external 
load. 

The system is discretized by Finite Element method obtaining 
N=307 degrees of freedom for both structures (255 for S1 
and 52 for S2). The external load F is applied over the node 
100 of S1 and (100) 2800F N= −  and 2cN = . 

After search the index nodes such that (1)
00 1α≤ ≤ , we build 

the localisation matrix iL  with the index nodes: 

( ) ( )(1)
, , 256, 257,231p q sι ι ι = ; ( ) ( )(1)

, , 257,258, 232p q sι ι ι =  

obtaining  (1)
0 0.956α =  and (2)

0 0.959α = . Then, we compute 
(1)
0 1.5676n radτ = , (2)

0 1.5613n radτ =  by means of i l
,0xy iPLφ = . 

Now, we define xyΩ  by virtue of Assumptions 1 and 2, with 
54.49 10 radλ −= i and 0.1χ = . Then, applying the sector 

nonlinearity method, a T-S uncertain model (14) with four 
rules ( 4r = ) is built. By Theorem 1, a stabilizing control law 
on the form (15) is found with a minimum decay rate of 

0.019β = with: 

9
1

2.01 1.90
10

1.90 1.80
Y

−⎛ ⎞
= ⎜ ⎟−⎝ ⎠

, 9
2

2.39 2.25
10

2.25 2.13
Y

−⎛ ⎞
= ⎜ ⎟−⎝ ⎠

9
3

2.16 2.04
10

2.04 1.93
Y

−⎛ ⎞
= ⎜ ⎟−⎝ ⎠

, 9
4

2.55 2.41
10

2.41 2.27
Y

−⎛ ⎞
= ⎜ ⎟−⎝ ⎠
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Finally, the normal loads that achieve the well balanced 
setting (Fig. 4) ( (1) 4436.6Nnf = and (2) 1839.3nf N= ) are 
obtained by simulation of system (10) with control law 

,( )k xy k ku Y φ ε=  (see Fig. 5): The time simulation is stopped 
after 13 iterations, when the norm of the error ke  defined in 
(10) is checked to be smaller than a prescribed tolerance 

1210eδ −= , that is k ee δ≤ . On the other hand, the maximum 
deviation of the angle of normal vectors and the limits of 

( )p
nα  are checked to satisfy Assumptions 1 and 2: 
( ) ( ) 5

0 1.78 10p p
nk n radτ τ λ−− ≤ <i , and ( )0.957 0.991p

nα≤ ≤ , 
respectively. 

 

Fig 4. Structures S1 and S2 after computing the normal load 
(well-balanced) under external static load F. 

 
Fig 5. Time response of the state corresponding to the normal 
loads. 

The CPU time required for the simulation was 46ms 
meanwhile the same problem solved with a classical 
Lagrange multipliers formulation required 293ms, illustrating 
a time reduction around 84%. For both methods, the used 
software was Matlab R2007b with the Structural Dynamic 
Toolbox (SDT) V6.1 on an Intel Core 2 Duo P9600 CPU at 
2.54 GHz. 

4. CONCLUSIONS 

In this paper, a fuzzy control approach has been proposed to 
solve the unilateral contact problem considering multiple 
contact pairs, obtaining a good compromise between cost in 
control design and performance has been achieved. Finally, a 
numerical result has been proposed to illustrate the 
effectiveness of this method and promising results in terms of 
time simulation reduction. 
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