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Abstract: A sparse parameter estimation method is proposed for identifying a stochastic monomolecular 

biochemical reaction network system. Identification of a reaction network can be achieved by estimating 

a sparse parameter matrix containing the reaction network structure and kinetics information. Stochastic 

dynamics of a biochemical reaction network system is usually modeled by a chemical master equation, 

which is composed of several ordinary differential equations describing the time evolution of probability 

distributions for all possible states. This paper considers closed monomolecular reaction systems for 

which an exact analytical solution of the corresponding chemical master equation is available. The 

estimation method presented in this paper incorporates the closed-form solution into a regularized 

maximum likelihood estimation (MLE) for which model complexity is penalized, whereas most of 

existing studies on sparse reaction network identification use deterministic models for regularized least-

square estimation. A simulation result is provided to verify performance improvement of the presented 

regularized MLE over the least squares (LSE) based on a deterministic mass-average model in the case of 

a small population size. Improved reaction structure detection is achieved by adding a penalty term for 𝓵1 

regularization to the exact maximum likelihood function. 

Keywords: Sparse parameter estimation; Exact maximum likelihood estimation; Monomolecular 

biochemical reaction network; Chemical master equation; Stochastic simulation algorithm; Regularized 
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

1. INTRODUCTION 

Stochastic dynamics of bio- or nano-systems have lately 

received increased attention from researchers in the fields of 

biological and material engineering. In the past, such studies 

were greatly hampered by lack of measurements, but recent 

developments in sensing techniques that can provide real-

time observations of stochastic dynamics at small length 

scales have motivated many scientific investigations with 

results published in prominent academic journals for the 

biological field (Raj et al., 2010; Taniguchi et al., 2010) and 

the nanotechnological field (Cognet et al., 2007; Jin et al., 

2010). 

One such sensing technique for bio-systems is bio-imaging 

using fluorescent proteins (Taniguchi et al., 2010). By 

grafting a fluorescent protein into the gene expression, the 

protein and mRNA expressions originating from targeted 

DNA can be detected quantitatively in real time. Specifically, 

membrane-localized yellow fluorescent protein (yfp) has 

been widely used for detecting changes with single-molecule 

sensitivity in individual live cells. A similarly effective 

development for nano-systems is near-infrared fluorescent 

carbon-nanotube (CNT) based nano-sensor arrays (Jin et al., 

2010). CNT-based sensors can detect adsorption and 

desorption of a target molecule, such as hydrogen peroxide 

(H2O2), from changes in light emission. By monitoring step 

changes in the light intensity, the number of adsorbed target 

molecules on the surface of the sensor can be followed to 

single-molecule resolution. The monitoring of the adsorption 

behaviour in turn can provide information on concentrations 

of the target molecule in solution local to the CNT. 

In the real-time data reported in the aforementioned papers, a 

strong stochastic behaviour is observed. For example, in the 

case of fluorescent protein expression, transcribed protein 

molecules bursts from the cell, controlled by an identical 

messenger RNA molecule, which have different copy 

numbers.  In addition, the number of adsorbed molecules on 

the CNT-based nano-sensor under an exactly same 

experimental condition can exhibit significantly different 

time traces. In both cases, the total population number of 

molecules or species in the system within the detectable 

range is rather small, ranging from tens to hundreds of 

molecules. These two examples exhibit some common 

characteristics. First, the dynamics shows transient or non-

equilibrium behaviour. Second, the system having a small-

size population is best represented by a discrete state; 

however, the number of possible configurations can be quite 

large resulting in a large state space. Lastly, the experimental 

data are highly stochastic. 
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Stochastic dynamics of systems with discrete states can be 

modelled by the chemical master equation (CME) (Feinberg, 

1979; Fichthorn and Weinberg, 1991), 

𝜕𝑃(𝝈, 𝑡)

𝜕𝑡
=∑𝑊(𝝈′, 𝝈)𝑃(𝝈′, 𝑡)

𝝈′

−∑𝑊(𝝈, 𝝈′)𝑃(𝝈, 𝑡)

𝝈′

 (1) 

where 𝑃(𝝈, 𝑡) is the probability of the system being in state 𝝈 

at time t, and 𝑊(𝝈′, 𝝈) is the transition rate from state 𝝈′ to 

state 𝝈 . The CME describes the time evolution of the 

probability distribution among all possible configurations. 

The CME (1) can be written as 

𝑑𝑷(𝑡)

𝑑𝑡
= 𝐀(𝑡; 𝜷)𝑷(𝑡) (2) 

where 𝑷(𝑡)  is the state vector containing all the state 

probability variables and 𝐀(𝑡; 𝜷) is a matrix containing all 

the transition rate constants, which have dependence on the 

model parameter vector 𝜷.  

Many numerical algorithms have been developed for solving 

the matrix ordinary differential equation (2), which can be 

divided into direct methods (MacNamara et al., 2008; 

Munsky and Khammash, 2006) and indirect methods (Gibson 

and Bruck, 2000; Gillespie, 1977). Direct methods attempt to 

evaluate the matrix exponential directly, such as the finite 

state projection (FSP) algorithm. In practice, given the large 

size of the state space, indirect methods that use stochastic 

simulation algorithms (SSA) to generate approximate 

probability distribution have been more popular. 

Given experimental data, a parameter estimation method can 

be used to identify the parameters of a reaction network 

model, which in turn reveals its structure. Typically, the 

estimation is formulated to find parameter values minimizing 

the distance between the experimental data and their model 

predictions. Most of the literature has employed least-squares 

estimation (LSE) approaches, which fit stochastic data to a 

deterministic mass-average model (Golding et al., 2005). The 

LSE method, however, can provide poor parameter estimates 

for highly stochastic systems (Tian et al., 2007). Recently, 

many stochastic parameter estimation methods based on the 

stochastic differential equation of type (1) have been 

published (Munsky et al., 2012). These methods attempt to 

solve for the probability density functions (PDFs) of the 

CME and use them for estimation. Previous studies employed 

the moment-based method (Zechner et al., 2012; Munsky et 

al., 2009), the Bayesian method (Golightly and Wilkinson, 

2011; Lillacci and Khammash, 2010; Boys et al., 2008), the 

maximum likelihood estimation (MLE) method (Neuert et al., 

2013; Daigle et al., 2012; Tian et al., 2007), and the density 

function distance (DFD) method (Lillacci and Khammash, 

2013; Poovathingal and Gunawan, 2010). However, these 

published methods are based on approximated PDFs rather 

than exact PDF solutions of the CME. In many cases, the 

PDFs are approximated using the SSA approach, which 

typically demands a very large number of simulations to be 

performed for an accurate estimation. 

This paper considers closed monomolecular reaction systems, 

which enables the use of an exact analytical solution of the 

CME that is described by a multinomial distribution. The 

exact solution enables formulation of an exact MLE method. 

Improved performance over the LSE method is shown in a 

simulation study for an artificial reaction network system.  

2. BIOCHEMICAL REACTION NETWORK SYSTEM 

Some of the biochemical reaction network systems such as 

gene expression or metabolic pathway can be described by a 

combination of several monomolecular reactions. Possible 

monomolecular reactions can be categorized with conversion, 

inflow, and outflow reactions with a set of 𝑛 different species 

denoted by 𝑆𝑖, 𝑖 = 1,… , 𝑛: 

𝑆𝑖
𝑘𝑖𝑗
→ 𝑆𝑗  Conversion (𝑖 ≠ 𝑗) 

𝑆0
𝑘0𝑗
→ 𝑆𝑗  Inflow 

𝑆𝑖
𝑘𝑖0
→ ∗  Outflow 

(3) 

where 𝑆0  is a pseudo-species outside the system and 𝑘𝑖𝑗  is 

nonnegative rate constant for the reaction from 𝑆𝑖  to 𝑆𝑗  for 

𝑖 ≠ 𝑗  and can be time-varying. The monomolecular 

conversion reaction excludes catalytic or splitting reactions: 

𝑆𝑖
𝑘
→𝑆𝑖 + 𝑆𝑗 Catalytic (𝑖 ≠ 𝑗) 

𝑆𝑖
𝑘
→𝑆𝑗 + 𝑆𝑟  Splitting (𝑖 ≠ 𝑗 ≠ 𝑟) 

(4) 

If the number of species in the system is sufficiently large, 

the dynamics of the system can be simply described by the 

deterministic ordinary differential equation 

𝑑𝐶𝑖(𝑡)

𝑑𝑡
= 𝑘0𝑗(𝑡) +∑𝑘𝑗𝑖(𝑡)𝐶𝑗(𝑡)

𝑗≠𝑖

−∑𝑘𝑖𝑗(𝑡)𝐶𝑖(𝑡)

𝑗≠𝑖

 (5) 

where 𝐶𝑖(𝑡) is the population density or concentration of the 

species 𝑆𝑖  and continuous variable. For a small number of 

species, the CME describes the stochastic dynamics of the 

system by (Gadgil et al, 2005; Jahnke and Huisinga, 2007) 

𝜕𝑃(𝒙, 𝑡)

𝜕𝑡

=∑𝑘0𝑖(𝑡)

𝑛

𝑖=1

(𝑃(𝒙 − 𝒆𝑖 , 𝑡) − 𝑃(𝒙, 𝑡))

+∑𝑘𝑗0(𝑡)

𝑛

𝑗=1

((𝑥𝑗 + 1)𝑃(𝒙 + 𝒆𝑗 , 𝑡) − 𝑥𝑗𝑃(𝒙, 𝑡))

+∑∑𝑘𝑗𝑖(𝑡)

𝑛

𝑖=1

((𝑥𝑗 + 1)𝑃(𝒙 + 𝒆𝑗 − 𝒆𝑖 , 𝑡) − 𝑥𝑗𝑃(𝒙, 𝑡))

𝑛

𝑗=1

 

(6) 

where 𝑃(𝒙, 𝑡) is a probability for the integer state vector 𝒙 ∈
ℤ𝑛  with 𝑥𝑖  as the population of the 𝑖th species and 𝒆𝑖 ∈ ℝ

𝑛 

denotes the standard basis vector (with 1 for the ith element 

and zero for the rest). In right-hand side of (6), the first, 

second, and third terms describe the influences of the inflow, 

outflow, and conversion reactions, respectively. 

3. EXACT MAXIMUM LIKELIHOOD ESTIMATION 

An exact solution of the CME (6) for the monomolecular 

reaction system can be obtained with mass-conserving or no-
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inflow assumptions. Proposition 1 of Jahnke and Huisinga 

(2007) indicates that the analytic PDF solution of the CME is 

defined by a multinomial distribution, 

𝑃(𝒙, 𝑡) = ℳ(𝒙,𝑁, 𝝀(𝑡)) (7) 

𝑁 =∑𝑥𝑖

𝑛

𝑖=1

 (8) 

where 𝑁 is the total number of entities in the population in 

the system and 𝝀(𝑡) ∈ ℝ𝑛  is probability parameter that is a 

vector of population fraction evolving according to the mass-

average rate-reaction equation (5) which is defined by 

𝑑𝝀(𝑡)

𝑑𝑡
= 𝑨𝑘(𝑡)𝝀(0) (9) 

𝝀(𝑡) =
𝑪(𝑡)

∑ 𝐶𝑖(𝑡)𝑖

 
(10) 

𝐴𝑘𝑖𝑗(𝑡) = 𝑘𝑗𝑖(𝑡), 𝑗 ≠ 𝑖 (11) 

𝐴𝑘𝑖𝑖(𝑡) = −∑𝑘𝑖𝑗(𝑡)

𝑗≠𝑖

 
(12) 

where 𝑨𝑘(𝑡) ∈ ℝ
𝑛×𝑛  is the kinetic matrix, and the 

multinomial distribution, ℳ(𝒙,𝑁, 𝝀(𝑡)), is defined by 

ℳ(𝒙,𝑁, 𝝀(𝑡))

= {
𝑁!
(1 − ‖𝝀(𝑡)‖1)

𝑁−|𝒙|

(𝑁 − ‖𝒙‖1)!
∏

𝜆𝑖
𝑥𝑖(𝑡)

𝑥𝑖!

𝑛

𝑖=1

  if ‖𝒙‖1 ≤ N

    0                                                       otherwise

 
(13) 

A detailed proof is provided by Jahnke and Huisinga (2007). 

Simply, if the multinomial distribution (13) is substituted into 

both sides of the CME (6), both sides can be shown to be 

identical.  

Another interpretation of Proposition 1 in Jahnke and 

Huisinga (2007) is that a multinomial distribution stays a 

multinomial distribution. That is, if the initial condition is 

defined by a multinomial distribution, then the probability 

distribution of the CME after several evolutions is still 

defined by a multinomial distribution. In practice, ordinary 

biochemical reaction systems rarely have a multinomial 

distribution as an initial condition, but can have arbitrary 

deterministic initial condition defined by the delta function,  

𝑃(𝒙, 𝑡0) = 𝛿𝝃(𝑥) = {
1 if 𝒙 = 𝝃
0 otherwise

  
(14) 

where 𝛿𝝃(𝑥) is the Kronecker delta and 𝝃 ∈ ℝ𝑛 is a particular 

deterministic initial state. For this initial condition, 

Proposition 1 in Jahnke and Huisinga (2007) cannot be used 

for defining the exact solution of the CME at time 𝑡 . 

However, when the multinomial distribution is defined with a 

probability parameter having initially full population fraction 

for the species 𝑆𝑖, the distribution has a delta function for the 

state, 

ℳ(𝒙,𝑁, 𝝀) = 𝛿𝑁𝒆𝑖(𝒙)      ⟺ 𝝀 = 𝒆𝑖 (15) 

With the assumption of the monomolecular reaction, the 

overall population can be divided into independent subsets 

for each species, 𝒙(𝑖)(𝑡𝑘) ∈ ℝ
𝑛 for 𝑖 = 1,… , 𝑛, at time 𝑡𝑘, 

𝒙(𝑡𝑘) = 𝒙
(1)(𝑡𝑘) + 𝒙

(2)(𝑡𝑘) + ⋯+ 𝒙
(𝑛)(𝑡𝑘) (16) 

𝒙(1)(𝑡𝑘) = [

𝑥1(𝑡𝑘)

0
⋮
0

],   𝒙(2)(𝑡𝑘) = [

0
𝑥2(𝑡𝑘)
⋮
0

],  

𝒙(𝑛)(𝑡𝑘) = [

0
0
⋮

𝑥𝑛(𝑡𝑘)

] 

(17) 

The initial distribution of each subset, 𝒙(𝑖)(𝑡𝑘) , can be 

defined by the multinomial distribution based on (15) and can 

be evolved to the next time step 𝑡𝑘+1 independently. Then the 

joint probability for all subset at time 𝑡𝑘+1  is defined by 

convoluting every PDFs, which still remain as multinomial 

distributions. The exact solution, 𝑷(∙, 𝑡𝑘+1) ∈ ℝ
𝑁𝑛  for all 

possible states (denoted by  ∙), of the CME for an arbitrary 

deterministic previous state, 𝒙(𝑡𝑘) , can be written as 

(Theorem 1 of Jahnke and Huisinga (2007)): 

𝑷(∙, 𝑡𝑘+1)

= ℳ (∙, 𝑥1(𝑡𝑘), 𝝀
(1)(𝑡𝑘+1))

∗ℳ (∙, 𝑥2(𝑡𝑘), 𝝀
(2)(𝑡𝑘+1)) ∗ ⋯

∗ℳ (∙, 𝑥𝑛(𝑡𝑘), 𝝀
(𝑛)(𝑡𝑘+1)) 

(18) 

where the asterisk, *, is the discrete convolution operator and 

the probability parameter, 𝝀(𝑗)(𝑡𝑘+1) ∈ ℝ
𝑛 for the 𝑗th subset 

is defined by the Euler forward method applied to (9) with 

initially full state for the species 𝑆𝑖, 

𝝀(𝑖)(𝑡𝑘+1) = (𝑰 + 𝛿𝑡𝑨𝑘)𝒆𝑖 (19) 

𝑡𝑘+1 = 𝑡𝑘 + 𝛿𝑡 (20) 

where 𝑰 ∈ ℝ𝑛×𝑛  is identity matrix and 𝛿𝑡 is the size of the 

sampling time step. 

The formulation of the parameter estimation method is based 

on the likelihood function, which is primarily defined by a 

conditional PDF for the reaction parameter matrix, 𝑲 ∈ ℝ𝑛×𝑛, 

assuming a uniform probability distribution, given the 

measurement data, 𝒙(𝑡𝑘) ∈ ℝ
𝑛  for the time index, 𝑘 =

1,… ,𝑚:  

𝐿(𝑲|{𝒙(𝑡1),  𝒙(𝑡2),⋯ , 𝒙(𝑡𝑚)}) (21) 

where 𝐾𝑖𝑗  is equal to 𝑘𝑖𝑗  and assumed to be time-invariant. 

The matrix, 𝑲, is related to the kinetic matrix 𝑨𝑘 in (9) given 

by 
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𝑨𝑘 =  𝑲
T − diag(𝑲𝒆) (22) 

where 𝒆 ∈ ℝ𝑛 is a vector of all ones. By using Bayes theorem 

with the Markov process assumption, the likelihood function 

can be defined by 

𝐿(𝑲|{𝒙(𝑡1),  𝒙(𝑡2),⋯ , 𝒙(𝑡𝑚)})

= 𝑃(𝒙(𝑡1)|𝑲)∏ 𝑃(𝒙(𝑡𝑘+1)|𝒙(𝑡𝑘), 𝑲)
𝑚−1

𝑘=1
 

(23) 

Each conditional PDF in the multiplication of (23) is exactly 

same as (18), which is the exact solution of the CME for the 

arbitrary deterministic initial condition, 

𝐿(𝑲|{𝒙(𝑡1),  𝒙(𝑡2),⋯ , 𝒙(𝑡𝑚)})

=∏

(

  
 

ℳ(𝒙(𝑡𝑘+1), 𝑥̂1(𝑡𝑘), 𝝀
(1)(𝑡𝑘+1))

∗ℳ (𝒙(𝑡𝑘+1), 𝑥̂2(𝑡𝑘), 𝝀
(2)(𝑡𝑘+1))

⋮

∗ℳ (𝒙(𝑡𝑘+1), 𝑥̂𝑛(𝑡𝑘), 𝝀
(𝑛)(𝑡𝑘+1)))

  
 𝑚−1

𝑘=1
 

(24) 

Finally, the exact MLE that finds a parameter matrix having 

maximum value for the likelihood function is defined by 

max
𝑲
𝐿(𝑲|{𝒙(𝑡1),  𝒙(𝑡2),⋯ , 𝒙(𝑡𝑚)}) (25) 

The parameter matrix can alternatively be solved by a more 

numerically convenient optimization  

min
𝑲
− log 𝐿(𝑲|{𝒙(𝑡1),  𝒙(𝑡2),⋯ , 𝒙(𝑡𝑚)}) (26) 

by exploiting monotonicity of the logarithm. 

For deducing the model complexity or the interactions of the 

system, a penalty term can be added to the exact MLE 

formulation (26) (August and Papachristodoulou, 2009). The 

regularized exact MLE is defined by 

min
𝑲
− log 𝐿(𝑲|{𝒙(𝑡1),  𝒙(𝑡2),⋯ , 𝒙(𝑡𝑚)}) + 𝛾‖𝑲‖0 (27) 

where 𝛾  is a nonnegative weight specifying the tradeoff 

between the model complexity and prediction error. A 

common method for relaxation of the combinatorial 

optimization is ℓ1 regularization (Hesterberg et al., 2008). In 

addition, constraints for the parameter matrix from prior 

knowledge can be included. The final constrained 

optimization is formulated by 

min
𝑲
− log 𝐿(𝑲|{𝒙(𝑡1),  𝒙(𝑡2),⋯ , 𝒙(𝑡𝑚)})

+ 𝛾‖vec(𝑲)‖1 

s.t. 𝟎 ≤ 𝑲 ≤ 𝑲max 

(28) 

where vec(𝑲) is the concatenation of the elements of 𝑲, 𝟎 ∈
ℝ𝑛×𝑛 is a matrix of all zeros, and 𝑲max ∈ ℝ

𝑛×𝑛 is a proper 

upper limit of the parameter matrix.  

4. SIMULATION STUDY AND DISCUSSION 

The proposed parameter estimation formulation is applied to 

a reaction network system containing a population of 100 for 

3 species. Potential trajectories are simulated by SSA and 

used in the proposed parameter estimation method. Species A 

and B has reversible reaction connectivity and species A and 

C has irreversible reaction connectivity. 

𝐵 ⇆ 𝐴 → 𝐶 (29) 

According to the connectivity of the 3-species system, the 

true parameter matrix, 𝑲true ∈ ℝ
3×3 , having zero and non-

zero elements is defined by 

𝑲true = [
0 0.2770 0.4

0.1667 0 0
0 0 0

]. (30) 

A total of 1000 in silico data sets are simulated for 

measurable species A, B, and C having different initial 

conditions. In Fig. 1, four representative data sets among the 

1000 are shown for different populations. The data for a 

population of 106 are almost similar to the data from the 

deterministic simulation, as stochastic fluctuations are 

insignificant compared to the total population size. On the 

other hand, for a population of 100, the data exhibit 

significant stochastic fluctuations relative to total population. 

In the parameter estimation, the actual connectivity of species 

A, B, and C is assumed to be unknown, in which case the 

reaction parameter matrix, 𝑲, to be estimated is  

𝑲 = [

𝑘11 𝑘12 𝑘13
𝑘21 𝑘22 𝑘23
𝑘31 𝑘32 𝑘33

] → [

0 𝑘12 𝑘13
𝑘21 0 𝑘23
𝑘31 𝑘32 0

] (31) 

The diagonal elements of the matrix, 𝑘𝑖𝑖, are set to zero since 

those elements correspond to non-reactions that do not affect 

any of the governing reaction equations. With the generated 

data, the objective is to determine the connectivity of the 

 

Fig. 1. Four representative sets of in silico experimental 

data generated from the SSA for 3 species (red: A, green: 

B, blue: C) in the reaction network system (solid line: a 

population of 106, dashed line: a population of 100). 
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reactions and associated reaction rate constant using the ℓ1 

regularized exact MLE method (28). The performance of the 

exact MLE method is compared with the LSE method as a 

typical reference method for the system identification. The 

LSE method simply finds the parameter matrix, 𝑲 , 

minimizing the sum of the squared errors between the 

stochastic data and predictions based on the deterministic 

model (Fig. 2), 

min
𝑲
∑ (𝒙(𝑡𝑖+1) − (𝒙(𝑡𝑖) + 𝛿𝑡𝑨𝑘𝒙(𝑡𝑖)))

2
𝑚−1

𝑖=1

 (32) 

The prediction of current state can be obtained with previous 

measurement data and kinetic matrix, 𝑨𝑘, by using the Euler 

forward method.  

The constrained optimization for the exact MLE (28) and the 

LSE (32) with the same inequality constraints in (28) were 

implemented in MATLAB. The interior-point algorithm in 

fmincon in the Optimization Toolbox was used for the 

optimizations. For a population of 106 , the estimated 

parameter matrix from the LSE, averaged over the 1000 

mock datasets, with 𝛾 = 0 were 

𝑲̂𝐿𝑆𝐸,𝐴𝑣𝑔 = [
0 0.2945 0.3448

0.1447 0 0.0501
0.0019 0.0084 0

] (33) 

which is reasonably close to the true parameter matrix. On 

the other hand, for a population of 100, the estimated 

parameter matrix from the LSE, averaged over the 1000 

datasets, with 𝛾 = 0 were 

𝑲̂𝐿𝑆𝐸,𝐴𝑣𝑔 = [
0 0.4754 0.4610

0.1535 0 0.6420
0.0623 0.2509 0

] (34) 

which is significantly different from the true parameter 

matrix. The averaged parameter matrix estimated from exact 

MLE with the same datasets with 𝛾 = 0 was 

𝑲̂𝑀𝐿𝐸,𝐴𝑣𝑔 = [
0 0.2931 0.3924

0.1333 0 0.1733
0.0544 0.0471 0

] (35) 

which is much closer to the true parameter matrices. This 

indicates the importance of using the stochastic model in 

parameter estimation in the case of a small population size.  

In the case of a large population size (e.g., 106), use of the 

deterministic model appears justified.  

More specifically, the key performance indices in comparison 

of the results from the LSE and exact MLE are detection of 

the sparsity of the parameter matrix, 𝑲̂, and estimation of the 

parameter values, 𝐾𝑖𝑗  for the connected reactions. 

The zero elements in the sparse matrix can be distinguished 

by using a tolerance criterion which defines an upper limit, 𝜇, 

for choosing zero elements. For example, if the tolerance 𝜇 =
0.05 is set for elements in the matrix results (34) and (35), 

the matrix (34) has no zero elements and the matrix (35) has 

one zero element, 𝐾32. In the same way, the matrix (34) for 

𝜇 = 0.1 has one zero element, 𝐾31, and the matrix (35) has 

two zero elements, 𝐾31  and 𝐾32 . The exact MLE method 

detected the sparsity better than the LSE method. 

Alternatively, the sparsity detection and accuracy of the 

constant estimation can be quantified by the mean squared 

error (MSE) for the zero and non-zero elements of the 

parameter matrix,  

𝑃Sparsity =
|𝑘̂31| + |𝑘̂32| + |𝑘̂23|

3
 (36) 

𝑃Accuracy

=
(𝑘21 − 𝑘̂21)

2
+ (𝑘12 − 𝑘̂12)

2
+ (𝑘13 − 𝑘̂13)

2

3
 

(37) 

In Table 1, the exact MLE shows lower values for both 

performance indexes calculated by (36) and (37). That is, the 

proposed method shows better detection of the sparsity and 

more accurate estimation for the reaction rate constants.  

Now consider the performance indices for increased 𝛾 in the 

ℓ1 regularized exact MLE (28). Although the averaged results 

from exact MLE (35) shows better performance, it is still not 

clear that the element 𝑘23  has no connectivity. With 

appropriate value of 𝛾 > 0, some of the interconnections is 

expected to disappear without significantly changing the 

estimated error in model predictions. Fig. 3 shows the trade-

off of the 𝛾 value between the sparsity and accuracy. Values 

of 𝛾  ranging from 0 to 20 have minimal reduction in the 

accuracy of estimates. On the other hand, values of 𝛾 over 50 

can be used for more accurately determining the reaction 

connectivity. For example, the averaged parameter matrix for 

𝛾 = 100 is 

𝑲̂𝑀𝐿𝐸,𝐴𝑣𝑔 = [
0 0.2753 0.0424

0.0253 0 0.0020
0.0213 0.0017 0

]. (38) 

Compared with the results (35), the element 𝑘23  is further 

Table 1. The sparsity of the matrix, 𝑲, and the accuracy of 

the parameter estimates for the LSE and exact MLE 

methods. 

Method 𝑃Sparsity 𝑃Accuracy 

LSE 0.3184 0.0144 

Exact MLE 0.0917 0.0005 
 

 

Fig. 2. A representative stochastic realization for 

populations of 3 species (red: A, green: B, blue: C) and the 

model predictions obtained by the LSE method (solid line: 

deterministic, dotted line: stochastic with a population of 

100), star mark: model predictions). 
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detected as a zero element with the tolerance 𝜇 = 0.005 . 

After determining the candidates of the zero elements with a 

criterion, the remained non-zero parameter can be estimated 

for obtaining best values for a particular sparsity structure. 

5. CONCLUSIONS 

A regularized exact maximum likelihood estimation (MLE) 

method is presented for determining the interaction topology 

of a biochemical reaction network system. The regularized 

exact MLE method is formulated with a closed-form solution 

of chemical master equations that describe stochastic 

monomolecular biochemical reaction systems. Improved 

performance of the exact MLE method is exhibited by using 

stochastic simulation data for a simple network system and 

comparing the results with least-squares estimation. The 

proposed method showed an improved ability to identify a 

sparse structure of the parameter matrix and estimate the 

associated reaction rate constants. The proposed method can 

potentially be used for robust reaction network identification 

problems such as those found in metabolic pathway or gene 

regulatory network. 
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Fig. 3. Parity plot showing the dependency of the sparsity 

and accuracy of the parameter estimates for ℓ1 regularized 

exact MLE for a wide range of  𝛾. 
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