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Abstract: To avoid structural damage, a wind turbine is equipped with a safety supervisor that
triggers an emergency shutdown procedure in case of internal faults or large wind gusts. This
paper leverages the (compositional) barrier certificate framework for the design and optimization
of such a supervisor. The problem is formulated as a sum of squares problem and is solved
using semi-definite programming. Both a direct and compositional approach are successfully
implemented and verified for the NREL 5MW reference turbine. In conclusion, the methods
derived in this paper are indeed viable for the syntheses and optimization of safety systems for
future wind turbines.
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1. INTRODUCTION

As fossil fuels are becoming increasingly scarce, sustain-
able energy sources grow in popularity, including wind
energy conversion systems. In recent years, a lot of research
effort has gone into reducing the costs of wind turbine
energy. A trend is observed towards larger mechanical
structures and more complex control systems for turbines.

To avoid damage to the wind turbine’s mechanical and
electrical components, the physical limits of the turbine
should never be exceeded. When safety critical situations
occur, due to internal faults such as malfunctioning hard-
ware or due to external influences such as wind gusts,
a safety supervisor system should trigger an emergency
shutdown procedure for the wind turbine.

A commonly used method in industry is to monitor the
rotational speed and shut down the turbine if some pre-
defined threshold is exceeded. However, it is found in
Johnson and Fleming [2011] that some structural elements
are difficult (if not impossible) to protect using this type
of supervisor, especially for larger and more complex
structures. Furthermore, if such an univariate supervisor is
used, it is often conservative yielding undesired shutdowns
and economic losses.

As an alternative, this work will focus on the design of
a safety system that uses measurements of multiple state
variables. To this extend the barrier certificate framework
is utilized, see Prajna and Jadbabaie [2004]. It is extended
to allow for a reduction of the number of undesired shut-
downs whilst maintaining its properties of guaranteeing
that physical limits will never be violated. This leads to
a reduction in the economic losses that may be caused

by mechanical breakdown as well as unnecessary losses of
production due to false shutdowns.

This work is a continuation and extension of the results
presented in Wisniewski et al. [2013]. New optimization
techniques are proposed and the computational complex-
ity is reduced. Specifically, barrier certificates for differ-
ent wind spans are computed independently and then
combined to cover the full operating conditions. This ap-
proach significantly reduces the computational complexity
allowing for direct optimization approaches and/or more
complex and accurate models, resulting in less conservative
safety supervisors.

The outline of this paper is as follows. First, some math-
ematical notations will be presented. Then the problem
is formally addressed in Section 3. In Section 4, a math-
ematical framework for computing safety supervisors is
derived. Two approaches are implemented and their re-
sults are given in Section 5. Finally, after discussing some
improvements in Section 6, the conclusions are presented
in Section 7.

2. NOMENCLATURE

The following notations are used throughout this paper.
Vectors are displayed in lowercase bold, e.g., a, matrices
in uppercase bold, e.g., A. A positive-semidefinite matrix
A is denoted as A � 0, positive-definite matrices as A � 0.
The trace of a square matrix A is given by TrA, a vector of
the elements on its diagonal is given by diagA. The symbol
ȧ denotes the (partial) time derivative da

dt or ∂a
∂t , depending

on the context. For a scalar function f : Rn → R the

gradient is given as ∇f(x) =
(
∂f
∂x1

, . . . , ∂f∂xn

)
.
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Sets are presented in calligraphic font, e.g., A. The set
of non-negative reals is denoted as R0+, positive reals as
R+. The notation {ai}I is short hand for {ai|i ∈ I}.
For a subset B ⊆ A, define Bc = A\B = {a ∈ A|a /∈
B}. Let

∏
denote the Cartesian product operator, e.g.,∏

i∈{1,...,k}Ai = A1 × . . .×Ak.

For a function g : X → R, we denote by 〈g〉a the sublevel
set

〈g〉a = {x ∈ X |g(x) ≤ a} (1)

For convenience, let 〈g〉 denote 〈g〉0. Furthermore, the
volume of 〈g〉a is given by

vol 〈g〉a =

∫
〈g〉a

dx (2)

The set of all real-valued polynomials in n real indetermi-
nates is denoted by Pn. Pkn denotes the set of all k-sized
vectors of such polynomials. A polynomial p ∈ Pn is sum
of squares (SOS) if there exist p1, . . . , pk ∈ Pn such that

p =
∑k
i=1 p

2
i . The set of sum of squares polynomials in n

indeterminates is denoted by Σn.

The degree of a polynomial, denoted deg(p), is equal to the
highest degree of its monomials. The degree of a monomial
is equal to the sum of the exponents of its indeterminates.
The set of all polynomials in n indeterminates with a
degree of at most d is Pn,d = {p ∈ Pn|deg(p) ≤ d}.
Similarly Σn,d = {s ∈ Σn|deg(s) ≤ d}.

3. PROBLEM FORMULATION

The task of the safety supervisor system is to timely
initiate an emergency shutdown procedure when safety
critical situations occur. It is important to note that since
the emergency shutdown procedure itself poses stress on
the wind turbine, its behavior should be anticipated in
the design of a safety supervisor. It will be inadequate to
simply check for absolute limits being violated.

Xu

Xs

Xn

Fig. 1. Shutdown trajectories, with safe (green) and unsafe
(red) start point. Unsafe region Xu (striped), normal
operation Xn (green) and safe set Xs (purple).

Throughout this paper we will use the following sets:
Xu contains the unsafe states where physical limits are
violated, Xn represents the normal modes of operation
and Xs represents the safe modes of operation of the wind
turbine. Shutdown trajectories starting in Xs will never
enter Xu. These sets are illustrated in Figure 1.

As finding the set Xs might not be tangible, we instead try
to find a subset of Xs. More specifically, we try to find a
function S such that 〈S〉 ⊆ Xs. We will refer to 〈S〉 as the
safety envelope and call S the protection function.

Once a protection function S is found, it is straightforward
to implement a safety supervisor system. An emergency
shutdown procedure should be triggered when S crosses 0.
The design of a safety supervisor system hence boils down
to finding an appropriate function S. To avoid unnecessary
emergency shutdowns, we preferably have that vol 〈S〉 is
as large as possible. Moreover, a minimal requirement is
that the turbine does not shut down during normal mode
of operation, i.e., Xn ⊆ 〈S〉 ⊆ Xs.

The remainder of this section is dedicated to formalizing
the notions outlined above.

In an abstract way, the wind turbine during shutdown is
described by Γ = (f ,X ,D,Xn,Xu). Where f : Rn+m → Rn
is a well-defined state evolution map that is associated
with differential equation

ẋ = f(x,d), (3)

x(t) ∈ X ⊆ Rn the state, and d(t) ∈ D ⊆ Rm the
disturbance input. Xn ⊆ X and Xu ⊆ X are as described
above.

For some Lebesgue measurable and essentially bounded
disturbance function d̄ : R0+ → D, the solution of the

differential equation (3) with φ(0) = x0 is denoted by φd̄x0
,

i.e.,

dφd̄x0
(t)

dt
= f

(
φd̄x0

(t), d̄(t)
)

(4)

Definition 1. (Safety). Let Γ = (f ,X ,D,Xn,Xu) be given.
Then the set of safe initial states Xs ⊆ X is defined by

Xs = {x ∈ X |φd̄x(t) ∈ X c
u , ∀t ∈ R0+, ∀d̄ ∈ L∞(R0+,D)}

(5)

System Γ is safe if Xn ⊆ Xs.

Definition 2. ((Exact) Safety Envelope). If there exists a
scalar function S : Rn → R such that

Xn ⊆ 〈S〉 ⊆ Xs (6)

then S is a protection function with corresponding safety
envelope 〈S〉. 〈S〉 is an exact safety envelope if it holds
that

〈S〉 = Xs. (7)

4. METHODOLOGY

4.1 Barrier Certificates

The barrier certificate framework was first proposed in
Prajna and Jadbabaie [2004] and provides a way to verify
the safety property as defined in Definition 1.

Theorem 3. (Weak Barrier Certificates). Given a system
Γ = (f ,X ,D,Xn,Xu), let B(x) be a differentiable scalar
function satisfying

B(x) ≤ 0, ∀x ∈ Xn, (8a)

B(x) > 0, ∀x ∈ Xu and, (8b)

∇B(x) · f(x,d) ≤ 0, ∀(x,d) ∈ X ×D. (8c)

If such a function exists the system is safe.
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Proof. See, Prajna and Jadbabaie [2004] or Prajna et al.
[2007]

A nice bonus result from this theorem is that it does not
only prove the safety of a system, it can also be leveraged
to construct a safety envelope.

Proposition 4. (Safety Envelope). Let B(x) be a function
as described in Theorem 3. Then, 〈B〉 is a safety envelope,
i.e.,

Xn ⊆ 〈B〉 ⊆ Xs. (9)

Proof. Comparing (8a) with the definition of the 〈·〉
operator in (1) it is immediately evident that Xn ⊆ 〈B〉.
Furthermore for any x0 ∈ 〈B〉 we have by definition that
B(x0) ≤ 0. Then (8c) guarantees that ∀t ∈ R0+ and

∀d̄ ∈ L∞(R0+,D) it holds that B(φd̄x0
(t)) ≤ B(x0) ≤ 0. So

by (8b) we have φd̄x0
(t) /∈ Xu, so that x0 ∈ Xs. 2

The protection function B in Theorem 3 can thus be
used in a safety supervisor system. During normal mode
of operation the supervisor will not intervene, at the
same time it is guaranteed that the emergency shutdown
procedure will be invoked before leaving Xs. However,
the desired behavior during deviations from the normal
operation that are not safety critical (i.e. x /∈ Xn but
x ∈ Xs) is not specified by (8). Clearly we prefer the
emergency shutdown procedures not to be invoked in these
cases and hence want 〈B〉 to be as close to Xs as possible.

Observe that (8c) ensures that the zero sub-level set 〈B〉
is positive invariant. In fact, any sub-level set 〈B〉a is
invariant, as is illustrated in Figure 2. This notion is
leveraged in Corollary 5.

Xu

〈B〉a

Fig. 2. Invariant level sets of B(x)

Corollary 5. (β Optimization). Given a functionB(x) sat-
isfying Theorem 3, if there exists a β ∈ R+ such that

B(x)− β > 0, ∀x ∈ Xu, (10)

then

Xn ⊆ 〈B〉 ⊂ 〈B〉β ⊆ Xs (11)

Proof. Note that 〈B〉β = 〈B − β〉. Now, for positive β,

(8a) still holds and (8c) is unaffected by this translation.
It thus indeed suffices to validate (8b). Finally, since B is
differentiable, the subset is strict, i.e. 〈B〉 ⊂ 〈B〉β . 1 2

1 An exception exists for the trivial situation that Xu = ∅ or Xn = ∅.

Corollary 5 allows us to turn the feasibility problem of
Proposition 4 into an optimization problem. In doing so,
the computational complexity barely increases. In fact,
in some cases the optimal β is already known from the
feasibility problem as will become apparent in the next
section.

The approach in Corollary 5 only translates B, but does
not alter the ‘contour’. Whether the result is satisfactory
will hence depend on the problem at hand. If not, Corol-
lary 6 can be used to alter this ‘contour’ as well as increase
the size of the set 〈B〉.
Corollary 6. (V Optimization). Let B(x) be a function as
described in Theorem 3. Let V : Rn → R be such that

B(x) ≤ V (x), ∀x ∈ X , (12)

then

Xn ∪ 〈V 〉 ⊆ 〈B〉 ⊆ Xs. (13)

Proof. Comparing (12) to the definition in (1) clearly
yields 〈V 〉 ⊆ 〈B〉. The remainder of the proof is similar
to that of Proposition 4. 2

Now, inflating vol 〈V 〉 increases vol 〈B〉 as well. A proper
choice of V , with an optimizable volume, is essential in
order to usefully apply Corollary 6. Remark 1 provides
insights in using hyper-ellipsoids for this purpose. Note
that in that case (12) can be relaxed to hold only for
x ∈ X c

u .

Remark 1. (Hyper-ellipsoids). Let V (x) be an hyperellip-
soid, i.e.,

V (x) = (x− b)TQ−1(x− b)− 1 (14)

where b ∈ Xs and Q � 0. Then its volume is given by

vol 〈V 〉 =
4

3
π
√

det(Q) (15)

This volume could be maximized using the following
optimization problem:

max log detQ

s. t. (8) and (12)
(16)

If (8) and (12) are formulated as SOS constraints (Sec-
tion 4.4), this program is convex, see Boyd and Vanden-
berghe [2004]. However, it is not linear in the optimization
criterion. In order to ease the computation, it would be
desirable to have a linear criterion. This could be achieved
by instead maximizing the sum of the semi-principal axes.
For real square matrices the sum of the eigenvalues is given
by
∑n
i=1 λi = TrQ. Now, to avoid a matrix inversion, we

do not maximize TrQ, but instead minimize its inverse.
To this extend we substitute E = Q−1 in (14) and obtain
the following linear optimization problem:

min TrE

s. t. (8) and (12)
(17)

Note that the program in (17) is not guaranteed to max-
imize (15), especially when the dimensions have different
orders of magnitude. In some cases, results might improve
by applying a weighting vector w ∈ Rn+, i.e.,

minwT diagE (18)

Whether these approaches are useful will depend on the
problem at hand. When results are unsatisfactory, one can
always switch back to the program in (16). .
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Note that the observations in Remark 1 are particularly
useful if a quadratic polynomial barrier certificate exists,
i.e. there exists B ∈ Pn,2, satisfying (8). In this case B
could be of the form (14) and vol 〈B〉 could be optimized
directly.

Although Theorem 3 holds for a wide class of systems,
in the remainder of this paper we will restrict ourselves
to polynomial system descriptions and consider only poly-
nomial barrier certificates B ∈ Pn. In this case, finding
a barrier certificate can be done using semi-definite pro-
gramming (SDP), as will be shown in Section 4.4.

However, in that section it will also become apparent that
the number of decision variables involved with such an
SDP grows rapidly with the number of state variables
n and polynomial degree d of the system description.
Even for moderately sized n and d, the SDP might
become computationally infeasible. Therefore, the next
two subsections will first present methods that can be used
to reduce the complexity of the SDP.

4.2 Compositional Barrier Certificates

The main idea in this section is to split the system into in-
terconnected subsystems, each subsystem containing only
a subset of the state variables. A barrier certificate can be
computed per subsystem and then results can be combined
to obtain a safety envelope for the complete system. This
procedure was first introduced in Sloth et al. [2012b].

We consider a dynamical system which is given as an
interconnection of k subsystems. Let I = {1, . . . , k}, then
the system can be described as a set Γ = {Γi}I with
subsystems Γi = (fi,Xi,Di,Xn,i,Xu,i,Ui,gi).
Given are the collections of continuous vector fields fi :
Rni+mi+qi → Rni , state space Xi ⊆ Rni , external (dis-
turbance) inputs Di ⊆ Rqi , normal modes of operation
Xn,i ⊆ Xi, set of unsafe modes of operation Xu,i ⊆ Xi,
interconnection inputs Ui ⊆ Rmi , and interconnection
output functions gi : Rni → Rri .

The sets X , Xn, Xu, and D are constructed from the sets
of the subsystems in the following fashion

X =
∏
i∈I
Xi, Xn =

∏
i∈I
Xn,i,

Xu =
∏
i∈I
Xu,i D =

∏
i∈I
Di,

Proposition 7. (Compositional Barrier Certificates). Given
a set of subsystems Γ = {Γi}I , if there exist differentiable
functions Bi : Xi → R, constants αi, βi ∈ R and functions
γi : Rmi+ri → R for all i ∈ I such that

Bi(xi) + αi ≤ 0, ∀xi ∈ Xn,i, (19a)

Bi(xi)− βi > 0, ∀xi ∈ Xu,i, and (19b)

∇Bi(xi) · fi(xi,ui,di) ≤ γi(ui,gi(xi)),
∀(xi,ui,di) ∈ Xi × Ui ×Di

(19c)

with

α =
∑
I
αi ≥ 0, β =

∑
I
βi ≥ 0, and∑

I
γi(ui,g(xi)) ≤ 0, ∀xi ∈ Xi, ui ∈ Ui

(20)

then the system is safe, with B(x) =
∑
I Bi(xi) as

protection function.

Proof. Sum (19a) over all subsystems∑
I
Bi(xi) +

∑
I
αi ≤ 0, ∀xi ∈ Xn,i

B(x) + α ≤ 0, ∀x ∈ Xn

(21)

By (20) we see that α ≥ 0 hence (19a) reduces to (8a).
A similar reduction can be done for (19b) yielding (8b).
The reduction of (19c)) to (8c)) is given in Section 4
of Sloth et al. [2012a]. Finally, differentiability of Bi(xi)
is conserved under addition, hence B(x) is differentiable.
Since B(x) satisfies (8), the system is safe. Additionally,
by Proposition 4, 〈B〉 is a safety envelope. 2

The optimizations presented in Section 4.1 can be modified
to be applicable to the compositional barrier certificate
approach, which will be shown below.

Corollary 8. (Compositional β Optimization). LetB(x) =∑
I Bi(xi) be a given function satisfying Proposition 7

with β as defined in (20), then

Xn ⊆ 〈B〉 ⊆ 〈B〉β ⊆ Xs (22)

Proof. By definition 〈B〉 ⊆ 〈B〉β . Furthermore from

(19b) and (20) follows that B(x)− β > 0, ∀x ∈ Xu. 2

Note that 〈B〉 = 〈B〉β would only hold in trivial cases,

typically we would find that 〈B〉 ⊂ 〈B〉β .

Corollary 9. (Compositional V Optimization). Let {Bi}I
be a collection of functions conforming to Proposition 7,
additionally satisfying for some given collection {Vi :
Rni → R}I that

Bi(xi) ≤ Vi(xi), ∀xi ∈ Xi (23)

then

Xn ∪ 〈V 〉 ⊆ 〈B〉 ⊆ Xs (24)

where V (x) =
∑
I Vi(xi)

Proof. From (23) we have that
∑
I Bi(xi) ≤

∑
I Vi(xi)

so by definition 〈V 〉 ⊆ 〈B〉. 2

By inspecting Proposition 7, we observe that (19) can be
evaluated separately for every subsystem. Hence, the sub-
certificates Bi can be generated independently. However,
conditions (20) need to be satisfied globally and can only
be verified after all sub-certificates are computed. If one or
more conditions in (20) are violated, the certificates need
to be recomputed using a different optimization criterion
and (20) should be evaluated again until it is valid.
This can be achieved using the sub-gradient algorithm
presented in Algorithm 1.

4.3 Segmented Barrier Certificates

Aerodynamic properties introduce non-linearities in the
wind turbine’s behavior. To accurately model the turbine
over the full operating conditions and wind span using
polynomial approximations, a 12th degree polynomial is
required, see Pedersen and Steiniche [2012]. This section
will present a method based on segmenting the disturbance
input that will allow for low-degree approximations to still
yield the desired accuracy.
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Algorithm 1 Sub-gradient algorithm

Consider the definitions used in Proposition 7, let γ̂i be
the tunable parameters in γi and define ∆k = a

b+k . Initiate

k = 0 and set a, b, λ
(0)
α , λ

(0)
β and λ(0)

γ to some appropriate
values.
1. Compute Bi

Maximize λ
(k)
α αi+λ

(k)
β βi−λ(k)

γ γ̂i s.t. Bi satisfying (19).
2. Verify

Verify whether (20) holds. If so, terminate.
3. Update objective:

• λ(k+1)
α = λ

(k)
α −∆kα

• λ(k+1)
β = λ

(k)
β −∆kβ

• λ(k+1)
γ = λ(k)

γ + ∆kγ̂
• k = k + 1.

Return to step 1.

Proposition 10. (Segmented Barrier Certificates). Given a
system Γ = (f ,X ,D,Xn,Xu), for I = {1, ..., k}, cover D by
open sets D = {Di}I with a partition of unity Λ = {λi}I
subordinate to D. Let B be a family of a differentiable
scalar functions B = {Bi}I satisfying for all i ∈ I

Bi(x) ≤ 0, ∀x ∈ Xn, (25a)

Bi(x) > 0, ∀x ∈ Xu and, (25b)

∇Bi(x) · f(x,d) ≤ 0, ∀(x,d) ∈ X ×Di. (25c)

If such a family B exists, the system is safe with protection
function B(x,d) =

∑
I Bi(x)λi(d).

Proof. The following inequalities hold for all d ∈ D

B(x,d) =
∑
I
Bi(x)λi(d) ≤ max

I
Bi(x) ≤ 0, ∀x ∈ Xn,

B(x,d) =
∑
I
Bi(x)λi(d) ≥ min

I
Bi(x) > 0, ∀x ∈ Xu,

∂B

∂x
f(x,d) =

∑
I

∂Bi
∂x

λi(d)f(x,d)

≤ max
I

∂Bi
∂x

f(x,d) ≤ 0, ∀x ∈ X .

Thus, B(x,d) conforms to (8) and by Proposition 4 is
hence a protection function. 2

Now, by choosing D to consist of (partly) overlapping wind
spans a subordinate partition of unity Λ can be easily
defined. See for example the bump function in Tu [2008].

Inequality (25c) still depends on the state evolution map
f(x,d). However, for the computation of each Bi(x) this
function only needs to be evaluated for Di. Hence in (25c)
f(x,d) could be substituted with fi(x,d), provided that for
all d ∈ Di it holds that fi(x,d) = f(x,d). Alternatively,
a set of functions Fi(x,d) = {fi(x,d, e)|e ∈ E} could be
substituted in (25c) provided that f(x,d) ∈ Fi(x,d) for
all (x,d) ∈ X × Di. Using this approach a conservative
approximation of the aerodynamics model can be made
by using only low degree polynomials.

Note that if in Theorem 3 we defineD to beDi, inequalities
(8) and (25) become the same. All results derived for the
barrier certificate approach, such as the optimizations and
compositional barrier certificates, are hence applicable to
the segmented barrier certificates as well.

4.4 Sum of Squares

In order to compute the barrier certificate, inequalities (8)
are formulated as a sum of squares (SOS) problem, which
can be solved using semi-definite programming (SDP).
This section will outline the main steps, the interested
reader is referred to Parrilo [2003] or chapter 2 of Jarvis-
Wloszek [2003] for more background on this topic.

The system is assumed to have a polynomial vector field
f(x,d) and all relevant sets are assumed to be described
as semi-algebraic sets. Let gx ∈ Pkxn , gn ∈ Pknn , gu ∈ Pkun ,
and gd ∈ Pkdq , such that

X = {x ∈ Rn|gx(x) ≥ 0}, (26a)

Xn = {x ∈ Rn|gn(x) ≥ 0}, (26b)

Xu = {x ∈ Rn|gu(x) ≥ 0}, (26c)

D = {d ∈ Rq|gd(d) ≥ 0} (26d)

where the inequalities in (26) are satisfied coordinate-wise.

Lemma 11. (S-procedure). Let Xg ⊆ Rn, f ∈ Pn, and
g ∈ Pkn so that g(x) ≥ 0 (coordinate-wise) for any x ∈ Xg.
Now, if

s(x) ∈ Σkn and (27)

f(x)− sT(x)g(x) ∈ Σn (28)

then f(x) ≥ 0 for all x ∈ Xg.

Using Lemma 11, Theorem 3 can be reformulated as an
SOS problem.

Proposition 12. (Barrier Certificate SOS problem). Let Γ
= (f ,X ,D,Xn,Xu) be given with X ,D,Xn, and Xu as
defined in (26). If there exist ε ∈ R+, sx ∈ Σkxn , sn ∈ Σknn ,
su ∈ Σkun , sd ∈ Σkdq and B ∈ Pn such that

−B − sT
n gn, (29a)

B − ε− sT
u gu, and (29b)

−∇B · f − sT
x gx − sT

d gd (29c)

are sum of squares, then B(x) is a protection function.

Proposition 12 is a feasibility problem, but using the
results in Corollary 5, Corollary 6 and/or Remark 1, an
additional optimization criterion can be supplied in order
to increase vol 〈B〉.
A similar approach can be used to compute composi-
tional barrier certificates as is demonstrated below. Let
the following semi-algebraic subsets be defined for each
subsystem i ∈ I

Xi = {xi ∈ Rni |gx,i(x) ≥ 0}, (30a)

Xn,i = {xi ∈ Rni |gn,i(x) ≥ 0}, (30b)

Xu,i = {xi ∈ Rni |gu,i(x) ≥ 0}, (30c)

Ui = {ui ∈ Rmi |gc,i(u) ≥ 0}, (30d)

Di = {di ∈ Rqi |gd,i(d) ≥ 0} (30e)

with all functions g∗ of the appropriate size k∗.

Proposition 13. Let Γ = {Γi}I be given as in Section 4.2
with Xi, Xn,i, Xu,i, Ui, and Di, as defined in (30). If
there exist Bi ∈ Pni

, αi, βi ∈ R, γi ∈ Pmi+ri , ε ∈ R+,

sx,i ∈ Σ
kxi
ni , sn,i ∈ Σ

kni
ni , su,i ∈ Σ

kui
ni , sc,i ∈ Σ

kci
mi , and

sd,i ∈ Σ
kdi
qi for all i ∈ I, such that
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−Bi − sT
n,ign,i − αi, (31a)

Bi − ε− sT
u,igu,i − βi, and (31b)

−∇Bi · fi − sT
x,igx,i − sT

d,igd,i − sT
c,igc,i + γi, (31c)

are sum of squares and∑
I
αi,

∑
I
βi, and −

∑
I
γi, (32)

are sum of squares, then B(x) =
∑
I Bi(xi) is a protection

function.

The s-procedures used in these SOS problems can drasti-
cally increase the number of decision variables. The num-
ber of monomials in each s-function is given by

(
n+d
d

)
,

where n is the number of independent variables and d
is the maximum degree. Depending on the system f and
the semi-algebraic set descriptions g at hand, one can
usually reduce these numbers. When a certain set function
g does not depend on certain state variables, those can be
excluded from the corresponding s-procedure s as well. It
is easily verified that for s ∈ Σn′ with n′ < n Lemma 11
still holds (take the extreme case where s ∈ R+). Ex-
cluding those variables could in some cases also be non-
conservative, depending on the problem structure.

Solving the SOS problem is computationally the most
time-intense part of these methods. However, these com-
putations are performed offline. The online calculations
consist of the evaluation of the B(x) polynomial, which
is typically a low-degree polynomial in only a few state
variables. This is not an issues with modern day computer
systems, an FPGA has plenty of recourses to do so in real-
time.

5. RESULTS

5.1 Turbine Model

Evidently, a safety supervisor should be designed for a
specific wind turbine. The NREL 5-MW wind turbine
model by Jonkman et al. [2009] will be used to provide a
proof of concept. A simplified model was derived including
the safety critical states. The model equations are given
in (33), a description (and value) of state variables and
parameters is given in Table 1. The derived model was
verified against the FAST simulator configured for the
same turbine, see Jonkman [2012].

ω̇r =
1− ξ
Jr

τa(w,ωr, β) +
kll

Jr
θll −

Br

Jr
ωr −

N

Jr
τg (33a)

β̇ = 8 (33b)

ω̇t =
L

Jt
Fa(w,ωr, β) +

mgL− kt

Jt
θt −

Bt

Jt
ωt (33c)

θ̇t = ωt (33d)

ω̇ll =
ξ

Jll
τa(w,ωr, β)− Bll

Jll
ωll −

kll

Jll
θll (33e)

θ̇ll = ωll (33f)

For convenience the states (the variables on the left side
of (33)) will collectively be referred to as x and the state
functions (right side of (33)) will be referred to as f .

Table 1. Turbine Model Description

States, parameters, functions and disturbances of the model

Description Value Unit

Rotor & Drive train

Rotor angular velocity ωr - rad/s

Blade-pitch angle β - deg

Generator torque input τg - Nm

Equivalent rotor-side damping Br 1.5e5 Nm/(rad/s)

Equivalent rotor-side inertia Jr 4.05e7 kg ·m2

Gearing Ratio N 97 -

Tower

Tower fore-aft angular velocity ωt - rad/s

Tower fore-aft angle θt - rad

Tower damping Bt 7.22e8 Nm/(rad/s)

Tower stiffness kt 1.47e10 Nm/rad

Equivalent tower mass m 5.01e5 kg

Tower length L 87.6 m

Tower inertia Jt 3.54e9 kg ·m2

Gravitational acceleration g 9.81 m/s2

Lead-lag blade bending (edgewise)

Blade tip angular velocity ωll - rad/s

Blade tip angle θll - rad

Blade damping Bll 3.00e8 Nm/(rad/s)

Blade stiffness kll 6.75e7 Nm/rad

Blade inertia Jll 1.24e7 kg ·m2

Aerodynamics

Aerodynamic torque function τa - Nm

Aerodynamic thrust function Fa - N

Wind disturbance input w - m/s

Torque ratio ξ 0.5 -

Lookup tables for the aerodynamic rotor torque τa(w,ωr, β)
and aerodynamic thrust Fa(w,ωr, β) can be found us-
ing turbine simulations. However, the wind acts as an
unknown (bounded) disturbance. For a given windspan
W, we therefore like an expression of the aerodynamic
functions in the form

Fa(ωr, β) = {Fa(w,ωr, β)|w ∈ W}, (34)

Ta(ωr, β) = {τa(w,ωr, β)|w ∈ W}. (35)

By fitting a polynomial on both minFa(ωr, β) and
maxFa(ωr, β), an analytical expression describing (34) can
be derived. Evidently, the same approach holds for the
aerodynamic torque Ta.

As an example a 3rd degree fit to the maximum torque
max Ta(ωr, β) is shown in Figure 3. The colored surface is
the obtained from simulation data, the black mesh grid
is the polynomial fit. For this example, as well as the
remainder of this section, the wind span is chosen to be
W = [17, 20.5] m/s.

The bounds on the wind turbine’s states during normal
mode of operation are given in Table 2. The table also
contains the ultimate load limits that should never be
violated. These bounds are also described as algebraic sets
conform (26), which will prove to be useful in describing
de SOS program in the next subsection.

Note that Xu = Xu,ωr ∪ Xu,θt ∪ Xu,θll and can hence not
be written in the form of (26c). Instead, (29b) will need
to be verified for each unsafe region separately.
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Fig. 3. Polynomial fit on aerodynamics

Table 2. Normal operation and physical limits

State Bounds Algebraic set

Normal operation

ωr [1.2, 1.35] gn,ωr = (ωr − 1.2)(1.35− ωr)

β [14, 18] gn,β = (β − 14)(18− β)

θt [0.5e−3, 3e−3] gn,θt = (θt − 0.5e−3)(3e−3 − θt)
ωt [−2e−3, 2e−3] gn,ωt = (ωt + 2e−3)(2e−3 − ωt)

θll [−0.2e−2, 2e−2] gn,θll = (θll + 0.2e−2)(2e−2 − θll)
ωll [−1.5e−2, 1.5e−2] gn,ωll = (ωll + 1.5e−2)(1.5e−2 − ωll)

Ultimate limits

ωr [−∞, 1.6] gu,ωr = ωr − 1.6

θt [−7e−3, 7e−3] gu,θt = −(θt + 7e−3)(7e−3 − θt)
θll [−6e−2, 6e−2] gu,θll = −(θll + 6e−2)(6e−2 − θll)

5.2 Ellipsoid Barrier Certificate

Given the model description in the previous section, for-
mulations for finding a barrier certificate can now be
presented. The certificate will be of the structure

B = (x− b)TE(x− b)− 1. (36)

Since the states have different orders of magnitude a
weighted optimization criterion is chosen, i.e., minwT

diagE. The weighting vector is chosen to be proportional
to the width of the bounds on the normal operation.

Using Proposition 12 and the optimization criterion pre-
sented above, it is now possible to reformulate the problem
as is shown in SOS Problem 1.

SOS Problem 1 Complete wind turbine system

min wT diagE over E ∈ R6×6 � 0, s1, s2, s3 ∈ Σ1,2,

sn ∈ Σ6
1,2, sx ∈ Σ2

1,4, sd ∈ Σ2
3,4

s.t. −B − sT
n gn ∈ Σ

B − ε− s1gu,ωr
∈ Σ

B − ε− s2gu,θt ∈ Σ

B − ε− s3gu,θll ∈ Σ

−∇Bf − sT
x gx − sT

d gd ∈ Σ

The resulting protection function was implemented and
verified using the FAST simulator. Three cases have been

60 80 100 120

−1

0

1

Time (seconds)

S
u
p
e
rv

is
o
r

60 80 100 120

0

0.5

1

1.5

2

Time (seconds)

R
o
to

r 
S

p
e
e
d
 (

ra
d
/s

)

60 80 100 120

−5

0

5

x 10
−3

Time (seconds)

T
o
w

e
r 

B
e
n
d
in

g
 (

ra
d
)

60 80 100 120

−0.05

0

0.05

Time (seconds)

B
la

d
e
 B

e
n
d
in

g
 (

ra
d
)

Ellipsoid Barrier Cetificate, Generator Failure

Fig. 4. State trajectories during generator failure

tested; 1) normal operation, during which the wind turbine
should not shut down, 2) generator failure, during which
the generator power suddenly drops to zero due to a grid
failure, and 3) pitch failure, one of the pitch controllers
fails and one of the blades is pitched in the wind (emer-
gency shutdown controllers are assumed to function). The
supervisor shows the desired behavior in all three cases.
Figure 4 depicts some simulation results for case 2.

5.3 Compositional Barrier Certificate

Although the approach in the previous section is successful
in finding a barrier certificate, during optimization of the
code it was found that minor changes to the problem
description might cause the solvers to run into numer-
ical problems and no longer converge towards a proper
solution. If additional safety properties need to be veri-
fied (requiring additional states), it is expected that this
approach will no longer be computationally feasible. This
section will demonstrate an alternative approach that will
reduce the complexity of the SOS problem by dividing the
system into subsystems. The model equations of (33) will
be regrouped as follows:

Drive:

ω̇r =
1− ξ
Jr

τa(w,ωr, β) +
kll

Jr
θll −

Br

Jr
ωr −

N

Jr
τg (37a)

β̇ = 8 (37b)

Tower:

ω̇t =
L

Jt
Fa(w,ωr, β) +

mgL− kt

Jt
θt −

Bt

Jt
ωt (37c)

θ̇t = ωt (37d)

β̇ = 8 (37e)

Blade:

ω̇ll =
ξ

Jll
τa(w,ωr, β)− Bll

Jll
ωll −

kll

Jll
θll (37f)

θ̇ll = ωll (37g)

β̇ = 8 (37h)
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The blade pitch β is included in every subsystem, adding
decision variables to the problem formulation. However,
in this way less interconnections are required that would
otherwise also introduce decision variables. Moreover, the
chosen approach is less conservative.

In this case, an ellipsoid barrier certificate proofs to be
too conservative and no such certificate could be found.
Instead a third degree barrier certificate is synthesized. To
increase vol 〈B〉, the approach of Corollary 6 and Remark 1
is used, with

Vi = (xi − bi)
TEi(xi − bi) (38)

The resulting SOS formulation for the tower subsystem is
presented in SOS Problem 2.

SOS Problem 2 Tower subsystem

min − λααt − λβt
βt − (λβd

+ λβll
)βR + λT

γMtγ̂t

+ λEw
T
t diagEt

over Bt ∈ P3,3, Et ∈ R3×3 � 0, αt, βt, βR, γ̂t ∈ R
su, sx ∈ Σ1,4, sv ∈ Σ2

1,4, sn ∈ Σ3
1,2, sd ∈ Σ3,4

s.t. −Bt − sT
n gn − αt ∈ Σ

Vt −Bt − svgv ∈ Σ

Bt − ε− sugu,θt − βt ∈ Σ

Bt − ε− βR ∈ Σ

−∇Btft − sxgβ − sdgd + γ̂tω
2
r ∈ Σ

The compositional SOS program is successful in comput-
ing a barrier certificate. Using the same test procedures as
before, the safety supervisor is verified. The compositional
safety supervisor succeeds in all three cases.

6. FURTHER WORK

By inspecting the turbine model and semi-algebraic set
descriptions, we were able to decrease the number of vari-
ables and degree of the s-procedures. This led to a signif-
icant decrease in the number of decision variables so that
the problem became computationally feasible. However,
this reduction was done manually. It is desired to derive
formal procedures and requirements so that the minimal
degree of B and all s-procedures could be (automatically)
determined for arbitrary model descriptions.

This work only focusses on the syntheses of a safety
supervisor and assumes the shutdown procedures to be
known and fixed. However, the methods presented could be
used to compare alternatives or optimize parameters in the
shutdown procedure itself. This could be done iteratively
or directly during the computation of a safety envelope.
Albeit, in the latter case (8c) is no longer linear in the
optimization parameters and a different computational
approach is required.

Finally, it should be noted that only very basic verification
and testing was performed in this work. More elaborate
testing and analysis is clearly required before such a safety
supervisor would be implemented in real-life.

7. CONCLUSIONS

This work shows that a safety supervisor system can be
synthesized and optimized using the barrier certificate

framework. Successful implementations have been given
for a NREL 5MW reference model using both an hyper-
ellipsoid optimization as well as a compositional approach.
It is expected that especially the last method could be ap-
plied to even more complex systems. This allows for more
accurate models having advanced dynamics, the verifica-
tion of additional safety criteria and/or the optimization
of the emergency shutdown procedures. In conclusion, the
methods derived in this paper are to be considered for
implementation when designing safety systems for large-
scale wind turbines.
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