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Abstract: Capability to manage the performance of a shared resources environment relies on the model
estimation of all dynamics in the system. The main challenge is to capture the nonlinear characteristic
which inherently exists in software system applications. Hammerstein-Wiener block structural model is
widely regarded as a basis for description of nonlinear systems. This paper extends the existing work
in system identification of software systems using Hammerstein-Wiener block structural model. As part
of the estimation, the linear element is represented in terms of Frequency Sampling Filter model and
the inverse static output non-linearity is estimated using B-Spline curve functions. Experimental studies
show that the static nonlinearities estimated when using the B-Spline functions have less oscillations and
the overall model has a better performance than the case when using polynomial functions.

Keywords: Nonlinear system identification; Software system modeling; Software system control;
Hammerstein-Wiener model; Performance management.

1. INTRODUCTION

The objective to deploy control mechanisms for performance
and resources allocation management between many users in
shared resource applications leads to an increasing demand
of control technologies and dynamic modeling investigations.
Control engineering approaches have been studied to automate
performance management tasks to regulate different domains
such as web server systems, storage systems and data centers.
The existing approaches have used linear modeling and control
approaches by disregarding the dominant nonlinear dynamics
of shared resource systems (Lu [2001],Lu [2002],Lu [2003]).
This limitation affecting the performance management because
the overall behaviour of a software system is only partially
captured.

In order to design a robust controller, the nonlinearities as a part
of system characteristics should also be included in the model
estimation stage. System identification of a Hammerstein-
Wiener model is a well-known method to approximate the sys-
tem dynamics in a form of block-oriented model that consists
of a linear model and static nonlinearities on input and output
variables Fig.1. There are many control applications that have
implemented Hammerstein-Wiener model in engineering, med-
ical, science and process industries. The Hammerstein model
consists of a nonlinear function followed by a linear model of
system dynamics. Conversely, in Wiener model, the nonlinear
function comes after the linear model. Both models have been
deployed in a wide range of engineering applications involv-
ing significant nonlinearity issues in the process. For example,
Jurado [2006] and Hong [2011].

Fig. 1. Hammerstein-Wiener block structure

The identification procedures for Wiener-type model could pro-
ceed in two steps or single step. In the two-steps identification,
the linear element is identified first and the second stage is
required for the nonlinear model or in a reverse way like the
work by Cervantes [2003]. There were different ways to rep-
resent the Wiener models. Several earliest studies initiated to
use cross-correlation analysis between input and output data to
identify Wiener system. Subsequent studies showed that both
the linear and the static nonlinearity could be identified in their
inverse form. The other research proposed the identification
of direct nonlinearity by using a recursive method. Another
effective way is to identify both linear and nonlinear elements
in one combined estimation as in Kalafatis [1995]. Most of the
existing approaches use polynomial functions to represent the
nonlinear elements. The use of various spline functions in the
modelling of the Wiener system have been studied such as in
Kalafatis [1997]. B-splines function is constructed based on the
initial finding which is widely known as ”de-Boor” algorithm
(DeBoor [1978]).
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In a shared resources environment with unpredictable workload
variation, another challenge to manage performance guarantees
is to provide different levels of performance guarantees to each
client classes depending on the service preferences while dy-
namically allocating the available resources. Relative guarantee
management has been used as a solution scheme for service
differentiation based on the level of importance of client classes
(Lu [2003], Patikirikorala [2011]).

This paper contributes to the improvement of the previous
work in feedback control for resource management using
Hammerstein-Wiener model where the Wiener model was iden-
tified in two-steps estimation (see Patikirikorala [2011]). In
this work, the Wiener model is estimated in a straightforward
manner where the linear and the inverse static nonlinear model
are identified simultaneously. The linear model is represented
by non-parametric Frequency Sampling Filter (FSF) model and
the inverse static nonlinear model in polynomial function and
B-Spline terms.

The structure of the paper is outlined as follows. The process
description of the Virtual Machine (VM) environment used
in this work is described in Section 2. Section 3 covers the
identification algorithms and the identification results using
experimental data are given in Section 4. The conclusion is in
Section 5.

2. PROCESS DESCRIPTION

Three physical machines (M1,M2 and M3) are described in
Figure 2 to represent the structure of target system in this study.
It is used to generate input and output data pairs for system
identification. The shared infrastructures are deployed in M1
which is functioning as the server for the system. Within the
server, two virtual machines are built using Xen Hypervisor
and operate as two individual machines. The server and VMs
run on CentOS and Apache Httpd 2.2 server deployed in
order to establish customer application. In the client side,
RUBiS benchmark is used. It is a three tier e-commerce website
modeling the behavior of ebay.com. The database of RUBiS
benchmark was deployed in another machine M3 and the two
client simulators which generate workloads for the server are
deployed in a M2. All three machines are connected in an
isolated network using a network switch.

The dynamic characteristic of software system in this system
is nonlinear because there is an inverse relationship occurs be-
tween response time and session allocations and its stability is
affected by workloads change. Since the proposed performance
management based on relative guarantee scheme, the ratio of
response time as the controlled performance property will be
maintained proportionally to the service preferences while al-
locating dynamic proportional resources between client classes.
Assume that R0, R1 are the response time to the workloads of
V M0 and V M1 respectively and S0, S1 are the CPU capacity al-
located for each VM. In this situation, the total capacity (Stotal)
= S0+S1 with a constraint in the minimum number of capacity
(for example, S0,S1≥ 20). For system identification and control
analysis, the input variable of the system is the ratio of CPU
allocations (u = S0/S1) and the output variable is the ratio of
average response time of VMs (y = R1/R0).

Fig. 2. Virtualized software system

Fig. 3. Description of input nonlinearity

3. IDENTIFICATION ALGORITHMS

This section provides the steps and all equations to generate
Hammerstein-Wiener model with a straightforward estimation
for the Wiener model.

3.1 Hammerstein Model

For Hammerstein model, the input signal is formulated as
S0

S1
=

Stotal−S1

S1
=

Stotal

S1
−1 (1)

It is assumed that at least one request to a VM arrives from

client in each sampling time. The input variable is u =
S0

S1
.

The nonlinearities caused by static restrictions of the operating
points in input variable result in the dynamics of static input
nonlinearities. For instance, if Stotal = 100 and Smin = 20, then
the operating points will be

u =
20
80

,
21
79

, . . . ,
50
50

, . . . ,
79
21

,
80
20

These points describe the nonlinear input behavior of the sys-
tem, see Fig. 3

Transforming the restricted operating points to equally spaced
operating points is a proper technique to capture static nonlin-
earity characteristic. This technique was proposed in Patikiriko-
rala [2011] by defining an intermediate variable v where
vmin ≤ v ≤ vmax with v1 = vmin,v2 = v1 + δv, · · · ,vi+1 = vi +
δv, · · · ,vp = vmax.

The inverse static input nonlinear element is approximated as

u(i) = f−1(v) = α0 +α1v(i)+α1v(i)2 + · · ·+αmv(i)m (2)

Then the coefficient of inverse static nonlinear input is esti-
mated by least square method,
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Fig. 4. Diagram of Frequency Sampling Filters

Θ̂ = (Φ∗Φ)−1(Φ∗U) (3)

where the parameter vector θ = [α0 α1 · · · αm]
T and data

vector φ(i) = [1 v(i) · · · v(i)m]
T

When the inverse static nonlinear input has been modeled and
integrated into the system as adapter, the system is reduced to a
Wiener-type model.

3.2 Wiener block

Consider the Wiener block structure shown in Fig.1 where
u(t),v(t),x(t) and y(t) denote the process input, the unmeasur-
able intermediate input variable, intermediate output variable
and the measured process output, respectively. Two basic as-
sumptions take place in this identification. Firstly the dynamic
linear element is stable with finite settling time Ts and secondly
the static nonlinearity is continuous and single-valued in the
range of input-output data. The input signal to the Wiener block
is the intermediate input variable v.

The linear subsystem is described by the non-parametric fre-
quency sampling filter (FSF) model (Bitmead [1981]). In FSF
model estimation, the coefficients of regressor vector are con-
structed by passing the input signal of the system through the
set of narrow band-limited frequency sampling filters. The FSF
model of a stable, linear, time-invariant process has a z-transfer
function as

x(t) =
k= n−1

2

∑
k=− n−1

2

G(e− jωk) fk(t) (4)

where G(e− jωk) is the discrete frequency response of the linear
subsystem at ωk = 2πk/N. fk(t) is the output of frequency
sampling filters which are described by

fk(t) = Hk(z)u(t) =
1
N

1− z−N

1− e− jωk z−1 u(t) (5)

where N is the number of samples corresponding to the process
settling time N = Ts/δ t and δ t is a sampling interval. The
novel findings by Wang [1994] and Wang [1997] concluded that
the number of parameters associated with FSF model is much
smaller than an FIR model. Referring to the second assumption
that the inverse of static nonlinear element is a single-valued
smooth function, polynomial where B-Spline model can be
used in this context.

B-Spline B-Spline is a computationally favorable estimation
of spline functions where an order k B-spline is constructed by
joining several piecewise polynomials of degree k−1 in a vari-
able u. In B-spline form, a curve is represented by combining

the control points and the basis functions. A basis function to
represent B-spline model is:

x(t) =
n

∑
i=0

Ni,p(ȳ(t))Pi (6)

where Ni,p(ȳ(t)) is the pth-degree basis function of B-Spline
and Pi is the ith control point. The input to a B-spline approxi-
mation is a set of parameters selected along data points range.
The parameters determine the shape of the curve because inap-
propriate selection of parameters could lead to an unpredictable
curve estimation. There are two basic ways to select these
parameters, uniform and non-uniform knot vector. The knots
are uniform if they are equally spaced (i.e., ui+1−ui is constant
for 0 ≤ i ≥ m−1), otherwise, it is called non-uniform knots
vector. The knot vector is generated using ”deBoor” formula.
The knots can be defined as division points that subdivide the
interval [uo,um] into knot spans and the basis functions should
have their domain on the knot vectors range. Suppose n + 1
parameters are used {t0, t1, . . . , tn} and the B-spline degree is p,
there will be m + 1 knots to be used in the curve modeling,
where m = n + p + 1. Knots vector U = {u0,u1, . . . ,um} is
computed using the formula:

u0 = u1 = · · ·= up = 0

u j+p =
1
p

j+p−1

∑
i= j

ti f or j = 1,2, . . . ,n− p

um−p = um−p+1 = · · ·= um = 1 (7)

The values of basis functions with degree p are defined recur-
sively as follows:

Ni,0(ȳ(t) =
{

1 if ui ≤ ȳ(t)< ui+1

0 otherwise
(8)

Ni,p(ȳ(t)) =
ȳ(t)−ui

ui+p−ui
Ni,p−1(ȳ(t))

+
ui+p+1− ȳ(t)
ui+p+1−ui+1

Ni+1,p−1(ȳ(t))
(9)

In order to compute a point of B-Spline curve at a fixed point
of the input u value, the knot span where u point lies should
be found and then, the nonzero basis functions are calculated,
directly multiplying the value with the corresponding control
points. See (10).

x(t) = N0,p(ȳ(t))P0 +N1,p(ȳ(t))P1 + · · ·+Ni,p(ȳ(t))Pi (10)

From (4) and (18) and the assumption that b0 = 1, the process
output can be approximated as

N0,p(ȳ(t))P0 =
k= n−1

2

∑
k=− n−1

2

G(e− jωk fk(t))−N1,p(ȳ(t))P1

−N2,p(ȳ(t))P2−·· ·−Ni,p(ȳ(t))Pi

(11)

Parameter estimation for linear subsystem and inverse static
nonlinear is performed in least squares scheme. The regression
form is structured based on process output equation (12):

Θ
T =

[
G(e j0) G(e jω) · · · G(e j n−1

2 ω) G(e− j n−1
2 ω) P1 · · · Pi

]
(12)

and the corresponding regression vector as

φ(k)T = [A(t) B(t)] (13)
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where

A(t) =
[

f0(t) f1(t) f−1(t) . . . f n−1
2
(t) f− n−1

2
(t)
]

(14)

B(t) = [−N1,p(ȳ(t)) −N2,p(ȳ(t)) . . . −Ni,p(ȳ(t))] (15)

for data samples 0 to tn, the vector yields

Φ =


f0(0) · · · f− n−1

2
(0) −N1,p(y(0)) · · · −Ni,p(y(0))

f0(1) · · · f− n−1
2
(1) −N1,p(y(1)) · · · −Ni,p(y(1))

...
...

...
...

...
...

f0(tn) · · · f− n−1
2
(tn) −N1,p(y(tn)) · · · −Ni,p(y(tn))


(16)

The output vector is

Y T = [y(0) y(1) · · · y(n)] (17)

Polynomial model Another alternative model to represent the
inverse static output nonlinearity in one step identification is
to use a polynomial function. The structure of the polynomial
model is

x(t) = b0 +b1ȳ(t)+b2ȳ(t)2 +b3ȳ(t)3 + ...+bM ȳ(t)M (18)

where M is the polynomial order. With the assumption that
b1 = 1, the process output can be approximated as the function
below:

ȳ(t) =
k= n−1

2

∑
k=− n−1

2

G(e− jωk fk(t))−b0−b2ȳ(t)2−·· ·−bM ȳ(t)M

(19)

The estimation steps are similar to B-Spline, the only change is
the inverse model in regression matrix equation (13) replaced
by polynomial form. The parameters of linear and nonlinear
models for both in Hammerstein and Wiener block identifica-
tion are estimated in Least Squares method using Prediction
Sum of Square (PRESS) residuals which based on the orthog-
onal decomposition algorithm. All model estimations are exe-
cuted in MATLAB program using experimental data collected
from a test bed.

4. IDENTIFICATION RESULTS

Data samples for identification are a set of input-output data
which are observed from 500 samples using multi level sinu-
soidal input with 20 requests/s workloads for each client class.
Data Set can be seen in Fig. 5 and the data are divided for
model estimation and model validation purposes. The data set
is collected from an experimental test-bed used in Patikiriko-
rala [2013] which representing a virtualized software system
environment as described in Section 2.

The validation of the estimated models is based on the value
of coefficient of determination (R2) which provides a fitness
measurement of predicted model response over the real re-
sponse. The input signal for the prototype is calculated based
on Equation (1) for total available CPU capacity Stotal = 100
and the minimum capacity allocation for a VM is 20 CPU caps.

The signal u takes value at
20
80

, . . . ,1, . . . ,
80
20

. The intermediate
variable v defined by selecting vmin = −15, vmax = 15 and
δv = 0.5. The values of v are −15,−14.5, . . . ,14.5,15.
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Fig. 5. Data set for system identification

4.1 Hammerstein Model

Using least squares estimation algorithm based on (3), the static
input nonlinear model of v = f (u) and the inverse static input
nonlinear u = f−1(u) are represented in polynomial function.

v(t) = 0.129u(t)5−1.679u(t)4 +8.768u(t)3−24.248u(t)2

+40.784u(t)−23.708
(20)

u(t) = 4.17e−7v(t)5 +9.34e−6v(t)4 +1.018e−4v(t)3

+0.0028v(t)2 +0.08v(t)+1.0045
(21)

Both of the models can achieve fitness value R2 = 0.99 and the
model fit can be seen in Fig.(6).
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Fig. 6. Model fit of Hammerstein model identification
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4.2 Wiener Model

To perform Wiener model estimation, some parameters need
to be predetermined. For linear FSF model, there are two
parameters should be chosen, variable N which is set to 30 and
the model order of linear dynamics n is 7. These parameters
give the best result among several experiments that have been
undertaken by changing the parameter value of N and n.

B-Spline function In the inverse model estimation using B-
Spline, selecting the knot points in vector parameter can be per-
formed in two ways: uniform and non-uniform knot points. For
the case of static nonlinearity in the software system dynamics,
the non-uniform knots are the most suitable parameters selec-
tion. By evaluating the relationship between FSF linear model
output (XL) and system output(y), the vector parameter for knot
series derivation for this estimation is a vector consisting of
7 points which are chosen along the range of y values, that is
tn = [0 0.25 1 5 15 20 30]. The degree of B-splines is 1 for
linear spline, 2 for quadratic spline and 3 for cubic spline.
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(a) Linear B-Spline
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(b) Quadratic B-Spline

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

System output (y)

Li
ne

ar
 m

od
el

 o
up

ut
 (

X
L)

 

 

data mapping y to XL
model fit

(c) Cubic B-Spline

Fig. 7. Model fit of inverse static output nonlinearity in B-
Splines form

From the regressor vector in equation (16), the parameters of
both linear model and inverse static output nonlinearity model
are estimated. Referring to Fig. 1, by using one-step identifi-
cation to identify both linear model and inverse static output
nonlinearity, the intermediate output point (XL) represents the
output of linear model (FSF model) and the output of inverse
static output nonlinearity model. See Fig 8 for the intermediate
output variable using cubic spline for the inverse static output
nonlinear model. The estimated inverse static output model

in B-Spline form gives the best Mean Squared Error (MSE)
value of 0.02 when using a cubic spline. Moreover, the inverse
relationship between system output y and linear model output
(XL) can be obtained based on the curve fit of each B-splines
model in Figure 7 and their R2 values can be found in Table
1. It is clear that the best model estimation is the cubic spline
representation.

Table 1. R2 of B-Spline model for inverse output nonlinearity

Model Linear Quadratic Cubic
R2 0.90 0.91 0.92
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Fig. 8. Model fit in intermediate output variable(XL) using B-
Spline form for the inverse static output nonlinearity

Polynomial function For polynomial estimation, only the
order of polynomial function related to the estimation of inverse
static output nonlinearity dynamic is assumed. The MSE value
for the predicted inverse static output model of Wiener model is
0.035 for the 5th order and the value will decrease in the higher
orders. Next, for the inverse model of static output nonlinearity,
see Table 2 for the R2 value of three different models and Figure
(9) for the model fits with respect to three different orders of the
polynomials. The best model fit in polynomial form is the 6th
order and the equation is formulated in Eq. (22).

x(t) =−0.7015+ ȳ(t)−0.3016ȳ(t)2 +0.0401ȳ(t)3

−0.0026ȳ(t)4 +7.8e−5ȳ(t)5−9.03e−7ȳ(t)6 (22)

Table 2. R2 of polynomial model

Model order 5 6 7
R2 0.88 0.89 0.87

The model fit at intermediate output point (XL) of Wiener block
in Fig. 1 as the estimation result between linear model (FSF
model) output and the inverse static output nonlinear model
output using 6th order polynomial form can be seen in Fig.10.

5. CONCLUSION

A straightforward estimation for Wiener model in Hammerstein-
Wiener system identification of software system dynamics are
more accurate if the static nonlinearities are represented in
B-splines terms. It is clear that employing FSF and B-spline
functions in Wiener model estimation could produce less error
in model prediction. In addition, the proposed approaches from
this study confirmed that B-spline function has the ability to
capture nonlinear characteristics which naturally occur in soft-
ware system.
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(a) 5th order
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(b) 6th order
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Fig. 9. Model fit of inverse static output nonlinearity in polyno-
mial form
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Fig. 10. Model fit in intermediate output variable(XL) using
polynomial form for the inverse static output nonlinearity
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