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Abstract: Inertial Measurement Unit is commonly used in various applications especially as a
low-cost system for localization and attitude estimation. Some applications are: real-time motion
capture system, gait analysis for rehabilitation purposes, biomedical applications, advanced
robotic applications such as mobile robot localization and Unmanned Aerial Vehicles (UAV)
attitude estimation. In all the mentioned applications the accuracy and the fast response are the
most important requirements, thus the research is focused on the design and the implementation
of highly accurate hardware systems and fast sensor data fusion algorithms, named Attitude
and Heading Reference System (AHRS), aimed at estimating the orientation of a rigid body
with respect to a reference frame. A large number of different solutions can be found in the
literature, and an experimental comparison of the most popular is presented in this work. In
particular, the algorithm based on the gradient descent method and the algorithm based on
a nonlinear complementary filter are compared to a standard Extended Kalman Filter (EKF)
with the aim to show that a general method can easily compete with ad-hoc solutions and even
outperform them in particular conditions. In order to validate the estimation accuracy a Kuka
robot is used to compute the ground truth. Moreover, in order to estimate the computational
burden, the algorithms are implemented on an ARM-Cortex M4-based evaluation board.
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1. INTRODUCTION

Inertial Measurement Unit (IMU) sensors are a technol-
ogy capable of estimating orientation of a rigid body so
they are largely used as an implementation of real-time
motion capture systems to track the location and the
body posture of people (see Ziegler et al. (2011), Prayudi
and Doik (2012)) in contrast to optical solutions such
as (Falco et al., 2012), or to measure the joint angles for
gait analysis for rehabilitation purposes and biomedical
applications as well as for performance assessment of the
aging population (see Zecca et al. (2013) and Bennett et al.
(2013). Also, because of the small size and low weight
that make it better suited to the purpose, the interest
for IMU-based systems is growing in advanced robotic
applications, i.e., localization and wheel slip estimation of
a skid steered mobile robot (Jingang et al. (2007)), po-
sition and attitude determination for unmanned airborne
vehicles (UAVs) (Joong-hee et al. (2011)) and unmanned
underwater vehicles (UUVs) (Kim et al. (2011)). In all
these applications, in order to provide an added value
and to provide a valid alternative to the typical expensive
tools such as optical camera track systems, high accuracy
and high precision estimation of the device orientation are
required. So, the research is focusing on the design and the
implementation of sensor data fusion algorithms, named
Attitude and Heading Reference System (AHRS), able to
estimate the orientation of a rigid body with respect to a
reference frame. The IMU provides real-time readings of a

tri-axial gyroscope and a tri-axial accelerometer, which can
be employed in orientation estimation. The signal output
of low-cost IMU systems, however, is characterized by low-
resolution signals subject to high noise levels as well as
general time-varying bias terms. Therefore, raw signals
must be processed to reconstruct smoothed attitude es-
timates and bias-corrected angular velocity measurements
through suitable sensor fusion algorithms. In fact, suitable
exploitation of acceleration measurements can avoid drift
caused by numerical integration of gyroscopic measure-
ments. However, it is well-known that use of only these
two source of information cannot correct the drift of the
estimated heading, thus an additional sensor is needed,
i.e., a tri-axial compass, which allows to obtain a correct
heading estimation. Several fusion methods have been
proposed in the literature. Mahony et al. (2008) formulate
the filtering problem as a deterministic observer posed
on the special orthogonal group SO(3) termed ’explicit
complementary filter’. Madgwick et al. (2011) present a
computationally efficient orientation algorithm based on
optimized gradient descent algorithm designed to support
a wearable inertial human motion tracking system for
rehabilitation applications.

The contribution of this paper is to experimentally com-
pare the most popular AHRS algorithms and to validate
them using a robotic manipulator in order to define a
reliable ground truth. In particular, the standard EKF
framework and the methods proposed by Mahony et al.
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IMU sensor

Fig. 1. Experimental setup.

(2008) and by Madgwick et al. (2011) have been considered
worthy of particular interest. Although most of the papers
in literature propose modified versions of the EKF, e.g.
(Kim et al., 2011), (Chen et al., 2012) and (Xia et al.,
2008), the authors consider the standard EKF framework
still a valid option. The main reasons are its generality and
flexibility. In fact, this framework is particularly suitable
to add and remove sensors without significantly changing
the estimation algorithm, to take into account the different
reliability and accuracy of sensors on the basis of their
statistical characteristics, and to easily exploit all the a
priori knowledge on the involved signals.

In the first phase, the AHRS algorithms are imple-
mented in Matlab/Simulink environment. The IMU is then
mounted on a KUKA robot by mechanically aligning the
sensor frame to the end-effector frame. The gyroscope,
accelerometer, magnetometer and joint angles of the robot
are simultaneously acquired. By computing the direct
kinematics of the robot, the orientation of the end-effector
frame can be obtained. Thus, the estimated orientation
and the accuracy of the AHRS algorithms can be validated
using the measured orientation. In the second phase, in
order to compare the computational burden of the AHRS
algorithms, they are implemented on an embedded sys-
tem constituted by an ARM-Cortex M4. In this case, the
required time to compute a single cycle of data sensor
acquisition and filter computation is measured.

2. EXPERIMENTAL SETUP

The experimental setup is constituted by a KUKA robot
and by a STM32F3Discovery board. The evaluation board
is based on the STM32F303VCT6 ARM-Cortex M4 micro-
controller, a ST L3GD20 3-axis digital output gyroscope,
a ST LSM303DLHC MEMS system-in-package featuring
a 3D digital linear acceleration sensor and a 3D digital
magnetic sensor. In order to mechanically align the sensor
frame to the robot end-effector frame and in order to avoid
undesired rotations, the evaluation board is fixed to the
robot gripper using a calibrated mechanical part. In Fig 1
the experimental setup is reported.

2.1 IMU

The considered IMU is constituted by ST MEMS motion
sensors directly mounted on the STM32F3Discovery eval-
uation board. The ST L3GD20 3-axis gyroscope offers an

I2C/SPI digital output interface, 16 bit value data output
and three selectable ranges (±250,±500, ±2000 dps) while
the ST LSM303DLHC offers a 3-axis magnetometer with
a full-scale from ±1.3 to ±8.1 Gauss and a 3-axis ac-
celerometer with ±2 g/±4 g/±8 g/±16 g selectable range,
16 bit data output and a I2C serial interface. The exper-
iments have been carried out by setting an acquisition
rate of 760Hz, 1344Hz, 220Hz and a full-scale range of
±2000 dps, ±2 g, ±1.3Gauss for the gyroscope, the ac-
celerometer and the magnetometer, respectively.

2.2 Robot

The robot used to compute the ground truth for per-
forming the comparison among the attitude estimation
algorithms is a KUKA Youbot (Bischoff et al., 2011)
constituted by a 5-dof serial manipulator mounted on an
omnidirectional platform. In order to obtain a reference
attitude with a clear geometrical interpretation, the first
phase of the planned trajectory consists of rotating the
three joints with orthogonal axes of the robot individually,
while, in the second phase the joints are moved in a
coordinated fashion so as generate rotations about the roll,
pitch and yaw axes contemporarily. The joint angle values
are measured using the robot encoders with a sampling
frequency of 40Hz.

3. SENSOR CALIBRATION

Low-cost sensors have much lower performance character-
istics than high-end sensors for sophisticated applications.
Therefore, an accurate calibration of such sensors is very
important for the compensation of their systematic errors,
i.e., bias and scale factor. Usually, accurate values of such
parameters are not available from the manufacturer or
they depend on the actual mounting of the MEMS compo-
nents, which limits the use of these sensors for those appli-
cations that require high accuracy, such as human-machine
interfaces, biomedical research and aerial robotics. To ob-
tain a satisfactory performance, it is necessary to use a
proper calibration method that could be performed in the
background (self-calibration) or off-line by the system.

Three-axis accelerometers and three-axis magnetometers
supplied for the consumer market are typically calibrated
by the sensor manufacturer using a six-element linear
model comprising a gain and offset in each of the three
axes. This factory calibration can change as a result of
the thermal stresses during soldering of the accelerome-
ter/magnetometer to the circuit board. Additional small
errors, including rotation of the IC package relative to the
circuit board and misalignment of the circuit board to
the final product, can be introduced during the soldering
and final assembly process. The original factory calibration
will still be adequate for the vast majority of applications,
however for professional applications this is not the case. In
addition, the magnetometer behaviour can be influenced
by the presence of hard-iron and soft-iron distortions that
cannot be foreseen by the manufactures but are strictly
related to the application. Hard-iron interference is nor-
mally generated by ferromagnetic materials with perma-
nent magnetic fields that are part of the hand-held device
structure. These materials could be permanent magnets or
magnetized iron or steel. They are time invariant and their
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effect is to bias the magnetic sensor outputs. A soft-iron
interference magnetic field is generated by the items inside
the hand-held device. They could be the electric traces on
the PCB or other magnetically soft materials.

3.1 Accelerometer/Magnetometer Calibration

Calibration of accelerometers and magnetometers can be
reduced to 3D-ellipsoid fitting problems (Gietzelt et al.,
2013), (Camps et al., 2009). In the proposed calibration
algorithm a six-parameter error model has been considered
(Pedley, 2013). Denoting with yf = [yf1 yf2 yf3]

T a
generic sensor output, a re-calibration procedure can be
applied to compute the same six calibration parameters as
the original factory calibration (a scale factor and an offset
for each channel) but then applied on top of the factory
calibrated output yf . The 3D fitting problem requires a
set of measurements that should cover as much as possible
the 3D space and, for the accelerometer calibration, it is
necessary to carry out the measurements in a quasi-static
condition to avoid accelerations other than the gravity.
The re-calibrated sensor output ŷs, expressed in the sensor
frame Σs, become

ŷ
s = Λ

(

ys
f − bs

)

= Λys
f −Λbs (1)

where Λ = diag{λ1, λ2, λ3} > 0 and bs = [b1 b2 b3]
T are

the scale factors and offsets, respectively.

Objective of the calibration is to compute Λ and b such
that the ellipsoid becomes a unit sphere centered in the
origin, i.e.,

1 = ŷ
sT
ŷ
s = ysT

f Λ2ys
f + bs

T
Λ2bs − 2ysT

f Λ2bs (2)

By introducing the following intermediate variables 1

d= 1− bs
T
Λ2bs (3)

Λ̄= (1/d)Λ2 = diag{λ̄1, λ̄2, λ̄3} (4)

c= (1/d)Λ2bs = Λ̄bs, (5)

Eq. (2) can be written as

1 =
[

y2f1 y2f2 y2f3 − 2yf1 − 2yf2 − 2yf3
]







λ̄1

λ̄2

λ̄3

c






, (6)

which can be easily solved by writing it for the entire
measurement set as a linear system to be solved via a least
square algorithm. The bias term bs can be immediately
computed from (5), while Λ2 can be computed by solving
the linear system obtained substituting Eq. (3) into (4).

The algorithm has been applied to both the magnetometer
and the accelerometer of the IMU used in the experimental
setup and the results are reported in Fig. 2, where it
is evident how the re-calibration allows to obtain lower
errors. In fact, after the re-calibration the standard devi-
ation of ‖ŷs‖ is 2.8% for the magnetometer and 3.1% for
the accelerometer, compared to the standard deviations of
‖ỹs

f‖ = ‖ys
f‖/ȳ

s
f that are 17.9% and 5.2%, respectively,

being ȳs
f the mean value of ys

f .

1 Note that d = 0 can always be avoided by artificially translating
the data.
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Fig. 2. Calibration error of the accelerometer (left) and
magnetometer (right) before and after re-calibration.

4. ATTITUDE ESTIMATION ALGORITHMS

As explained in the introduction, in this work three atti-
tude estimation algorithms have been compared, one based
on a standard EKF formulation and two specifically de-
signed to solve the problem. As opposed to what one would
expect from a specifically designed solution compared to a
more general approach, the performance of the EKF will
be demonstrated better than the other two methods, at
the price of a higher computational burden. Nevertheless,
the generality of the approach keeps the “door open” to
further improvements that could come from the adoption
of additional sensor data without the need to completely
re-design the estimation algorithm and especially re-tune
the algorithm parameters, which are based on the statistic
characteristics of each signal.

4.1 Extended Kalman Filter

The proposed AHRS algorithm is based on a stan-
dard EKF method differently from the Kalman-based
approaches proposed in Marins et al. (2001) and Saba-
tini (2006), where modifications to the standard Bayesian
framework were introduced with different motivations.
However, the modification proposed by Marins et al.
(2001) lead to a solution where handling of noise statistics
is less trivial than in the standard EKF formulation, in fact
noise rejection is delegated to a Gauss-Newton iterative
algorithm, which is claimed less computational demanding
than the standard EKF, but without a convincing evi-
dence. The modification proposed by Sabatini (2006) con-
sists in introducing the gyroscopic measurement directly
in the state update equation rather than in the measure-
ment equation, which implies the assumption of low noise
affecting the sensor so as to allow a linearization of the
update function. Finally, the recent survey on nonlinear
attitude estimation techniques (Crassidis et al. (2007))
recognizes that EKF-based approaches are the most used
for two main reasons, their proven reliability and the
ease of incorporation of further measurement sources that
can improve the quality of the estimate or even provide
estimate of further quantities, e.g. altitude and vertical
velocity using GPS, like in Xia et al. (2008). Moreover, the
statistical characterization of the sensors required in the
EKF framework allows tuning the algorithm parameters
in a more straightforward fashion.

Let Σb be the base frame to which the orientation to
be estimated is referred and Σv be the body-fixed frame.
Without loss of generality, Σv is assumed aligned with the
sensor frame Σs.
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Given two frames Σd and Σc, the quaternion expressing
the orientation of Σd with respect to Σc is denoted by

Qd,c =
[

qd,c1 qd,c2 qd,c3 qd,c4

]T
=

[

ηd,c ǫd,c
T
]T

, (7)

where ηd,c = qd,c1 is the scalar part and ǫd,c =

[qd,c2 qd,c3 qd,c4
]T is the vector part. Note that a quaternion

is here represented as a 4×1 vector and two operators can
be applied to two quaternions, i.e. the standard matrix
product and the quaternion product defined as

Qd,c ∗Qe,f =

[

ηd,cηe,f − ǫd,c
T

ǫd,c

ηd,cǫe,f + ηe,fǫd,c + S(ǫd,c)ǫe,f

]

, (8)

where S(·) is the 3 × 3 skew-symmetric operator of the
vector product.

In order to simplify the notation, the orientation of Σv

with respect to Σb will be expressed by omitting the frame
superscripts, i.e.,

Qv,b = [q1 q2 q3 q4]
T
, Q, (9)

which is the quantity to estimate. In order to setup the
EKF, the measurement equations are considered first.

Accelerometer. Under the following assumptions

• Σb has the z-axis perfectly vertical
• The vehicle is subject to low translational accelera-
tions and thus the accelerometer measures only the
gravity acceleration vector

• The accelerometer is calibrated as in Section 3.1 such
that avT

av = 1 and thus ab = [0 0 −1]
T

where av is the measured acceleration expressed in the
body-fixed frame and ab is the same acceleration expressed
in the base frame, the measurement equation of the
accelerometer can be obtained by using the standard
quaternion formula to change the reference frame of a
vector as

[

0
av

]

= Q−1

v,b ∗

[

0
ab

]

∗Qv,b +

[

0
na

]

(10)

where na is the measurement noise affecting acceleration
measurements, assumed normally distributed.

Magnetometer. Under the following assumptions

• The magnetometer is calibrated as in Section 3.1 such

that hvT

hv = 1
• hb is constant and is computed as the average value

h̄
b
measured at the beginning of any experiment

Since the initial orientation (at the time instant t = 0)
of Σv with respect to Σb is unknown, but the base frame
has been chosen with a vertical z-axis, a rotation matrix

R̄
b

v = Rb
v(0) has to be computed to obtain h̄

b
from the

measurement hv(0) expressed in frame Σv, i.e.,

R̄
b

va
v(0) = [0 0 −1]

T
(11)

where av(0) is the measured (averaged) acceleration in
t = 0. Denoting with

R̄
v

b = [r1 r2 r3] , (12)

from (11) it results

r3 = −av(0), (13)

while r1 and r2 can be easily computed to complete a
right-handed frame as

r1 = 1/
∥

∥(I − r3r
T
3 )e1

∥

∥ (I − r3r
T
3 )e1 (14)

r2 = S(r1)r3. (15)

Hence, the constant magnetic field in the base frame

is computed as h̄
b

= R̄
b

vh
v(0) and the measurement

equation of the magnetometer is
[

0
hv

]

= Q−1

v,b ∗

[

0

h̄
b

]

∗Qv,b +

[

0
nm

]

, (16)

where nm is the measurement noise affecting magnetic
field measurements, assumed normally distributed.

Gyroscope. The gyroscope provides measurements of the
angular velocity, which is related to the time derivative of
the quaternion through the equation

Q̇ =
1

2

[

0 −ωvT

ωv −S(ωv)

]

Q , E(ωv)Q. (17)

In order to take into account that the angular velocity is
affected by an additive measurement noise nω (assumed
normally distributed), it will be included both among the
measured variables and the variables to be estimated. For
implementation purposes, Eq. (17) can be written as a
function of the discrete time k as

Qk+1 = Qk + TsE(ωv
k)Qk, (18)

where Ts is the sampling time.

Now, the equations of the estimation filter are presented.

The estimation filter. Let us define the augmented state
as

xk =

[

x1k

x2k

]

=

[

Qk

ωv
k

]

. (19)

Assuming the classical constant velocity model, the state
update equation is

xk+1 = f(xk) +wk ,

[

x1k + TsE(x2k)x1k

x2k

]

+wk (20)

where wk is the process noise which is assumed unbiased,
uncorrelated with the state and with a covariance matrix
W with finite norm. In order to setup the EKF, the
measurement equation is defined as

yk =

[

ωv
k

av
k

hv
k

]

+ vk = g(xk) + vk ,

[

x2k

av(x1k)
hv(x1k)

]

+ vk (21)

where av(x1k) is expressed as in (10), hv(x1k) is expressed
as in (16) and vk = [nT

ω nT
a nT

m]T is the measurement
noise, which is assumed normally distributed and with
positive definite covariance matrix V .

The EKF equations are set in the classical 3-steps form as

• prediction step

x̂k+1|k = f (x̂k|k), x̂0|0 = xi (22)

P̂ k+1|k =F kP̂ k|kF
T
k +W , P̂ 0|0 = W (23)

being F k =
∂f

∂x

∣

∣

∣

∣

x̂k|k

(24)

• Kalman gain computation step

Kk+1 = P̂ k+1|kG
T
k+1

(

Gk+1P̂ k+1|kG
T
k+1 + V

)−1

(25)

being Gk =
∂g

∂x

∣

∣

∣

∣

x̂k+1|k

(26)
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• update step

x̂k+1|k+1 = x̂k+1|k +Kk+1

(

yk − g(x̂k+1|k)
)

(27)

P̂ k+1|k+1 = (I −Kk+1Gk+1) P̂ k+1|k (28)

where xi is the initial state which is chosen with zero
angular velocity and orientation aligned with the base

frame, I is the 7×7 identity matrix, x̂k+1|k and P̂ k+1|k de-
note the expected value and covariance matrix estimates,
respectively, at time step k + 1 given the observations up
to time step k.

4.2 Madgwick Algorithm

It is applicable to IMU’s consisting of tri-axis gyroscopes
and accelerometers, and magnetic angular rate and gravity
(MARG) sensor arrays that also include tri-axis magne-
tometers. The algorithm incorporates magnetic distortion
compensation and it uses a quaternion representation,
allowing accelerometer and magnetometer data to be used
in an analytically derived and optimised gradient descent
algorithm to compute the direction of the gyroscope mea-
surement error as a quaternion derivative. The equations
of the algorithms can be found in Madgwick et al. (2011).

4.3 Non-Linear Complementary Filter

Mahony et al. (2008) propose the orientation estimation
problem as a deterministic observation problem posed di-
rectly on the special orthogonal group SO(3). Thought the
definition of a Direct Complementary Filter and a Passive
Complementary Filter they arrive to a reformulation of
the complementary filter, named Explicit Complementary
Filter, in terms of direct vectorial measurements, such as
gravitational or magnetic field directions obtained from
an IMU. This observer does not require online algebraic
reconstruction of attitude and is ideally suited for imple-
mentation on embedded hardware platforms owing to its
low complexity. However, it suffers from possible disconti-
nuities in the bias correction signal when the equivalent
rotation angle of the estimated quaternion approaches
±π rad that could result in systematic errors in the re-
constructed attitude.

5. EXPERIMENTAL RESULTS

The parameters of each of the three algorithms to be
compared have been set as follows. For the EKF, the
measurement covariance matrix V has been estimated by
a simple static acquisition of the sensor signals and the
resulting values are

V = diag{2.9 · 10−5, 2.3 · 10−5, 3.2 · 10−5, 3.1 · 10−5,

4.5 · 10−5, 5.5 · 10−5, 2.0 · 10−3, 2.1 · 10−3, 2.0 · 10−3}
,

while the entries of the process covariance matrix have
been tuned so as to obtain a satisfactory response time
and a good noise rejection, as well as to guarantee filter
convergence according to the result by Natale (2011), i.e.,

W = diag{10−10, 10−10, 10−10, 10−10, 10−3, 10−3, 10−3}.

Note how the first four entries are significantly lower than
the others since the first four state update equations in (20)
are the kinematic relation between angular velocity and
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Fig. 3. Orientation error: slow trajectory (left) and fast
trajectory (right).

time derivative of the quaternion, which is exact except
for the numerical integration error.

The sole adjustable parameter of the algorithm recalled in
Section 4.2 has been chosen as the optimal value proposed
by Madgwick et al. (2011) for the MARG implementation,
i.e., β = 0.041. The gain parameters of the algorithm re-
called in Section 4.3 and implemented using the quaternion
representation, have been chosen as proposed by Mahony
et al. (2008), i.e., KP = 2 and KI = 0.6, which have been
verified to be optimal also in this case.

The three algorithms have been implemented in Mat-
lab/Simulink with a sampling time Ts = 2ms, since the
sensor data have been acquired from IMU at sampling
frequency of 500Hz, which is the frequency experimen-
tally found to guarantee the most reliable communica-
tion. To compare the three AHRS algorithms, two robot
trajectories are considered. In the first (slow) trajectory,
an average speed of 18 deg/s is applied to robot joints,
while, in the second (fast) trajectory, the average speed
is raised to 45 deg/s. The ground truth is computed using
the direct kinematics of the robot and, thus, computing
the end-effector frame orientation (aligned to the body-
fixed frame) in terms of the unit quaternionQv,r, being Σr

the robot base frame. Thus, the estimated orientation of
the body-fixed frame resulting from the AHRS algorithms
Q̂v,b, is compared with the ground truth Qv,b (computed
as Qv,b(0) ∗ Qr,v(0) ∗ Qv,r(t)) and the orientation error

is calculated as the quaternion Q̃(t) = Q̂
−1

v,b(t) ∗ Qv,b(t).
This orientation error is then expressed in terms of Euler
angles in Roll-Pitch-Yaw representation and it is reported
in Fig. 3.

To better appreciate the response time and noise rejec-
tion of the three algorithms, Fig. 4 shows the quaternion
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Fig. 4. Estimated and true attitude: slow trajectory (left)
and fast trajectory (right).

Euler angles [◦] EKF Madgwick Mahony

Roll (static) 0.04 0.03 0.02
Pitch (static) 0.01 0.05 0.05
Yaw (static) 0.30 1.92 1.85
Roll (slow) 4.71 4.85 5.07
Pitch (slow) 1.91 2.65 2.89
Yaw (slow) 5.19 5.13 5.67
Roll (fast) 6.55 6.51 6.69
Pitch (fast) 2.83 3.34 2.85
Yaw (fast) 6.71 7.07 6.92

Table 1. Static and dynamic RMSE

components of the estimated orientation for both trajec-
tories compared to the ground truth. To quantify the
algorithms performance, the static and dynamic RMSE
(root-mean-square-error) still in terms of Euler angles have
been computed and reported in Tab. 1. The results of
the experiments show that in the slow trajectory, the
three algorithms provide comparable results in terms of
accuracy. In terms of RMSE, the proposed EKF algorithm
provides a more accurate estimation in both static and
dynamic conditions.

To test the capability of the algorithms to work under se-
vere disturbance conditions a specific experiment has been
carried out by intentionally actuating the robot gripper
with a periodic signal so as to generate an electromag-
netic disturbance which mainly affects the magnetometer.
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Fig. 5. Measured magnetic field without (left) and with
disturbance (right).
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Fig. 6. Orientation error: slow trajectory in the noisy case.

Euler angles [◦] EKF Madgwick Mahony

Roll 5.05 5.54 5.87
Pitch 3.24 3.93 4.53
Yaw 5.93 6.27 6.66

Table 2. Dynamic RMSE with noisy measure-
ments.

Fig. 5 reports the measured magnetic field in absence
and presence of the disturbance showing the high noise
level. Executing the slow trajectory in such condition, the
algorithms exhibit a degradation of the performance as it
can be appreciated in Fig. 6 and from the RMSE figures
reported in Tab. 2.

As a further analysis, a comparison on the computational
burden of the considered algorithms has been carried out.
In particular, the algorithms have been implemented in
Matlab/Simulink environment on an Intel I7 quad-core
processor at 1.6GHz. The tic-toc Matlab functions have
been used to estimate the execution time of a single cycle
that includes the gyroscope, accelerometer and magne-
tometer measurement and the attitude estimation. The
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Algorithm Matlab/Simulink [ms] Embedded System [ms]

EKF 0.1 2.7
Madgwick 0.017 0.15
Mahony 0.014 0.11

Table 3. Computational burden estimation

superior performance of the EKF can be attributed to
the availability of a tunable parameter for each sensor
measurement, which is paid in terms of a higher execu-
tion time. Finally, to validate the proposed results, the
algorithms have been coded for implementation on the
STM32F3Discovery evaluation board using Chibi/OS as
real-time embedded operating system. To this aim, the
ARM Cortex Microcontroller Software Interface Standard
(CMSIS) DSP library is used to implement the mathe-
matical operations, i.e., matrix product and inverse. Ta-
ble 3 reports the average time required to compute one
estimation cycle in both Matlab/Simulink environment
and embedded system implementation. Even though the
execution times of the two fastest algorithms would allow
to use a lower sampling time, this would lead to a negli-
gible improvement due to the limited update rate of the
magnetometer and gyroscope sensors.

6. CONCLUSION

An experimental comparison of popular IMU-based al-
gorithms for orientation estimation of a rigid body with
respect to a reference frame is presented in this work.
In particular, two specifically designed solutions are com-
pared to a standard EKF algorithm, which outperforms
the others, as experimentally demonstrated, at the expense
of a higher computational burden. However, its generality
allows the user to add further sensory information without
the need to completely re-design the estimation filter or to
re-tune the parameters of the algorithm, which are simply
based on the statistics of the noise affecting each measured
signal.
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