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Abstract: This milestone report addresses first the position of the areas of computers, computational 

intelligence and communications within IFAC. Subsequently, it addresses the role of computational 

intelligence in control. It focuses on four topics within the Computational intelligence area: neural 

network control, fuzzy control, reinforcement learning and brain machine interfaces. Within these topics 

the challenges and the relevant theoretical contributions are highlighted, as well as expected future 

directions are pointed out. 
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

1. THE COORDINATING COMMITTEE FOR COMPUTERS, 
COGNITION AND COMMUNICATIONS 

This paper intends to present the state of the art and the 

outlook of some important domains of computational 

intelligence in control, falling under the domain of IFAC Tc 

3.2. It will start, however, with a more general view of 

computers, computational intelligence and 

telecommunications in control, and their global role of in the 

world´s present and future. 

The Coordinating Committee for Computers, Cognition and 

Communications (CC3) belongs to the group of IFAC’s 

application CCs. It consists of three Technical Committees 

for Computers for Control (TC3.1), Computational 

Intelligence in Control (TC3.2), and Telematics: Control via 

Communication Networks (TC3.3). This introduction will 

give a more general view of CC 3 methodologies in control 

and their global role in the world´s presence and future. 

Although computers for control, computational intelligence 

and communications do not present the main focus of interest 

in International Federation for Automatic Control (IFAC), 

they have traditionally played an important role, providing 

enabling technologies: they can hardly be avoided in the 

implementation of control methodologies, techniques, and 

applications.   

In the vision of European ARTEMIS platform and its 

collaboration with ITEA, there is an excellent description of 

the importance of embedded computers and related fields 

within the contemporary world society: 

“Embedded Systems will be part of all future products 

and services providing intelligence on the spot and 

capabilities to cleverly connect to the abundance of 

systems in the environment; either physical or at the 

cyber space level, in real time or in distributed and 

heterogeneous systems, in open networks of 

embedded systems applications from multiple 

domains or in the Internet: everything can, in 

principle, be connected to everything else. Networked 

intelligent embedded systems are, in effect, becoming 

the Neural System of Society. (ARTEMIS-ITEA, 

2012) 

It is hard to imagine any technical field where computers 

would not be employed as a cost-effective, relatively easy to 

implement, and flexible means for control. Often, they 

exhibit intelligence, and, except in trivial cases, they are 

distributed and connected through communication networks.   

In the same document  (ARTEMIS-ITEA, 2012) (Pétrissans, 

et al., 2012) (Pétrissans, et al., 2012) (Pétrissans, et al., 2012) 

(Pétrissans, et al., 2012), the seven most important challenges 

to the future world society are identified: globalization and 

demographic change, management of scarce resources, 

climate change, urbanization, mobility, healthcare and 

nutrition, and digital society. There may only be a few 
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exceptions where computers and control would not play a 

major role. 

Looking into the world economy, not many people realize 

how important to the world market are embedded control 

systems.  Today, from 100 processing devices, 98 will be 

employed in embedded systems. Over 40 billion devices are 

expected worldwide by 2020  Embedded systems accounted 

for almost €852 billion of value in 2010, and €1.100 billion 

in 2012 are expected worldwide by 2020 (ARTEMIS SRA, 

2011). The overall industry is growing at a compound annual 

growth rate (CAGR) of 12% throughout the forecast period 

and should reach €1.5 trillion in revenue by 2015 (Pétrissans, 

et al., 2012). 

It is also important to note that the value added by embedded 

systems exceeds the price of components by orders of 

magnitude, thus, presenting an excellent opportunity to sell 

the built-in knowledge. In automotive industry, for example,  

80% of product innovation includes Embedded systems 

(Pétrissans, et al., 2012). 

There are many fields in the cross-section of embedded 

computer, computer intelligence, communications and 

control domains that experience enormous growth of interest. 

Because of the growing complexity, there is, e.g., a need to 

widen the understanding of systems-of-systems, intelligent 

systems consisting of communicating embedded HW (e.g., in 

traffic, smart grid, etc.). Cloud computing can provide 

support for much more powerful ubiquitous solutions. 

Through the internet of things, even small devices become a 

part of global systems; already in 2010, of 7 billion devices 

connected to the internet, 5 billion were not computers 

(Pétrissans, et al., 2012). 

On the more technical field, because of the novel challenges, 

new methods and tools are needed for faster and cheaper 

development of much more complex applications, as well as 

their validation, (rigorous or formal) verification and 

certification. State-of the-art hardware components still do 

not ensure full temporal predictability even on the lowest 

layers. Through the ubiquity and penetration into extremely 

safety critical applications, more effort must be stressed on 

their security and safety issues. The cyber-physical approach, 

well known for a decade, is gaining interest. Holistic 

understanding, modeling and implementation of the ever 

increasing complex controlled and control systems promise 

more competent solutions. 

Without doubt, there is a very strong motivation for research 

and development in the area of computers, intelligence and 

communications in control. As mentioned before, these areas 

are not the main focus of IFAC, which is primarily concerned 

with automatic control. Besides, there are other professional 

associations which cover the basic research in these areas. 

Many members of the Technical committees are also 

members of those Institutions, attending also their technical 

events and publishing in their journals, as well. It is our 

opinion that, within IFAC, the synergies between the basic 

domains of control and automation, and computing, cognition 

and communications should be strengthened. During the last 

year, this has been taking place, as demonstrated by the 

increasing number of IFAC co-sponsored conferences by the 

three TCs within CC3, with TCs belonging to other CCs. 

There is, however, a large room to improve these synergies, 

whether by creating common Working Groups among TCs, 

and by proposing common special sessions in IFAC events, 

particularly in the World Congress. 

It is interesting that the following opinion from the milestone 

reports from 2002 and 2005 IFAC World congresses is still 

more or less true: “People are developing most sophisticated 

control algorithms but are less interested in the transfer of 

these algorithms to a well-defined real-time control system. 

Moreover, the application of control algorithms is in practice 

many times confined to the use of existing hard- and software 

solutions, which are in many cases application dependent or 

supplier dependent and sometimes developed for other 

purposes.” (Halang, Sanz, Babuska, & Roth, 2006; 

Verbruggen, Park, Halang, Irwin, & JZalewski, 2002). 

1.1 The future 

We strongly believe that it would be of mutual benefit to 

establish a better collaboration among all domains in IFAC, 

and in particular within the areas of CC 3. Automation and 

control scientists and professionals could much better utilize 

the expertise of the members of the CC3, and the latter would 

get challenging case studies to solve within their areas of 

interest. 

CC3 hosts several technical events. Currently, the only event 

in the master-plan is the Telecommunications Applications 

(TA) Symposium. Another successful conference is the 

Intelligent Control and Automation Science (ICONS), which 

is being proposed to the TB to also become a master-plan 

event.  

In 2012, a new conference has been established, and had its 

first successful issue in Würzburg, Germany.  The triennial 

Conference for Embedded Systems, Computer intelligence 

and Telematics (CESCIT) is supposed to unite all events of 

the CC3 in one place every year after the IFAC World 

Congress, thus fostering the communication and synergy 

among the fields. Also, tracks for applications, industrial case 

studies, education and other related areas are organized, 

providing an opportunity for scientists and professionals from 

other fields to make bonds with the computer community. It 

is to be noted that the first issue of CESCIT featured very 

strong industrial emphasis, with excellent industrial keynote 

speakers and an interesting industrial round table. 

 

2. COMPUTATIONAL INTELLIGENCE IN CONTROL 

The IFAC Technical Committee on Computational 

Intelligence (CI) in Control (TC 3.2) focuses on all aspects of 

data fusion and data mining, knowledge-based, fuzzy, neuro-

fuzzy, neural (both artificial and biologically plausible) 

systems, evolutionary algorithms and swarm intelligence, 

relevant to control and automation, both theoretically and 

application driven. The techniques used have strong links to 

other fields, in particularly machine-learning algorithms 

(Cortes & Vapnik, 1995; Scholkopf, Smola, Williamson, & 

Bartlett, 2000). 

CI methodologies are currently applied to all areas of control. 

Recent works of TC members cover a spectrum of 

application areas such as: transport (Fischer, Tibken, Fischer, 
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& Ieee, 2010; Statheros, Howells, & McDonald-Maier, 

2008), medical and biomedical (Azar, El-Said, Balas, & 

Olariu, 2013; S. L. Chen, Luo, & Lin, 2013; Cismondi, et al., 

2012; Goodband, Haas, & Mills, 2008; D. R. Liu, Pang, & 

Lloyd, 2008; Nomm, et al., 2009; Wojtowicz & Wajs, 2012), 

biology (B. Chen, et al., 2007; Gormley, Li, & Irwin, 2007; 

Paik, Lee, Park, Kim, & Lee, 2011; Teixeira, Ruano, Ruano, 

& Pereira, 2008), aerospace (Chwa, Choi, & Anavatti, 2006; 

Yang, Chen, & Li, 2012),  instrumentation (Benoit & 

Foulloy, 2013; Cerman & Husek, 2012; Ferreira, Gomes, 

Martins, & Ruano, 2012; Omatu, Araki, Fujinaka, Yoshioka, 

& Nakazumi, 2012), biotechnology (Adamy & Schwung, 

2010; Heikkinen, Latvala, Juuso, & Hiltunen, 2008; 

Koprinkova-Hristova & Palm, 2010), mechatronics (Garcia, 

Rolle, Gomez, & Catoira, 2013; Riccardi, Naso, Janocha, & 

Turchiano, 2012), automation and manufacturing (Boukef, 

Benrejeb, & Borne, 2008; Dumitrache, Caramihai, & Ieee, 

2008; Guillaume, Grabot, & Thierry, 2013; R. E. Precup & 

H. Hellendoorn, 2011; Tavakolpour, Darus, Tokhi, & Mailah, 

2010; Wong, Tikk, Gedeon, & Koczy, 2005; Zribi, Kacem, 

El Kamel, & Borne, 2007), process control (Govindhasamy, 

McLoone, & Irwin, 2005; Karer, Music, Skrjanc, & 

Zupancic, 2007; Korosi & Kozak, 2013), power systems 

(Essounbouli, Manamanni, Hamzaoui, & Zaytoon, 2006), 

energy and smart grid (Ferreira, Ruano, Silva, & Conceicao, 

2012; Malatji, Zhang, & Xia, 2013), agriculture (Ferreira & 

Ruano, 2008), environmental systems (Petelin, Grancharova, 

& Kocijan, 2013; Vousdoukas, et al., 2011), robotics and 

autonomous systems (F. Chen, Sekiyama, Fukuda, & Ieee, 

2012; Guelton, Delprat, & Guerra, 2008; Marcos, Machado, 

& Azevedo-Perdicoulis, 2009; Sakaguchi, Horio, & 

Yamakawa, 2011; Sanz, Hernandez, Hernando, Gomez, & 

Bermejo, 2009; Schuitema, Busoniu, Babuska, Jonker, & 

Ieee, 2010; Shakev, Topalov, Kaynak, & Shiev, 2012; van de 

Ven, Johansen, Sorensen, Flanagan, & Toal, 2007), 

economics and business systems (Caloba, Caloba, & 

Contador, 2001; Nagesh, Lendek, Khalate, Babuska, & Ieee, 

2012) and telematics (Pulkkinen, Laurikkala, Ropponen, & 

Koivisto, 2008). 

This milestone paper, by lack of space, cannot cover all CI 

methodologies relevant to control. It will instead, be focused 

on only four areas: neural network control, fuzzy control, 

reinforcement learning and brain machine interfaces, trying 

to highlight, in these areas, challenges, relevant theoretical 

contributions, as well as point out expected future directions. 

 

3. NEURAL NETWORK CONTROL 

The basic idea of neural network is to study the 

computational abilities of networks composed of simple 

models of neurons (McCulloch & Pitts, 1943). It has been 

successfully applied to system control with its universal 

approximation and adaptation capabilities. The back-

propagation method (BP) proposed in (Rumelhart, Hinton, & 

Williams, 1986)  boosts the development of neural network 

control in a vast number of applications. Besides practical 

implementations, there is parallel research effort in rigorous 

analysis of neural network control system on stability and 

robustness (Ge, Hang, & Zhang, 2001). 

In early works of neural network control theory, much 

research effort has been made on designing stable adaptive 

neural network control for single-input-single-output (SISO) 

continuous-time systems in affine forms (Ge, et al., 2001). 

Due to the fact that most systems in practice are of nonlinear 

and multi-variable characteristics, many recent studies have 

been conducted on control design for systems of multi-input-

multi-output (MIMO) nature or/and in non-affine forms. The 

extension of control designs for affine systems to non-affine 

systems is generally non-trivial, because of the lack of 

corresponding mathematical tools, e.g., the counterpart of the 

feedback linearization technique for non-affine systems. Due 

to couplings among inputs, outputs, and states, the extension 

of control designs for SISO systems to MIMO systems is also 

found to be difficult. Since most of control algorithms are 

realized in digital, neural network control design for discrete-

time systems has also attracted a lot of research interest (Ge, 

Yang, & Lee, 2008). 

On the application side, neural network control has been 

successfully implemented in many practical systems (Ge, 

Lee, & Harris, 1998), such as robots, helicopters, hard disks, 

etc. Many kinds of nonlinearities in practical systems such as 

hysteresis, time-delay, deadzone, have been taken into 

account in the control design, because it has been 

demonstrated that neural network control is particularly 

suitable for controlling highly uncertain nonlinear complex 

systems. 

3.1 Challenges and Future Research Directions 

A broadly applicable methodology to develop a workable 

control strategy for general systems is not yet available. Most 

of works mentioned in the previous section only focus on 

addressing a single issue. For example, the discrete-time 

Nussbaum gain is introduced to cope with the problem of 

unknown control direction (Ge, et al., 2008). For another 

example, the implicit function theorem is used to handle the 

non-affine issue (Ge, et al., 2001). While it is reasonable to 

incrementally generalize the problem formulation by 

accumulating different issues into a single system, it is also 

essential to consider the control design in the sense of a 

systemic framework. 

Most of early works on neural network control focus on a 

single objective of stabilization, regulation, and tracking. In 

many cases, control design of a system can be described as a 

multi-objective control problem. For example, obstacle 

avoidance, target reaching, and control effort minimization 

are all essential in the application of robotic exploration. In 

this sense, a control system which takes all the requirements 

into consideration is expected. In recent years, optimization 

once again becomes popular in the control filed, and adaptive 

dynamic programming (ADP) is a timely response which 

aims at a guaranteed optimized performance subject to 

unknown environments (Lewis, 2009; Werbos, 2009). Many 

open problems such as ADP design for time-varying and 

non-affine continuous systems need to be addressed. 

Although neural network control has been well recognized by 

academic researchers, it has yet been embraced by engineers 

who are very careful about the feasibility of an algorithm. 
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One main concern to implement neural network control in 

practical systems is the computation burden. To cope with 

this problem, much research effort has been made on 

developing real-time computational algorithms, in which less 

neurons and simpler networks are expected. This research 

direction is believed to be still worthy of further 

investigation. 

The study on the structure and adaptation/learning scheme of 

neural network itself also attracts a large number of research 

interests. More efficient and accurate approximation can be 

anticipated with better network structures and 

adaptation/learning schemes. As a result, fundamental 

problems like local minimum may be addressed to some 

extent and better control performance can be achieved. 

Recent works in this direction include deep learning (Hinton 

& Salakhutdinov, 2006) and extreme learning (Huang, Zhu, 

& Siew, 2006), of which comparatively few results have been 

applied to the control field. 

4. FUZZY CONTROL 

We can reuse the question of (Zadeh, 2008) “Is there a need 

for fuzzy logic”? and go for “Is there a need for fuzzy 

control?”. 

Speaking today about fuzzy control / observation / diagnosis 

is very often related to the so-called Takagi-Sugeno models 

(TS) (Takagi & Sugeno, 1985). The view of these models is 

to interconnect families of models via nonlinear functions 

having the nice convex sum property. When the conclusion 

are linear models – most of the cases – then from a point of 

view of automatic control they rely to families of model said 

Linear Parameter Variant (LPV) and quasi-LPV when the 

parameters depend on the state of the system (Tanaka & 

Wang, 2001). Let us just say that there are three main 

components in finding results for this area: the way the 

nonlinear functions are taken into account (including the so-

called relaxations on co-positivity problems, see (Sala & 

Arino, 2007)  for an asymptotic solution via Polya’s stuff, the 

Lyapunov functions used and at last the solvers and way of 

solving the problems, generally Linear Matrix Inequalities 

(LMI) or Sum-of-Squares (SOS) constraints impose to get 

formulations that are in the pre-described form LMI and/or 

SOS. Each of these three steps introduces conservatism in the 

results. 

 

                          

Fig. 1. Whole set of problems 

Representing figure 1 the whole set – unknown of course – of 

problem with a solution, the goal is twofold. One is to 

exclude points that are unfeasible (cross mark out of the set 

figure 1 left) and corresponds to necessary conditions, the 

other to enlarge the set where a solution can be found using a 

fuzzy representation of a nonlinear system (figure 1 right). 

For the first point very few results are available, (Johansson, 

Rantzer, & Arzen, 1999; Alexandre Kruszewski, Sala, 

Guerra, & Arino, 2009). Most of the results try to solve the 

second problem. Where are we today? State feedback and 

quadratic Lyapunov function under various possibilities – 

performances, H2, Hinfinity, robustness with delays – have 

got solutions (see (Ding, Sun, & Yang, 2006; Feng, 2006)). 

Output feedback has still to keep some works in progress 

(Chadli & Guerra, 2012). As for quasi-LPV and nonlinear 

systems it is harder to derive strict conditions that guarantee 

performances (Input-to-Stability, following trajectories…), 

these points must also be addressed in the future. A lot of 

attraction has also been devoted to non quadratic Lyapunov 

functions with real successes in the discrete case  (Ding, et 

al., 2006; A. Kruszewski, Wang, & Guerra, 2008) and more 

relative ones in the continuous case (Mozelli, Palhares, 

Souza, & Mendes, 2009; Pan, Guerra, Fei, & Jaadari, 2012; 

Rhee & Won, 2006). 

Another important part of activities in control is related to 

adaptive control where the property of universal 

approximation of fuzzy systems is used in order to 

approximate an ideal control law. When there no 

identification of the nonlinear system, the control is called 

direct, otherwise it is called indirect. Even if pioneering 

works (L. X. Wang, 1993) are rather “old” it seems that these 

methods still suffer from technical limitations that apparently 

are hard to solve. Among them, the necessity of particular 

Brunowski form for the nonlinear model and the drawback is 

the fact that the states, i.e. generally the derivatives of the 

output(s), are supposed known. Several works try to solve 

these problems, see (Boulkroune, Tadjine, M'Saad, & Farza, 

2008; Y.-J. Liu, Tong, & Li, 2011; Tong & Li, 2009). 

Some new trends coming from the so-called type-2 Fuzzy 

Sets are entering the general area of control, TS and adaptive 

frameworks. The works claim that it is an efficient way to 

cope with vagueness and imprecision and therefore they are 

more suitable than classical type-1 fuzzy sets (Mendel & 

John, 2002). A paper reviews industrial applications related 

to type-2 FS (Dereli, Baykasoglu, Altun, Durmusoglu, & 

Turksen, 2011) trying to exhibit which problems do require 

such a modeling. Nevertheless, even if some results claim 

superiority over type-1 or conventional linear controllers (see 
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for example (Atacak & Bay, 2012; Oh, Jang, & Pedrycz, 

2011)), these results have to be enforced with theoretical 

arguments. As far as these arguments are not given – to the 

best of our knowledge, they are not – type-2 FS in control 

and observation does not really bring some new interesting 

gap. 

The reader interested in applications related to the area of 

fuzzy control can find an interesting overview in (R.-E. 

Precup & H. Hellendoorn, 2011). At last, several questions 

arise: how can we come back to the fundamentals of fuzzy 

logics? Is there is still space for a linguistic way of doing? Or 

are we in a sense loosing the “essence” of what fuzziness was 

created to? Of course, fuzzy control should also go to the 

areas where automatic control is moving to, among them, 

large scale systems, interconnected (networks) large systems, 

hybrid systems…  

It seems that, for theoretical aspects, we are at a crossroads 

where some new interesting “step” has to emerge to go 

further than just some adjustments in various known 

techniques in order to say “yes there is a need for fuzzy 

control”. 

 

5. REINFORCEMENT LEARNING IN FEEDBACK CONTROL 
SYSTEMS 

Adaptive control (Astrom & Wittenmark, 1995; Ioannou & 

Fidan, 2006) and optimal control (Lewis, Vrabie, & Syrmos, 

2012) represent different philosophies for designing feedback 

controllers.  Optimal controllers are normally designed 

offline by solving Hamilton-Jacobi-Bellman (HJB) equations, 

for example, the Riccati equation, using complete knowledge 

of the system dynamics. Determining optimal control policies 

for nonlinear systems requires the offline solution of 

nonlinear HJB equations, which are often difficult or 

impossible to solve.  By contrast, adaptive controllers learn 

online to control unknown systems using data measured in 

real time along the system trajectories.  Adaptive controllers 

are not usually designed to be optimal in the sense of 

minimizing user-prescribed performance functions.  Indirect 

adaptive controllers use system identification techniques to 

first identify the system parameters, then use the obtained 

model to solve optimal design equations (Astrom & 

Wittenmark, 1995).  Adaptive controllers may satisfy certain 

inverse optimality conditions. 

The computational intelligence technique known as 

reinforcement learning allows for the design of a class of 

adaptive controllers with actor-critic structure that learn 

optimal control solutions by solving HJB design equations 

online, forward in time, and without knowing the full system 

dynamics.  In the linear quadratic case, these methods 

determine the solution to the algebraic Riccati equation 

online, without specifically solving the Riccati equation and 

without knowing the system state matrix A.  As such, these 

controllers can be considered as being optimal adaptive 

controllers.  Chapter 11 of (Lewis, et al., 2012) places these 

controllers in the context of optimal control systems. 

Reinforcement learning is a type of machine learning 

developed in the Computational Intelligence Community in 

computer science engineering.  It has close connections to 

both optimal control and adaptive control.  More specifically, 

reinforcement learning refers to a class of methods that 

enable the design of adaptive controllers that learn online, in 

real time, the solutions to user-prescribed optimal control 

problems.  Reinforcement learning methods were used by 

Ivan Pavlov in the 1860s to train his dogs.  In machine 

learning, reinforcement learning (Lewis, Lendaris, & Liu, 

2008; Powell, 2007; Sutton  & Barto, 1998; Werbos, 1991) is 

a method for solving optimization problems that involves an 

actor or agent that interacts with its environment and 

modifies its actions, or control policies, based on stimuli 

received in response to its actions. Reinforcement learning is 

inspired by natural learning mechanisms, where animals 

adjust their actions based on reward and punishment stimuli 

received from the environment (Busoniu, Babuska, De 

Schutter, & Ernst, 2009; Mendel & MacLaren, 1970). Other 

reinforcement learning mechanisms operate in the human 

brain, where the dopamine neurotransmitter in the basal 

ganglia acts as a reinforcement informational signal that 

favors learning at the level of the neuron (Doya, Kimura, & 

Kawato, 2001; Schultz, 2004; Draguna Vrabie & Lewis, 

2009; Werbos, 1992). 

Reinforcement learning implies a cause-and-effect 

relationship between actions and reward or punishment. It 

implies goal-directed behaviour, at least insofar as the agent 

has an understanding of reward versus lack of reward or 

punishment.  The reinforcement learning algorithms are 

constructed on the idea that effective control decisions must 

be remembered, by means of a reinforcement signal, such 

that they become more likely to be used a second time. 

Reinforcement learning is based on real-time evaluative 

information from the environment and could be called action-

based learning.  Reinforcement learning is connected from a 

theoretical point of view with both adaptive control and 

optimal control methods. 

One type of reinforcement learning algorithms employs the 

actor-critic structure (Barto, 1984).  This structure produces 

forward-in-time algorithms that are implemented in real time 

wherein an actor component applies an action, or control 

policy, to the environment, and a critic component assesses 

the value of that action.  The learning mechanism supported 

by the actor-critic structure has two steps, namely, policy 

evaluation, executed by the critic, followed by policy 

improvement, performed by the actor.  The policy evaluation 

step is performed by observing from the environment the 

results of applying current actions.  These results are 

evaluated using a performance index, or value function 

(Bellman, 1957; Bertsekas & Tsitsiklis, 1996; Busoniu, et al., 

2009; Powell, 2007; Sutton  & Barto, 1998) that quantifies 

how close the current action is to optimal.  Performance or 

value can be defined in terms of optimality objectives such as 

minimum fuel, minimum energy, minimum risk, or 

maximum reward.  Based on the assessment of the 

performance, one of several schemes can then be used to 

modify or improve the control policy in the sense that the 

new policy yields a value that is improved relative to the 

previous value. In this scheme, reinforcement learning is a 

means of learning optimal behaviors by observing the real-
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time responses from the environment to nonoptimal control 

policies.   

Werbos (Werbos, 1989, 1991, 1992) developed actor-critic 

techniques for feedback control of discrete-time dynamical 

systems that learn optimal policies online in real time using 

data measured along the system trajectories.  These methods, 

known as approximate dynamic programming (ADP) or 

adaptive dynamic programming, comprise a family of four 

basic learning methods.  The ADP controllers are actor-critic 

structures with one learning network for the control action 

and one learning network for the critic.  Many surveys of 

ADP are available (Balakrishnan, Ding, & Lewis, 2008; 

Lewis, 2009; Prokhorov & Wunsch, 1997; Si, Barto, Powell, 

& Wunsch, 2004; F. Y. Wang, Zhang, & Liu, 2009).  

Bertsekas and Tsitsiklis developed reinforcement learning 

methods for the control of discrete-time dynamical systems 

(Bertsekas & Tsitsiklis, 1996).  This approach, known as 

neurodynamic programming, used offline solution methods.  

ADP has been extensively used in feedback control 

applications.  Applications have been reported for missile 

control, automotive control, aircraft control over a flight 

envelope, aircraft landing control (Prokhorov & Wunsch, 

1997), helicopter reconfiguration after rotor failure, power 

system control, and vehicle steering and speed control. 

Convergence analyses of ADP are provided in (Al-Tamimi, 

Lewis, & Abu-Khalaf, 2008; X. Liu & Balakrishnan, 2000). 

A key object in applying reinforcement learning to the design 

of feedback control systems is the Bellman equation.  The 

Bellman equation results on setting the system Hamiltonian 

function equal to zero, and it captures the optimality 

properties with respect to a given performance index of the 

system dynamics evolving through time.  The temporal 

difference method (Sutton  & Barto, 1998) for solving 

Bellman equations leads to a family of optimal adaptive 

controllers, that is, adaptive controllers that learn online the 

solutions to optimal control problems without knowing the 

full system dynamics.  Temporal difference learning is true 

online reinforcement learning, wherein control actions are 

improved in real time based on estimating their value 

functions by observing data measured along the system 

trajectories. The basic families of algorithms provided by RL 

are Policy Iteration, Value Iteration, and Q learning.   

Most research over the years in reinforcement learning for 

feedback control has been conducted for systems that operate 

in discrete time (Si, et al., 2004; Sutton  & Barto, 1998; 

Werbos, 1992). This is because the Bellman equation for 

discrete-time systems does not involve the system dynamics, 

and has two occurrences of the value at different times.  This 

special form immediately lends itself to both Policy Iteration 

and Value Iteration solution methods that do not require 

complete knowledge of the system dynamics.  

Reinforcement learning is considerably more difficult for 

continuous-time systems than for discrete-time systems, and 

fewer results are available.  This is due to the fact that, 

unfortunately, for continuous-time dynamical systems, the 

Bellman Equation has an inconvenient form that does involve 

the system dynamics.  This hindered the development of RL 

for continuous-time systems for many years.  The 

development of an offline policy iteration method for 

continuous-time systems is described in (Abu-Khalaf, Lewis, 

& Huang, 2006).  The method known as integral 

reinforcement learning (IRL) developed in (Draguna Vrabie 

& Lewis, 2009; D. Vrabie, Pastravanu, Abu-Khalaf, & 

Lewis, 2009) allows the application of reinforcement learning 

to formulate online optimal adaptive control methods for 

continuous-time systems.  These methods find solutions to 

optimal HJ design equations and Riccati equations online in 

real time without knowing the system drift dynamics, or in 

the LQR case, without knowing the A matrix.  Extensions to 

IRL have been made to solve optimal control problems online 

for systems with completely unknown dynamics in (Jiang & 

Jiang, 2012; Lee, Park, & Choi, 2012).  A method of RL on 

time scales (Seiffert, Sanyal, & Wunsch, 2008) allows the 

treatment of discrete-time and continuous-time systems in the 

same framework. 

5.1 The Future 

Reinforcement Learning has been applied in the 

Computational Intelligence Community to solve complex 

decision problems with very general performance indices and 

using various learning techniques including episodic 

Montecarlo Methods.  Problems solved include finding 

optimal solutions to games such as Backgammon, and 

solution of multiple-degrees-of-freedom systems such as the 

truck back-up problem.  Applications of RL to feedback 

control have generally used performance indices that are 

summations or integrals over time of basic utility functions.  

Such performance indices may not be suitable for optimal 

decision and control problems such as adaptive human-robot 

interfaces, discrete event scheduling and decision problems, 

and task learning skills for autonomous systems.  More 

general performance indices could capture the essence of 

such decision problems.  More general learning schemes can 

be developed rather than the standard temporal difference 

learning that relies on information taken at every time 

instance.  It is not known how episodic learning can be used 

in feedback control, though it seems to be related to iterative 

learning control.   

Due to the vast amounts of data available in networked 

control systems, cooperative control, and internet systems, 

and real-time response scenarios, new methods are needed for 

fast simplified decision based on emotional cues in uncertain 

nonstationary environments.  Such methods are used in the 

human brain in the interplay between structures such as the 

amygdala, orbitofrontal cortex, and hippocampus (Levine, 

2012). Decision topologies based on these neurocognitive 

interplays may have more levels and more complex 

interconnections than the two-level structure of the actor-

critic paradigm.  The challenge will be developing such new 

decision and control schema and providing rigorous 

guarantees of stability, robustness, and performance for 

human engineered systems. 

 

6. BRAIN MACHINE INTERFACES 

Throughout our evolution as a species, brains have used 

bodies to interact with the external world. However, the 
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combination of many emerging technologies is poised to 

change this status quo and create direct ways of linking the 

external world directly with the brain, through what has been 

called brain machine interfaces (BMIs).  BMI research may 

become both a launch pad for technology revolution in 

medical disciplines, as well as a paradigm shift for research 

and development in the centuries to come because it 

represents a new level of integration between biologic and 

“man made” systems. The general concept of a BMI is to 

either: 

 (1) Create artificial sensory systems (retina, cochlea) by 

delivering the external world stimuli to the appropriate 

cortices,  

(2) Allow the motor cortex to command directly external 

robotic devices,  

(3) Repair brain subsystems, and regain cognitive function 

(e.g. memory), 

(4) Link remotely brains in social networks. 

 In view of the amazing plasticity of the brain these external 

devices may, with appropriate sensory feedback, be 

assimilated and become a part of the user’s cognitive space, 

on par with our body. Potentially, BMIs can improve 

human’s natural reaction time and force through engineered 

devices that are much faster and more powerful than biologic 

tissue. In particular BMIs may enable a higher 

communication bandwidth between the human brain and the 

digital computer, which has conditioned the present metaphor 

and research direction for the use of computers in our society.  

Work in BMIs is imminently multidisciplinary. In one side 

we find neuroscientists and the disciplines of systems, 

computational, and cognitive neurosciences, while the 

engineering side is shored up in advanced signal processing, 

control theory, ultra low power VLSI, electrode design, 

optics, materials, computers, and communications. None of 

the disciplines can alone solve the challenge of interfacing 

brains to machines, so this is truly a symbiotic collaboration.  

A productive taxonomy is to divide BMIs in invasive and 

non-invasive, which means that the latter collects brain 

activity by fitting electrodes or other apparatus externally to 

the brain and body. Normally these systems are called brain 

computer interfaces (BCIs) and their current development has 

focused on communication and control applications using 

menus in computer screens. The brain is a multiscale spatio–

temporal system, so when we decide on a sensing 

methodology, we only measure some aspects of brain 

function. For instance when cup electrodes are placed over 

the scalp, the measurement is the electroencephalogram 

(EEG). In an analogy, the EEG quantifies the single neuron 

activity as a microphone mounted on a helicopter hovering 

over a football stadium quantifies the voice of a spectator 

watching a game. Only major neural events are quantified 

with the EEG, but surprisingly the EEG is still today the best 

indicator of brain activity to diagnose epilepsy, quantify 

depth of anaesthesia and sleep staging. On the other extreme 

of the spatial resolution, the invasive microelectrode inserted 

in the cortical tissue can quantify exactly the firing of a 

neuron in the vicinity of the electrode. However, its tell 

nothing about the other 1011 neurons in the brain. Normally, 

electrode arrays with 100 microelectrodes or more are 

inserted in specific brain areas to provide a grossly sub 

sampled quantification of the neural system under analysis. 

These are the extremes of available sensing methods in 

BMIs.      

6.1 Example of BMIs 

BMIs can be divided in two basic types depending upon the 

application: sensory or motor.  Sensory BMIs stimulate 

sensory cortex areas with artificially generated signals that 

translate physical quantities. The most common type of 

sensory BMI, with over 200,000 implants, are cochlear 

implants that use tiny microphones and signal processing to 

translate wave pressure near the ear into spike firings applied 

to the auditory nerve, allowing deft people to listen (see, for 

instance, (McDonnell, Burkitt, Grayden, Meffin, & Grant, 

2010). The same basic concept is being developed for retina 

prosthesis, which can deliver to the visual cortex the 

appropriate stimulation that indicates the outline of objects 

(Abramian, et al., 2014). Motor BMIs on the other hand seek 

to translate brain electrical activity into useful commands to 

external devices, mimicking the natural motor control of 

muscles. There are two basic types of motor BMIs: command 

BCIs, and trajectory BMIs. Research in command BCIs 

started in the late 80’s by collecting brain electrical activity 

over the scalp (EEG) with a set of electrodes. The EEG 

technology is noninvasive and requires only signal 

amplification and conditioning. By practicing, subjects learn 

to control their regional brain activity in a predetermined 

fashion that can be robustly classified by a pattern 

recognition algorithm, and converted into a set of discrete 

commands. The paradigm for communication is mostly based 

on selection of cursor actions (up/down, left/right) on a 

computer display. The computer presents to the users a set of 

possibilities and they choose one of them through the cursor 

movement, until an action is completed. BCIs require subject 

training through biofeedback and they display a low 

bandwidth for effective communication (15-25 bits per 

minute) (Wolpaw & Wolpaw, 2012), which hinders the speed 

at which tasks can be accomplished. However, due to their 

non-invasiveness, BCIs have already been tested with success 

in paraplegics and locked-in patients. Several groups all over 

the world have demonstrated working versions of BCIs 

(Wolpaw & Wolpaw, 2012), and a system’s software 

standard has been proposed. There is a biannual BCI meeting 

with a BCI competition and a BCI journal is about to be 

launched to evaluate the progress of algorithms in this area.  

 Trajectory BMIs use brain activity to control directly the 

path of an external actuator in 3D space, mimicking the role 

of the motor system when it controls, for instance, the 

trajectory of a hand movement. Alternatively, the commands 

can be sent to peripheral nerves that have been rerouted to 

activate the required muscles. The technical problem here 

cannot be solved by classifying brain signals as in BCIs, but 

requires the BMI to generate a trajectory directly from brain 

activity. It has been difficult so far to extract from the EEG 

the motor command signatures with sufficient spatio-

temporal resolution. Therefore, invasive techniques utilizing 
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directly neuronal firings or local field potentials have been 

utilized. In the last decade, the introduction of new methods 

for recording and analyzing large-scale brain activity and 

emerging developments in microchip design, signal 

processing algorithms, sensors and robotics are coalescing 

into a new technology devoted to creating BMIs for controls. 

Trajectory control BMIs offer the possibility to overcome the 

bandwidth limitation of BCIs and have been demonstrated 

with very encouraging results. The first demonstration 

involved rats that used their brain signals to press a lever and 

obtain a water reward (K., Moxon, Markowitz, & Nicolelis, 

1999). Later, similar BMIs were demonstrated in monkeys in 

food reaching tasks (Wessberg, et al., 2000), and more 

recently in humans to control cursor movement in a computer 

screen (Chadwick, et al., 2011). 

6.2 The Future 

These are exciting times in BMI research. Although the 

problems faced are exceedingly difficult there is a sense of 

optimism and a road map of intermediate solutions that will 

some day deliver general purpose and efficient BMI. For this 

audience the challenges in system science are many and I 

synthetize some below. 

I- System identification and control 

BMIs include two complex systems (the user and the 

computer agent) in close loop feedback through a 

nonstationary environment. This interaction is online and 

because the brain is plastic and the environment 

nonstationary, adaptive online system identification and 

adaptive optimal control are needed for good performance, 

which includes guaranteed stability. These issues are only 

now starting to be addressed, because the work to date has 

addressed proof of concept in subsystems. For instance, the 

traditional way of designing a trajectory BMI is to identify 

the system from the collected brain activity to the kinematics, 

which requires off line training, but system parameters cannot 

be easily updated during operation, which requires daily 

retraining (Sanchez & Principe, 2007). Work using 

reinforcement learning is emerging (DiGiovanna, Mahmoudi, 

Fortes, Principe, & Sanchez, 2009) but still requires a lot of 

further work to make training fast, accurate and reliable.  

II- Augmented optimal control 

Another potential application area of system science is how 

to integrate optimally spiking models of neural tissue of 

particular brain areas with the data collected on line by 

electrodes of disabled users to help them compensate for their 

disability and solve tasks in the real world. A simplified 

solution that has been tested is to control an electrical 

stimulator applied to one part of the brain to generate a 

desired spike train in another part of the brain.  An inverse 

adaptive control framework was implemented (Li & Principe, 

2013), but other approaches are possible and potentially 

better for this application. One of the lingering difficulties in 

all these applications is that neurons communicate through 

discrete events in time called spikes, where the information is 

contained solely in the time of the event. Therefore all the 

signal analysis methods described should accept point 

processes as their inputs and produce also spikes as outputs. 

The first steps to accomplish this are underway (Park, Seth, 

Paiva, Li, & Principe, 2013). 

CONCLUDING REMARKS 

This milestone paper addressed only four domains within CI 

methodologies: neural networks control, fuzzy control, 

reinforcement learning and brain machine interfaces. 

Additional topics, such as knowledge-based systems, 

evolutionary algorithms and swarm intelligence systems will 

be covered in subsequent milestone papers. 

CI methodologies are currently applied to all areas of control. 

It is our view that the Technical Committee on 

Computational Intelligence in Control should strengthen the 

collaboration among other IFAC TCs and in particularly with 

the other TCs within CC3, TC 3.1 and TC3.3. The latter can 

be achieved by promoting the triennial Conference for 

Embedded Systems, Computer intelligence and Telematics 

(CESCIT), while the former can be achieved by maintaining, 

or increasing the number of co-sponsored conferences with 

other TCs, by creating multi-TCs working groups and by 

proposing joint special sessions. 

IFAC and in particularly TC 3.2 has everything to gain in 

promoting collaboration with external Institutions, such as 

IEEE and IFSA. This has happened in previous editions of 

our TC 3.2 ICONS Conference (co-sponsored by these 

Institutions), and should be also maintained in the future.  
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