
Component-Based Design of Simulation
Models Utilizing Bond-Graph Theory

Petr Novák ∗,∗∗ Radek Šindelář ∗

∗ Christian Doppler Laboratory for Software Engineering Integration
for Flexible Automation Systems, Vienna University of Technology,
1040 Vienna, Austria (e-mail: {novak,sindelar}@ifs.tuwien.ac.at)

∗∗ Czech Technical University in Prague, 16636 Prague,
Czech Republic

Abstract: Simulation models are becoming efficient tools for real plant testing and control
system fine-tuning. They are necessary for advanced process control. Since a design phase
of simulation models is time-consuming and error-prone, this paper proposes a method for
the systematic and semi-automated design of simulation models. It is intended mainly for
signal-oriented simulators such as MATLAB-Simulink. The method presumes that large-scale
industrial systems consist of subsystems, whose behavior is known. The task for the proposed
approach is to create a simulation model from atomic simulation blocks approximating system
components. The proposed solution utilizes the bond graph theory in a non-traditional way.
Compared to the classical use of bond graphs, the proposed method does not create simulations
from scratch, but it re-uses existing simulation components. It extends bond graphs with a
concept of component implementations and annotations of their interfaces. Thus, models are
assembled from atomic component implementations, whose selection is done by the proposed
method for each node of the system topology.

1. INTRODUCTION

Current industrial systems are becoming complex and
sophisticated. Designing and fine-tuning of control algo-
rithms for such systems are typically based on simulation
models. Compared to the use of a real system, they can
perform experiments more fast, safely, and with lower
costs. However, the design of simulation models is a time-
consuming and error-prone task, as it is based on repeating
manual work. In addition, maintenance of models requires
complex work of experts that should be semi-automated.

This paper proposes a method for a semi-automated design
of dynamic simulation models for industrial systems. The
proposed method assumes that simulation models consist
of simulation components representing real devices. The
method assembles simulations from components, which are
typically comprised in simulation libraries. When creating
a model, the components from the library are instantiated
and interconnected in the simulation model according to
the structure of the real system. This approach is typically
called “object-oriented modeling”, more details can be
found e.g. in Sinha et al. [2001]. The proposed method
supports a problem of multiple implementations of each
component, which differ in input and output interfaces.
As the method is designed mainly for signal-oriented sim-
ulators, the problem of interconnecting simulation compo-
nents to create a dynamic model is a nontrivial issue.

The recognition of the appropriate signal-wiring between
components is supported by the bond-graph theory in the
proposed method. In Layman’s terms, bond graphs are
engineering tools that are focused on describing physical
systems mathematically. They involve devices, their con-

nections, directed power transfers, and causality strokes.
The causality assignment is an important feature of bond
graphs, extending preceding power graphs to a much more
powerful tool. In the presented method, bond graphs play
an important role for selecting the right implementations
of simulation components when more than one are avail-
able for each device, and also for determining how to
interconnect these components. The presented method can
be considered as an extension of the bond-graph theory for
legacy simulation components. The components are con-
sidered as gray-boxes with known interfaces, but a possibly
unknown implementation of the functionality itself.

The proposed method has been investigated in the frame
of the development of the Simulation Integration Frame-
work Šindelář and Novák [2011, 2012]. It is the framework
supporting the integration of simulation models within in-
dustrial SCADA systems as well as other tools used in the
industrial automation practice. Furthermore, it supports
the design of simulation models, as integration and design
are coupled issues and it is not efficient to solve them sepa-
rately. This article extends the method presented in Novák
and Šindelář [2011b], which was focused on the simulation
models creation based on single-input and single-output
components, and which did not handle the problem of
junctions (i.e., component interconnections) satisfactorily.

The remainder of this paper is structured as follows. Sec. 2
summarizes related work. Sec. 3 introduces the bond-graph
theory in a traditional way. Sec. 4 proposes a component-
based approach for simulation model design that utilizes
bond-graphs in a non-traditional way. Sec. 5 illustrates the
proposed approach on a simple use-case. Finally, Sec. 6
concludes and proposes further work.

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 9229

2. RELATED WORK

A large variety of publications has been published in the
area of bond graphs. A good introduction and motiva-
tion into bond graphs can be found in Blundell [1982].
The whole description of this method is summarized in
Gawthrop and Bevan [2007], including various examples,
system analogies, and practical issues. The authors of
this paper learned about bond graphs from a text book
Horáček [1999].

An approach combining bond graphs and object-oriented
modeling to build simulation models is discussed in
Borutzky [1999]. The paper summarizes three model de-
scription languages: MAST, VHDL-AMS, and SIDOPS.
An application of VHDL-AMS is discussed in more details
for example in Pêcheux et al. [2005], where the chemical
domain is considered as a use-case.

The main contribution of Borutzky [1999] is focused on
the application of bond graphs for Modelica-based models.
Bond graph ports are realized by the “connector” class
in Modelica language to specify the interface, which can
be consequently connected via the operator “connect”.
Compared to Borutzky [1999], this paper is focused on
signal-oriented simulators, whereas Modelica is equation-
oriented. Furthermore, Borutzky [1999] does not discuss
the problem of multiple implementations of specific com-
ponents. The same author presented in Borutzky [2009]
the whole bond graph method including specific steps
to generate bond graphs for mechatronic systems, the
sequential causality procedure introduced by Karnopp and
Rosenberg, and finally some use-cases.

A modeling simulation package 20-SIM is presented in
Broenink [1999]. It is an interactive tool for modeling and
simulation of dynamic behavior of engineering systems. It
has a modeling and a simulation part, it supports data
sharing with other simulation packages, and it covers a
wide range of techniques.

The generation of simulation models based on bond graphs
is discussed in Beez et al. [2008]. Models are generated
in the Modelica language and the real plant description
utilizes AutomationML as a vendor-independent format
for process and instrumentation description. Compared to
this paper, we focus on signal-oriented simulators and we
explicitly support various component implementations.

3. BOND GRAPHS

Bond-graphs are focused on describing power flows through
systems, as “power is the universal currency of physical
systems” Gawthrop and Bevan [2007]. Power is the rate
of energy flow and mathematically, energy is the time-
integral of power. Energy flows in from sources, it can be
temporarily stored in specific components (such as capac-
itors or inductors in an electrical circuit), it is dissipated
in some components (such as in resistors), and it produces
desired effects in other components, see Blundell [1982].

Bond-graph theory is aimed at the unified and systematic
way for mathematical description and modeling of physical
systems. The bond-graph theory is based on the following
three types of analogies, which are subsequently described
in more details:

(1) Signal analogies;
(2) Component analogies;
(3) Connection analogies.

3.1 Signal analogies

Since physical systems are balancing energy by transfer-
ring power and tend to reach the highest entropy, the main
impact on the system behavior have variables affecting
the energy distribution within the system. As the rate
of energy transfer is power, it is the power that has the
fundamental role in bond graphs as well as in the method
proposed in this paper.

In order to introduce a unified approach to diverse types
of systems, the bond-graph theory defines two generic
variables:

• Effort e(t)
• Flow f(t)

These variables are called “power variables” as their prod-
uct is power:

p(t) = e(t)f(t)

Furthermore, the bond-graph theory utilizes two inte-
grated variables, which are useful for component descrip-
tion:

• Integrated effort: p(t) = p0 +
t∫

t0

e(τ)dτ

• Integrated flow: q(t) = q0 +
t∫

t0

f(τ)dτ

Although mathematically it would be feasible to derivate
these equations and to express flow (respectively effort)
as a derivative of integrated flow (respectively integrated
effort), these equations would not be causal in dynamic
systems. The derivative operator needs to know future be-
havior, which is not numerically possible. These issues are
reflected in the concept “causality”, which is an important
feature of bond graphs described later in Sec. 3.4.

3.2 Component Analogies

The above stated definition of generic signals is useful
not only for the expression of signal relationships among
systems of various physical nature, but also in order to
define component interfaces and basic generic components.
Component analogies are the second cornerstone, which is
provided by the bond-graph theory.

The theory defines the following one-port components:

(1) Source of effort (SE) is an ideal source of effort.
In electrical systems, it is an ideal voltage source.

(2) Source of flow (SF) is an ideal source of flow. In elec-
trical systems, it is an ideal current source.

(3) Resistor (R) is a component, which relates effort and
flow by a static function, which can be non-linear.

(4) Capacitor (C) is a component accumulating energy
and having a static function between effort and inte-
grated flow. This function can be non-linear.

(5) Inductor (I) is a component accumulating energy and
having a static function between flow and integrated
effort.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9230

All these components are called one-port components. It
means that each component couples one pair of effort
and flow. One of these variables is input and the second
one is output. Only in the case of sources, it is done by
definition, which one is output; in the other cases, it is
determined by the bond graph. The bond-graph theory
also supports components having more than one ports.
Examples of 2-port components are a transformer (TF)
and a gyrator (GY), for simplicity reasons we restrict on
1-port components.

3.3 Connection Analogies

Having the generic components, the simulation model
scheme should be created by interconnecting these com-
ponents. The connections are called bonds in the language
of bond graphs and in case of power transfers, it is a pair of
power variables. The third analogy addresses the problem
of connecting devices in series or in parallel.

The typical approach used for electrical circuit analysis is
based on the Kirchhoff’s first and second laws. In complex
systems, it is hard to recognize and to automate which of
them should be used. The bond-graph theory introduces
an abstraction of connection types:

(1) 0-junction is a junction having the equal value of
effort on all bonds and the sum of the (directed) flows
is zero:

e1 = e2 = ... = en

f1 + f2 + ...+ fn = 0

(2) 1-junction is a junction having the equal flow for all
bonds and the sum of effort equal to zero:

e1 + e2 + ...+ en = 0

f1 = f2 = ... = fn

The type of a junction to use depends on the type of the
physical system as follows.

• Non-mechanical systems: In most of the systems, a 1-
junction is a serial connection of components, whereas
a 0-junction represents a parallel connection.

• Mechanical systems: In case of mechanical systems,
the assignment is vice-versa. 1-junctions are parallel
connections, whereas 0-junctions are serial ones.

3.4 Creating Bond Graphs

A bond graph is a graph containing components, junc-
tions, connections, directions of power flows, and causality
strokes. We have already discussed the fundamental issues
related to components, junctions and connections. In the
further text, we will focus on power direction, causality
and the whole method of creating bond graphs.

The power direction defines the positive direction of power
through each bond. This direction is not crucial in terms of
the mathematical description, but it is an important issue
for understanding the sign convention, i.e., what a positive
or a negative value means for each bond. The theory
recommends specific rules for assigning the direction. For
example, the power should be directed out of sources, it
should be directed into 1-port components C, I, or R, and
last but not least, in 0 and 1-junctions the power should

go out via at least one arc. These rule examples show that
the theory fits well for the machine-based processing.

An important aspect of bond graphs is the causality,
declaring which of the variable pair flow and effort is
the given variable and which one is calculated in each
connected component or junction. A source of effort has
effort as a given output, whereas the flow depends on the
remainder of the system. The second kind of a source,
the source of flow, has a causality vice-versa. As it has
been already mentioned, one of the requirements on sim-
ulation schemes is to calculate integrated variables by
discrete summing and not calculating the flow or effort
as a derivative of the integrated flow, respectively the
integrated effort. Another requirement on the causality
arises in the area of junctions. In case of 0-junctions,
the common effort is given by exactly one component,
whereas in case of 1-junctions, the common flow is given
by exactly one component. The causality is denoted by
adding a short bar to the end of a bond, Blundell [1982],
which is called a causality stroke. For determining the
causality, the bond-graph theory proposes a recipe defining
the order: (i) Causality of bonds connected to sources, (ii)
integral causality of component types I and C (if it is
possible), (iii) causality of other remaining nodes in a way
that requirements on node causality are satisfied. In case
of resistors, the causality is arbitrary. If there is a causality
collision, either a differential causality of I and C should
be used, or it is solved by modifying the level of abstraction
for system description.

Last but not least, the bond-graph theory defines several
types of bond graph reductions. Due to the limited space,
this problem is not addressed in this paper.

Summarizing the whole method, the theory proposes to
perform the following steps to create the bond-graph:

(1) Generation of nodes representing components and
junctions;

(2) Generation of arcs representing bonds;
(3) Assignment of the power direction;
(4) Exclusion of a reference junction;
(5) Reduction of the graph;
(6) Assignment of the causality strokes;
(7) Writing down mathematical equations manually.

4. COMPONENT-BASED METHOD FOR
SIMULATION MODEL DESIGN

Bond graphs are suitable for machine-based processing as
they offer simple lists of recommended steps and rules,
which are easy to implement. Nevertheless, their typical
use suffers from (i) manual use, and (ii) the method
is by its nature analytic and works with an internal
description of the behavior of the components. It does
not face complex units such as pump stations seamlessly.
This section motivates and explains the proposed method
addressing the above mentioned shortcomings, which is the
main contribution of this paper.

4.1 Motivation for the New Method

The basic motivation for the research can be summarized
in the following requirements that should be fulfilled:

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9231

Fig. 1. Exemplary electrical circuit including a voltage
source, resistors R1 and R2, and both accumulators
of energy – a capacitor C and an inductor I.

Simulation

Component

In1

Inn

Out1

Outn

Simulation Component

Simulation Component Annotation

Component

parameters

Interface Annotation

&

Flow and effort assignment

INPUTS OUTPUTS

Fig. 2. A simulation component and its interfaces. The
interface annotation includes inputs and outputs; and
it maps inputs and outputs to generic signals flow and
effort.

(1) Support for a component-based approach
Simulation models of large-scale industrial systems

typically consist of simulation components represent-
ing sub-parts of the plant. The goal is to handle
each component as a whole and to work just with
its interface, no matter how the block is internally
implemented.

(2) Automate the bond-graph method
The bond-graph method has been already imple-

mented many times in diverse tools, nevertheless,
these implementations work with a typical approach
based on the analytic description of devices (such
as capacitor, inductor, etc.). The proposed method
is intended to support a component-based approach
and to enable re-use of engineering artifacts. The idea
of the presented generation of simulations is to non-
experts be able to create simulations as well.

In order to illustrate the methods on a practical example,
we will use the electrical circuit depicted in Fig. 1, which
is utilized to demonstrate the proposed method.

4.2 The Proposed Method – Design of Extended Bond
Graphs with Component Implementations

The proposed method adopts the assumption of standard
bond graphs that systems consist of subsystems. We call
models of the sub-systems “simulation components” and
simulation models of industrial plants are created by com-
bining and interconnecting these components. Fig. 2 de-
picts the view on a simulation component adopted in this
paper. Each simulation component has input and output

Resitor

Capacitor

sim_R_A

sim_R_B

simCapacitor

simulates

simulates

simulates

Real Plant Domain Simulation Domain

Rtuti /)()(

)()(tiRtu !

" # $$ di
C

tu

t

t

%
0

1
)(

Fig. 3. Example of mappings between real devices and
simulation components that approximate their be-
havior. In the case of the resistor, two component
implementations are causal.

variables. For example, a resistor is a one-port component
having one pair of flow and pressure, representing electrical
current, respectively voltage in the real system.

Considering the resistor as an example of a simulation
component, we can model this elementary electrical en-
gineering device by implementing one or both of the equa-
tions:

u(t) = Ri(t)

i(t) = u(t)/R

In the case of a resistor, such an example can seem to be
a simple mathematical anagram at first. However in the
case of complex and non-linear systems, the situation is
much more difficult. In many cases, such dualities do not
exist (e.g., due to non-linearities such as dead-zones), or
the mathematical description is so complex that it is not
efficient to work with it directly. Simulation experts are
expected to use the whole simulation components with-
out knowing their specific implementation details in the
proposed approach (i.e., simulation models are considered
as gray-boxes with known meaning of input and output
variables).

The proposed method assumes that each simulation com-
ponent can be modeled by one or more “simulation compo-
nent implementations”. Fig. 3 depicts the use-case, where
each resistor can be simulated by either a resistor compo-
nent implementation having effort as input and flow as out-
put, or vice-versa. The goal of the proposed method is thus
not only to instantiate components, but also to select the
right implementation for each system topology node. Using
the terminology of bond graphs, the proposed approach
extends the concept “simulation component” with a set
of one or more “simulation component implementations”,
which differ from each other in their interfaces.

The proposed method extends the original bond-graph
method with the two following issues:

(1) Support for various component implementations;
(2) Improved causality assignment.

In more details, support for component implementations
means that for each component (such as R or C), a
set of available implementations is assigned. According
to interfaces of component implementations, requirements
on causality stroke positions from the component imple-
mentation point of view are extracted automatically. If

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9232

Algorithm 1 Generation of the Extended Bond Graph
with Component Implementations

BondGraph bondGraph = new BondGraph();
bondGraph.generateJunctions();
bondGraph.generateComponents();
bondGraph.addComponentImplementations();
bondGraph.generateBonds();
bondGraph.excludeReferenceNode(referenceNode);
Bond bond = bondGraph.getStartingBond();
bond.setExplored(true);
BGStack bondsToAssign = new BGStack();
bondsToAssign.push(bond);
while bond != null do

enum result ={assigned, notAssignable};
result retV al = bond.assignCausality();
if retV al == result.assigned then

bond.setExplored(true);
for each bondNext in bond.getNext() do

if bondNext.getExplored() == false then
bondsToAssign.add(bondNext);

end if
end for

else if retV al == result.notAssignable then
bond = bondsToAssign.popSubstituableBond();
if bond == null then

return(null);
end if

end if
end while
return(bondGraph);

simulation experts need to avoid differential causality, they
do not implement acausal implementations of capacitors
and inductors and the method does not take them into
account at all.

If some components have more than one implementations,
the selection of the right implementation for each compo-
nent is driven by the compatibility of interfaces. To recog-
nize the compatibility, the causality algorithm is extended
in order to support various component implementations.

The proposed method can be expressed by the pseudo-code
summarized in Alg. 1. First of all, into a new extended
bond graph are generated junctions in the same way as
in the typical use of bond graphs. Therefore, it must be
decided whether the system is mechanical or not, which
is important for considering parallel and serial connec-
tions. Although components are generated in a similar
way as in typical bond graphs, each of those components
is enhanced with 1 to n component implementations.
Consequently, bonds are generated by adding edges into
the graph representation. The extended causality assign-
ment algorithm systematically explores the graph (see the
while loop in Alg. 1) and tries to assign causality by
implementing a depth-first search algorithm. When more
than one possibilities of assignments are possible for each
bond, the selection is done randomly and it is marked in
the extended stack, which is used for driving the search
algorithm. This situation occurs in case of junctions with
at least three bonds, or components having more than
one implementations. If the algorithm explores a bond
for which the causality assignment is not possible (i.e.,
a collision of causality is reached), the search algorithm

Fig. 4. Bond graph of the electrical circuit, including com-
ponents, junctions, directions of power, and causality
strokes.

makes backtracking to the last randomly assigned bond,
its assignment is changed and the systematical exploration
continues from this corrected bond as a typical depth-first
search algorithm.

The results of this method can be classified as follows:

(1) A solution exists. In this case, it is possible to create
one or more simulation models for the industrial
plant.

(2) A solution satisfying all conditions does not exist. The
used simulation component implementation sets are
proved not to be able to model the specific system.
Further component implementations must be added.

Finally, it is necessary to generate the simulation model
in a simulator. When generating models, simulation com-
ponents are instantiated according to the found compo-
nent implementations. Junctions are generated as sums
of variables representing the used power sign conventions.
The basic principles of the model generator have been
published in Novák and Šindelář [2011a].

5. USE-CASE

The Algorithm 1 is followed in the further text and the
extended bond graph for the electrical system introduced
in Fig. 1 is generated. The first step is the generation of
0-junctions and 1-junctions, components, and bonds. Till
this point, the process does not differ from typical bond-
graphs, where it would proceed with assignment of causal-
ity strokes according to causality assignment rules for each
component. On the contrary, the proposed method cannot
assign causality directly. Causality requirements are not
defined generally, these pieces of information depend on
component implementations. Therefore, it is necessary to
load available implementations for each component. In this
step, just interface annotations are required, the simula-
tion components themselves are necessary later for the
simulation model generation.

In case of the electrical circuit, we assume that the follow-
ing simulation component implementations are available
in a simulation library:

(1) Source of effort SE = (Flowin; Effortout)
(2) Resistor RA = (Effortin; Flowout)
(3) Resistor RB = (Flowin; Effortout)
(4) Capacitor C = (Flowin; Effortout)
(5) Inductor I = (Effortin; Flowout)

The assignment of causality strokes is based on the in-
terface description of available components in the pre-
sented method. The extended bond graph for the electrical
system is depicted in Fig. 4, which includes components,

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9233

junctions, bonds, power directions, and assigned causality
strokes. Although each component has mapped component
implementations behind it, this issue is not reflected in
the diagram graphically. Both resistors R1 and R2 map
their possible implementations RA and RB . Since this
assignment has been found, the system can be simulated
with component implementations available in the library.
According to the result of the causality assignment algo-
rithm, we can see that the resistor R1 should be modeled
by the component implementation RB having flow as input
and effort as output, and the resistor and R2 should be
modeled by the component implementation RA having
effort as input and flow as output. Other components have
only one available implementations, thus the selections are
trivial cases.

The last step of the method is the generation of a sim-
ulation model for a signal-oriented simulator. We have
previously selected the appropriate component implemen-
tations and thus the main intelligence now is to techni-
cally implement 0-junctions and 1-junctions. These parts
are implemented by “sum” blocks in MATLAB-Simulink,
considering the power direction sign convention.

6. CONCLUSION AND FUTURE WORK

Simulation models are useful tools for testing of control
algorithms, training of human operators, or estimation of
unmeasured states. Unfortunately, their design phase is
time-consuming and error-prone. This paper contributes
to improve and to semi-automate the design phase of
simulation models for large-scale industrial systems.

The proposed method assembles simulation models from
simulation component implementations approximating
real devices. Having the simulation components, they must
be instantiated according to the real plant structure and
interconnected according to the real plant device connec-
tions. Each component can have more than one imple-
mentations, i.e., the mapping between real devices and
component implementations can be 1:n. All simulation
components are annotated in terms of their interfaces and
mappings of signals to flow and effort signals introduced
by the bond-graph theory. The suitable simulation compo-
nent implementations are selected based on the compati-
bility of interfaces, which is decided via the automatically
created extended bond graph of the system.

The vision behind this approach is to enable design and
use of simulations for non-experts as well. However, the
proposed method does not address system and component
parameters in the current implementation.

Future work will be focused on integrating this method
into the simulation model designer, which will be the part
of the Simulation Integration Framework. Since current
implementations of this algorithm have been tested for
one-port components, we will focus on extensions and
testing for multi-port components. In addition, penalty
values for each component implementation will be added
so that the search algorithm for causalities and appropriate
component implementations to be informed and faster.
The sum of these penalty values will evaluate the “cost”
of the whole model.

ACKNOWLEDGEMENTS

The authors would like to thank their partners from
the Christian Doppler Laboratory for Software Engineer-
ing Integration for Flexible Automation Systems for the
discussion and feedbacks. This work was supported by
the Christian Doppler Forschungsgesellschaft, the Federal
Ministry of Economy, Family and Youth, and the National
Foundation for Research, Technology and Development -
Austria.

This work was supported by the Grant Agency of
the Czech Technical University in Prague, grant No.
SGS12/188/OHK3/3T/13.

REFERENCES

S. Beez, A. Fay, and N. Thornhill. Automatic generation
of bond graph models of process plants. In IEEE
International Conference on Emerging Technologies and
Factory Automation (ETFA 2008), pages 1294–1301,
2008.

A. J. Blundell. Bond Graphs for Modelling Engineering
Systems. Ellis Horwood Limited, Chichester, England,
1982. ISBN 0-85312-510-4.

W. Borutzky. Bond graph modeling from an object
oriented modeling point of view. Simulation Practice
and Theory, 7(56):439 – 461, 1999. ISSN 0928-4869.

W. Borutzky. Bond graph modelling and simulation of
multidisciplinary systems – an introduction. Simulation
Modelling Practice and Theory, 17(1):3 – 21, 2009. ISSN
1569-190X.

J. F. Broenink. 20-sim software for hierarchical bond-
graph/block-diagram models. Simulation Practice and
Theory, 7(5 - 6):481 – 492, 1999. ISSN 0928-4869.

P. J. Gawthrop and G. P. Bevan. Bond-graph modeling.
IEEE Control Systems Magazine, 27(2):24–45, April
2007.

P. Horáček. Systémy a modely [In Czech language]. Czech
Technical University in Prague, 1999.

P. Novák and R. Šindelář. Integrated design of simulation
models for passive houses. In CEUR workshop proceed-
ings, volume 821, pages 13–18, 2011a.

P. Novák and R. Šindelář. Applications of ontologies for
assembling simulation models of industrial systems. In
On the Move to Meaningful Internet Systems: OTM
2011 Workshops, pages 148–157, Hersonissos, 2011b.
Springer, Dordrecht. ISBN 978-3-642-25125-2.

F. Pêcheux, B. Allard, C. Lallement, A. Vachoux, and
H. Morel. Modeling and Simulation of Multi-Discipline
Systems using Bond Graphs and VHDL-AMS. In
Proceedings of the International Conference on Bond
Graph Modeling and Simulation (ICBGM), 2005.

R. Sinha, V.-C. Liang, C. J. J. Paredis, and P. K. Khosla.
Modeling and simulation methods for design of engi-
neering systems. Journal of Computing and Information
Science in Engineering, 1(1):84–91, March 2001. ISSN
1530-9827.

R. Šindelář and P. Novák. Framework for simulation
integration. In Proceedings of the 18th IFAC World
Congress, volume 18, pages 3569–3574, Bologna, 2011.
IFAC. ISBN 978-3-902661-93-7.

R. Šindelář and P. Novák. Simulation integration frame-
work. In 10th IEEE International Conference on Indus-
trial Informatics (INDIN 2012), pages 80–85, 2012.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9234

