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Abstract: This paper explores the application of numerical optimal control (NOC) to the
synthesis of motion cueing algorithms for race-car simulators. These techniques are used to
design washout filters that address the limitations of the commonly-employed linear quadratic
Guassian (LQG) regulator and classical frequency shaping strategies. The primary disadvantage
of the LQG and classical tuning methods is that they do not recognise explicitly the hardware
limitations of the platform and thus have to rely on an iterative process to address workspace
limitations. In two new algorithms a kinematic model of the platform is used to constrain
explicitly the platform’s motion within the available workspace. The first algorithm is directed
to the optimisation of the parameters of a linear washout filter, while in the second approach
the platform motion is governed by an open-loop optimal control. The results of the two new
algorithms are tested on race-car minimum lap-time simulations, and then compared with a
linear-optimal-control based solution. The race-car scenario presents different challenges from

the passenger car and aircraft contexts; these differences are discussed.

Keywords: Automotive Control; Motion Cueing Algorithms; Optimal Control; Parameter

Optimisation.

1. INTRODUCTION

Car simulators are used in a variety of applications ranging
from behavioural research to driver training and vehicle
development. Regardless of the specific purpose they all
alm to create a realistic environment in which the driver
will behave as he/she would in a real car. In order to
operate the vehicle, the driver needs a set of controls, and
sensory stimuli from the vehicle and its setting (such as
the vehicle’s speed, its acceleration and its position on
the road). This is communicated to the simulator driver
through visual, auditory and motion-based cues.

The graphics are of primary importance, not only pro-
viding images of the location and driving conditions, but
also for conveying the vehicular speed. Auditory cues and
haptic feedback through the steering wheel and pedals also
supply the driver with information about the vehicle - the
engine speed and tyre slip. Acceleration and orientation is
detected in humans by the vestibular system in the inner
ear Dichgans and Brandt [1978]. A simulator that pro-
vides motion cues is able to stimulate this organ thereby
providing a better sense of the motion of the vehicle.

Figure 1 shows the integration of various subsystems
into a complete simulator and illustrates how the driver
generates control commands in response to sensory cues.
These inputs are fed into a vehicle model that generates
a vehicle state that contains physical information about
the car including its acceleration, velocity and position.
This data is then used to update the visual, auditory and
motion cues.

The fidelity of the simulator driving experience is always
limited by the quality of the cues. Advanced 3D image
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Fig. 1. Vehicle simulator components.

projection with fast refresh rates and low latency together
with high-quality computer generated images (CGI) pro-
duce excellent visual cues. In the case of the motion
cues the platform workspace and bandwidth restrict the
quality of the cues rather than technology; to reproduce
the vehicle motion exactly, the simulator would need to
move in a workspace as large as the track itself. Since
this is practically infeasible, different strategies have been
developed to generate motion cues. While not perfect, they
improve the driver’s feeling of realism and thus his/her
ability to drive normally. These strategies are referred to
as motion cueing algorithms (MCA) and they use the vehi-
cle’s translational accelerations and its rotational velocities
to move the platform appropriately without exceeding its
physical limits. Most MCA development has been in the
context of passenger cars and flight simulators Reid and
Nahon [1985], Telban and Cardullo [2005]. In contrast, the
research presented here focuses on the race car setting.
This scenario differs from the passenger cars because the
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dynamics are fast and the drivers experience much larger
accelerations, particularly during cornering and braking.
As a result, the race car scenario represents a more de-
manding MCA design challenge, not only when trying
to reproduce the increased accelerations, but also with
regards to the suppression of miscues that occur when the
platform approaches its physical limits.

The most widely used motion cueing strategies are based
on classical frequency-shaping Colombet et al. [2008],
Larsen [2011] and linear-optimal-control centred algo-
rithms Sivan et al. [1982], Reid and Nahon [1985], Telban
and Cardullo [2005]. These algorithms involve the design of
high-pass filters that are manually tuned so that the low-
frequency demands, that would otherwise produce large
displacements, are removed in order to ensure that the
platform operates within its workspace limits.

The research presented in this paper makes use of general
nonlinear numerical optimal control to produce motion
cues. These optimal-control-based techniques are used to
generate either platform accelerations directly, or to design
linear filters that explicitly recognise platform workspace
constraints. In both cases the problem and problem formu-
lation are nonlinear and track specific, but the approach
taken addresses the primary limitation of existing methods
that only respect platform workspace limits iteratively and
indirectly. This removes the repetitive tuning processes
characteristic of the classical and LQG strategies.

Both the linear-optimal-control and numerical optimal
control based algorithms are implemented for the yaw,
lateral and longitudinal freedoms. As was previously dis-
cussed, the input to the MCA is a combination of the
vehicle’s translational acceleration and its angular velocity.
This is usually produced by a vehicle model in response to
the driver control inputs. In this study vehicle telemetry
data is generated by a minimum-lap-time optimal control
simulation; these details are described in Perantoni and
Limebeer [2014].

The motion platform is described briefly in Sections 2. The
linear optimal control approach to washout filter synthesis
and the numerical optimal control algorithms that will be
employed are described in Sections3 and 4. The results
and conclusions are given in Sections 5 and 6.

2. MOTION PLATFORM MODEL

The motion platform used in this study is a conventional
Stewart Platform. The cab, which consists of the race
car cock-pit, screens and projectors, is mounted on six
actuated legs, which are connected to the platform with
spherical joints and to the ground-mounted base plate with
pin joints. By controlling the six actuated leg lengths the
cab can be moved with 6 degrees-of-freedom (DOF).

2.1 Hezxapod Kinematics

Since the boundaries of the hexapod work space are a
direct consequence of the actuator stroke limits (maximum
and minimum leg legnths) it is necessary to determine
the hexapod leg lengths for a given platform position.
These mechanics calculations are referred to as the inverse
kinematics and are used in the design of motion cueing al-
gorithms to ensure the limits of the platform are observed.

Fig. 2. Hexapod motion platform. The leg lengths are
given by L;, the base attachment points by B;, and
the platform attachment points by P;. The origin of
the platform-fixed coordinate system is given by the
vector S.

The development of the kinematics equations is a standard
procedure and can be found in Helinski [1990].

Referring to Figure 2, an inertial reference frame xyz with
origin O is defined at the geometric centre of the hexapod
base. A second body-fixed frame z’y’2’ is similarly defined
with its origin C on the platform at the centre of the
platform-leg connection joint system. The translation of
the platform from the origin of the inertial reference frame
is described by the vector S, and the matrix R describes
the platform in terms of 3 Euler angles. There are a number
of choices for the Euler angles, and each configuration
has distinct singularities. For consistency with the vehicle
modelling, the Euler angles are chosen as 3-2-1 angles.
This corresponds to a rotation first about z (yaw angle
(¢)), then about y (roll angle (#)) and finally about x
(pitch angle (¢)). The singularity occurs for a roll angle of
+7, which does not occur in this application. The rotation
matrix is given (where cos(f) is abbreviated as ¢y and
sin(0) as sg):

R = R.(¢)Ry(0) Rx(9) (1)
CYCyp SpSOCY — CpSyy CHSACy + S¢Sy
R = CoSyp SpSOSy + CpCop CpSOSeyy — SpCop | - (2)
—Sp S¢Co CpCo

The base joints of the hexapod legs are described by six
vectors B, in the inertial frame, and the platform joints
are descrif)ed by vectors p; in the body-fixed frame. The

platform joints can then be described by vectors P; in the
inertial frame, which are related to P, by:

Pj=S+R-p, (j=1...6). (3)

The platform legs can be described by vectors L;, which
point from the base joints to the corresponding platform
joints and can be found as the difference between the
platform and base vectors. The leg lengths (L;) are simply

the magnitude of the leg vectors and L. are unit vectors
associated with the directions of the legs.
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3. LINEAR OPTIMAL CONTROL

The linear optimal control approach was developed in
Sivan et al. [1982], Reid and Nahon [1985], Telban and Car-
dullo [2005] and was then extended to include frequency-
dependent weight as shown in Figure 3. This approach to
filter design is based on a model of the human vestibular
system with the aim of taking advantage of the body’s
natural movement filtering processes; the translational ac-
celerations and angular velocities that a person senses are
not the same as those that the person actually undergoes.

The translational acceleration and rotational velocity of
the actual vehicle form the input to the system. The top
signal path represents the driver of the real car, where
the motion he/she senses is a filtered version of the real
accelerations and angular velocities. The lower signal path
represents the simulator. The vehicle accelerations and
angular velocities are filtered by F(s) and the resulting
motions are rendered by the simulator. The simulator
driver’s vestibular system filters these signals to yield
sensed motions. The motion perception error is the differ-
ence between the movement sensed by the simulator and
car driver.

This problem can be recast in a generalised regulator
form Green and Limebeer [2012] as shown in Figure 4.
The vehicle states are modelled as coloured noise pro-
cesses and the outputs z; and z, represent the frequency-
weighted perception error and platform states (velocities
and displacements). LQG theory is then used to design
the filter F'(s) that minimises the output integral square
error. Including the platform states in the cost function
results in a trade-off between the perception error and
the simulator motion. If the motion is heavily penalised, a
larger error will result, and conversely if the error is small
an increased motion is required. The frequency weights
Wi(s) and Ws(s) are iteratively tuned until, for a sample
lap, the platform remains within its workspace constraints.
The selection of the weights also affects the shape of
the acceleration signal and requires tuning in response to
driver feedback.

4. NUMERICAL OPTIMAL CONTROL

The work in this paper makes use of a Guass-Legendre-
Radua psuedospectral optimal control solution method
that has been implemented in the software package
GPOPS-II Patterson and Rao [2013].

White

! > 7
noise

— > 7

P(s)

Fig. 4. LQG filter synthesis problem in generalised regula-
tor form.

4.1 Definition of an Optimal Control Problem

The purpose of an optimal control calculation is to de-
termine the state and control associated with a system
in order to minimise the performance index Betts [2001].
When expressed in Bolza form, the performance index is
given by

J = (to,x(to), tr,x(ts),p) +/l(t,x(t),u(t),p)dt, (5)

while the system and operating constraints are given by

ot a(0)u(t).p) =0
g (t,x(t),u(t),p) =0 (6)
n2(0) (i) ) <0

b (x(tO)a x(tf)a u(to), u(tf)ap) -

where tg <t <t is the optimisation interval with ¢ either
fixed, or free to be optimised. The vector p € R™» contains
any fixed parameters to be optimised ! , and z(t) € R"™ and
u(t) € R™ are the state and control vectors respectively.
The vector-valued function f(-) € R™ describes the system
dynamics. The vector functions g(-) € R™ and h(-) €
R™ define the equality and inequality constraints for the
system. The subscript b refers to the boundary constraints
with gp(-) € R™». The scalar function I(-) is the stage
cost that is a function of the state, the controls and the
parameters.

Direct methods of the type employed here transcribe, or
convert, infinite-dimensional optimal control problems into
a finite-dimensional optimisation problem with algebraic
constraints; a nonlinear programming problem (NLP).

4.2 Optimal Cueing Problem Formulation

The optimal control problem is formulated as shown in
Figure 5. The car acceleration and rotational velocity are
the reference signals generated by a minimum lap-time
simulation Perantoni and Limebeer [2014]. The optimal
control generates a vector control signal u(t) that contains
the platform body-fixed accelerations and rotational ve-
locities. Two performance indices are used

ty
Ji = /eth (7)
to
tf
o = / (e + av?)dt (8)
to

L R”™ denotes the set of n-dimensional real vectors.
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Fig. 5. Open-loop optimal control of the motion platform.
The car accelerations are given by R(t), with the
washed out platform acceleration signals given by
u(t).
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Fig. 6. Alternative formulation of the optimal washout
filter synthesis problem. The parameters of the linear
filter F(s) are optimised by a nonlinear programming
algorithm.

:

B

The index (7) seeks to minimise the acceleration error
alone, while (8) includes an additional term that penalises
the square of the platform’s velocity component in the
direction of the acceleration demand. As explained in
Section 2, the platform’s forward kinematics are used to
constrain its motion so that it remains within the available
workspace.

4.8 Optimal Filter Parameter Design

Numerical optimal control is also used to design linear
washout filters. The problem is recast as shown in Figure
6. Instead of the platform accelerations being control
inputs they are filtered versions of the reference signals.
In this study the filters are fourth order with the filter
coefficients free to be optimised. In this form the problem
is a parameter optimisation problem, subject to the same
kinematic constraints and with the same performance
index.

5. RESULTS
5.1 LQG and Optimal Filter Parameter Design

The LQG filters were tuned using simulation data for a
complete minimum-time lap of the Circuit de Barcelona-
Catalunya so that the resulting hexapod movement re-
mained within the allowed workspace. The same minimum-
time lap data was used as the reference in the numerical
optimal control problem, which determined the linear filter
parameters. The performance of the filters are examined
for the long cornering manoeuvre (shown in Figure 7),
which features strong braking, acceleration and a period
of sustained lateral acceleration.

There are two concepts that need to be defined before
analysing the results. The first is onset cues. The idea is
to accelerate the platform correctly at the beginning of
a manoeuvre and then, when it runs out of workspace,
stop the movement for the remainder of the manoeuvre
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Fig. 7. Turn4 of the Barcelona Formula One circuit. The
optimal racing line is shown as the (blue) oriented
dashed line. The (red) time markers are one second

apart; the first deemed to be at 0s and the last at 6s.

and accept that the driver will only receive visual cues.
The second is the notion of miscues, which encompasses a
‘multitude of sins’. The most common is the acceleration of
the platform in the opposite direction to that of the vehicle
simulation, which occurs when the platform needs to slow
down as it nears the workspace limits. The magnitude of
onset cues and miscues are linked, and this will be explored
further with the longitudinal filter for example.

The longitudinal direction contains the largest magnitude
accelerations and thus requires a low-gain filter. The filters
designed by the two alternative methods are shown in
Figure 8. As anticipated, the filters are both high pass,
as sustained low-frequency accelerations will cause large
displacements and thus associated workspace usage. The
cut-off frequency of the filters are both at approximately
2rad/s, but the low- and high-frequency filter gains differ,
with the LQG filter reaching a higher high-frequency gain
as well as increasing the attenuation of the lower frequency
signals. The results of the filtering of the two cueing
approaches are shown in Figure 9. The optimal control
approach yields a stronger onset cue, i.e. the initial accel-
eration is larger, however it then produces a larger miscue.
The relationship between the magnitude of the onset and
miscue arises from simple physics. If the platform under-
goes an acceleration, it will also need to be decelerated in
order to remain within the workspace. Hence, the larger
the acceleration, the larger the subsequent miscue.

Periods of lateral accelerations tend to be sustained for
longer periods than longitudinal braking and acceleration.
The lateral cueing filters are shown in Figure 10 with the
associated responses given in Figure 11. In the case of
lateral accelerations an onset cue is again produced which
is then “washed out” with the remainder of the manoeuvre
un-cued as a result of workspace restrictions. Once again
the parameter-optimised (PO) filter has higher magnitude
onset cues, and larger miscues than the LQG filter and the
parameter-optimised filter with velocity washout.
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Fig. 9. Comparison of reference and filtered longitudinal
accelerations for various cueing strategies.

The yaw filters, also designed using the LQG and PO
strategies, can be seen in Figure 12. While both approaches
produce high-pass filters, they differ in terms of their
numerical detail. As is seen in Figure 13 the two filters have
similar onset cues, but the PO filter has a miscue before
the manoeuvre, which allows the hexapod to provide a
larger angular velocity cue. The LQG filter on the other
hand produces a relatively small yaw velocity cue that it
then washes out. Both filters preserve the high-frequency
information, although this data is not necessarily helpful.
Rather than producing a positive angular velocity cue that
varies in magnitude, the PO filter produces an oscillatory
cue that varies around zero. This is another form of miscue,
as it will probably be interpreted by the driver as a change
in the vehicle’s turning direction.

The biggest drawback of the LQG approach is that it
needs to be tuned. Firstly, an estimate of the workspace
for each DOF needs to be found, and the filters tuned
so that the platform stays within these limits. Then, the
filtered signals are combined to calculate the platform
actuator lengths. Since the different degrees of freedom are
coupled i.e. movement in one freedom reduces the available
workspace in another, the filters will need to accommodate
this cross coupling. It is never clear which DOF is using
the workspace, or which freedom should be reduced. The
whole process requires experience, takes time, and does
not respect directly the workspace limits.

In contrast, in the numerical optimal control approach the
filters are designed so that the platform must respect the
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Fig. 11. Comparison of reference and filtered lateral accel-
erations.

workspace limits. There is one factor that can be adjusted,
and this scales the error of the yaw component with respect
to the other two error signals. This approach also has
the option to limit the individual freedoms in addition to
the hexapod constraints. Both approaches produce linear
filters, which also have their limitations, and are designed
to accommodate worst-case scenarios. Since the negative
(braking) accelerations are of a much higher magnitude
than the positive ones, the filters are necessarily designed
with such low gains that positive accelerations cues tend
to be filtered out. This suggests that in future work, the
braking and accelerating could be processed with separate
filters.

5.2 Open-Loop Optimal Control

The open-loop optimal control problem formulation yields
a very different result as compared to those involving
linear filters. Structurally, the platform acceleration signals
are not restricted to being filtered versions of the vehicle
states. Instead, they are open-loop optimal controls in
the conventional sense. The selection of the performance
index also has a significant impact on the simulators
behaviour. Unlike the classical LQG formulation, filter
synthesis processes based on numerical optimal control can
support hard constraints and non-quadratic cost functions.

The biggest difference between the open-loop optimal con-
trol and the linear filters can be seen in the longitudinal
acceleration signal (Figure 9). Before a braking manoeuvre
the platform is accelerated in the “wrong direction, which
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allows the system to produce a larger and more sustained
acceleration signal; initially to slow the platform down,
and then to move it backwards. In addition, there is no
washout of the platform to a neutral position, which is
common in motion cueing strategies, because the per-
formance index as defined does not call for this type of
behaviour. The inclusion of a velocity term in the perfor-
mance index reduces the magnitude of the false cue that
occurs ahead of a manoeuvre, but necessarily also reduces
the magnitude of the onset cue. The advantage of this
strategy is that the velocity-related term in J, provides
a method of shaping the cueing signal. Unfortunately
open-loop feed-forward cueing cannot be implemented in a
practice, because there needs to be some form of feedback
response from the driver’s. However, these calculations
are useful in terms of analysing workspace usage, and
examining the feasible accelerations for a given platform.

6. CONCLUSION

We have introduced the use of numerical optimal con-
trol techniques into the design of linear filters for race
car motion cueing strategies. Numerical optimal control
techniques can also be used to assess the capabilities and
achievable performance of any simulator motion platform.
This approach is able to recognise explicitly the kinematic
constraints of the workspace and reduce the need for
iterative tuning. An additional benefit comes from the
use of real acceleration data rather than coloured noise
realisations that are unlikely to be representative of real

car behaviour. In the open-loop case, changes to the perfor-
mance index, such as the introduction of velocity penalties,
can be used to alter the characteristics of the resulting
cues. The nonlinear programming framework facilitates
the extension of the optimal control computations to non-
quadratic cost functions. This is a key advantage of this
approach and makes it possible to penalise the simulator
motion in a nonlinear manner. In this way we hope to take
advantage of the nonlinear characteristics of the problem
and of human motion perception. This work also has the
potential to be developed further to include all six degrees
of freedom for use with a 3D car model. The use of
optimal-control ideas in a closed-loop system, that does
not just use linear filters, also needs to be explored so that
the useful characteristics of the open-loop system can be
exploited. Finally, the use of non-quadratic performance
indices (norms) deserves further attention.
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