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Abstract: Water is becoming a scarce resource for many developing countries and its
management has become an important issue. In this work, we derive channel models for
regulation in irrigation canals using system identification techniques. We take inspiration
from existing research on control of large-scale irrigation networks and perform experimental
identification of distributory irrigation channels in Pakistan. System identification models are
computationally inexpensive and accurate for simulating water profiles; thus qualifying for
addressing efficient control design problems. The channel models are estimated and validated
on operational data from Khaira Distributory off Main BRB Canal, Lahore. Our results show
that system identification techniques capture the efficacy of canal models appropriately and will
play a vital role in building accurate models for controlled irrigation canals in Pakistan.
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1. INTRODUCTION

According to Seckler et al. (1999), many developing coun-
tries are suffering from water scarcity due to the inefficien-
cies of their existing irrigation networks. Although water
losses in irrigation networks are large, they can be substan-
tially reduced by employing improved control design for
irrigation systems (Weyer (2008)). Over the last decade,
control of irrigation canals has attracted great interest
from the research community (Cantoni et al. (2007); Ooi
and Weyer (2007); Litrico and Fromion (2009); Negenborn
et al. (2009)). With rapid advances in communication
infrastructure and increased computational power, auto-
matic control of irrigation channels will not only combat
water scarcity but will also pave the way for efficient,
demand-based, water delivery mechanisms. This is why,
a large, efficient and well managed irrigation system is
of immense importance for an agro-based economy like
Pakistan.

To achieve efficient control design for irrigation canals,
accurate models are required which capture essential dy-
namics of the system. These models can be derived either
from physical modelling of water flow in open channels
or from system identification experiments. In literature,
Saint Venant equations have been traditionally used to
describe open channel flows. These equations develop a
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mathematical model based on physical principles, involv-
ing mass and energy balances (Chaudhry (2008)). They
model channel flows accurately and have been widely used
in hydraulics engineering (Litrico and Fromion (2009)).
Simulations from Saint Venant equations agree consider-
ably with real data from open channels (Ki Ooi et al.
(2005)), allowing them to serve as a starting point for
simulating flow and water level profiles (called hydro-
graphs) in irrigation canals (Ooi and Weyer (2007); Litrico
et al. (2005); Nasir and Muhammad (2011)). However,
Saint Venant equations are hyperbolic partial differential
equations, i.e. they suffer from modelling complexity and
lack parsimony; thus cannot be directly used for efficient
control design. Additionally, in the context of control and
prediction, Saint Venant equations are computationally
intensive and, sometimes, infeasible to implement (Mareels
et al. (2003)).

These constraints have led to development of simpler mod-
els for irrigation systems based on system identification
techniques. These models are obtained directly from the
observed data and have been widely used for control of
irrigation networks because of their low computational
overhead (see e.g. Weyer (2008)). In the presence of rep-
resentative data, system identification processes can effec-
tively capture the relevant dynamics of irrigation channels
(Weyer (2008); Mareels et al. (2003)). Results of system
identification for irrigation canals in Weyer (2001) and
Eurén and Weyer (2007) confirm that these models are
parsimonious, have low computational overhead and are
fairly accurate for control design.

This paper attempts to address system identification as-
pects which play a crucial role in developing a controlled
irrigation network. We take inspiration from existing lit-
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erature on identifying system parameters and perform
system identification of irrigation channels in Pakistan.
We performed extensive experimentation on Khaira Dis-
tributory, which stems from Main BRB Canal, Lahore,
to generate a representative dataset of hydrographs. In
this paper, we present our complete system identification
procedure, from experimental design to model validation,
and we hope that our findings will help in building ac-
curate models for controlled irrigation canals in Pakistan.
These actual experiments are supplemented by the results
of channel simulations which have allowed us to explore
various effects on system response as a function of different
physical parameters. The work reported in this paper runs
in parallel to the efforts at LUMS to build a scalable hy-
drometry infrastructure for the Indus basin canal network
(Ahmad et al. (2013)). In particular, the data recordings
have been obtained using smart sensors developed by the
authors’ group.

The remainder of the paper is organized as follows. In
Section 2, we present the modelling of open channels. In
Section 3, we discuss our experimental results in identi-
fying lumped parametric models of irrigation canals. The
performance of the estimated model is also compared with
the actual response. We conclude in Section 4.

2. OPEN CHANNEL MODELLING

In this section we present the modelling of open channels.
We discuss both physical and data-based modelling.

2.1 Physical modelling: Saint Venant equations

In constructing physical models of an open channel, Saint
Venant equations are used as a starting point for simulat-
ing flow and level profiles (Ooi and Weyer (2007); Litrico
et al. (2005)). These equations develop mathematical mod-
els based on physical principles, involving mass and energy
balances (Chaudhry (2008)), and are given by:

∂A

∂t
+
∂Q

∂x
= 0,

∂Q

∂t
+
(gA
B
− Q2

A2

)∂A
∂x

+
2Q

A

∂Q

∂x
+ gASf − gASo = 0,

(1)
where x is the distance coordinate; t is time; A is the
cross-sectional area of the channel; B is the width of water
surface; Q is the flow (discharge); g is the gravitational
constant (taken as 9.81m/s2); Sf and So are frictional
and bed slope of the channel respectively. The frictional
slope is modeled with the classical Manning formula i.e.

Sf = Q2η2

A2R
4
3

where, η is the Manning coefficient, R is the

hydraulic radius, defined by R = A
P with P as the wetted

perimeter (Chaudhry (2008)). In this paper, we have
employed Saint Venant equations in simulating data for
testing our system identification technique. Saint Venant
equations model the channel flows accurately (Ki Ooi et al.
(2005)), if the channel geometry and operating conditions
are known. The equations have been used extensively
in hydraulic and civil engineering (Litrico and Fromion
(2009)).

2.2 System identification based modelling

System identification is a data-based modelling technique,
used to generate a viable transfer function between in-
formative input and output data. Unlike Saint Venant
equations, these irrigation models do not necessarily have
a physical meaning. Methods in system identification pro-
vide validity for only certain input signals and around
certain operating points. In order to use these techniques
effectively, we must have informative input/output data.

Model structure and parameter estimation play an impor-
tant part in system identification. We need to use some
prior information about the physical process for modelling
a mathematical relationship between representative in-
put/output data. In our model, downstream water level
is the controlled variable, and the gate position is the
manipulated (input) variable. So, our model should have
downstream water level as output and gate positions as
input (Weyer (2001)).

In this procedure, we use fundamental physical insight
about the channel and try to develop a representative
parametric model of the system. The methodology in
deriving the model structure for open channel pools has
been explained in (Nasir and Muhammad (2011); Weyer
(2001); Eurén and Weyer (2007)). To start with, consider
a mass (or volume) balance equation

dV (t)

dt
= Qin(t)−Qout(t), (2)

where V is the volume in a pool, t is the time, Qin is the
inflow at the upstream gate and Qout is the outflow from
the downstream gate. For simplicity, we have assumed that
there are no off-shoots along the length pool.

To develop a relationship between flow and water level,
we need to study canal gates. Canal gates are essential
hydraulic structures which play an important role in
regulating the water flow in irrigation channels (Eurén and
Weyer (2007)). Two such hydraulic structures, widely used
in regulating the flow of irrigation canals, are undershot
gates and overshot gates (as shown in Fig. 1). In the
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Fig. 1. Schematic side view of Overshot gate (left) in free
flow and Undershot gate (right) in submerged flow.
For an overshot gate, under free flow conditions, the
flow over the gate is expressed as Q ≈ θh

3
2 and for

undershot gates, under submerged flow conditions,
the flow is approximated by Q ≈ θp

√
yu − yd; where

Q - water flow, yu - upstream water level, yd -
downstream water level, p - gate position and h - head
over the gate.

literature related with hydraulics and flows (for example
in Bos (1976)), the flow equations for both overshot and
undershot gates can be found (see Fig. 1 for the flow
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relations of overshot and undershot gates). These flow
expressions are, at best, approximations which model the
flow well under free flow conditions, for overshot gates,
and under submerged flow conditions, for undershot gates.

Substituting inflow and outflow relationships with respec-
tive gate models and assuming volume in the pool is
proportional to the water level at the downstream (i.e.
assuming uniform channel cross-section), we can write
Eq.(2) as a non-linear differential equation in terms of
downstream water level y2. Additionally, we know that
there is a time delay for the water at the upstream to
reach downstream. Consider a case in which we have one
overshot gate at the upstream and one overshot gate at the
downstream (see Fig. 2). Assuming free flow conditions for
the system, we can write Eq.(2) as

dy2(t)

dt
= c̃1h

3
2
1 (t− τ̃) + c̃2

(
y2(t)− p2(t)

) 3
2

, (3)

where τ̃ is the time delay for the water at upstream gate
to reach downstream water and h2(t) is substituted as
y2(t)−p2(t). In case of multiple hydraulic structures at the
upstream/downstream, we will have to introduce indexing
and summation to represent cumulative Qin and Qout.

In terms of implementation, we are interested in discretiza-
tion of the continuous first order, non-linear, differential
equation into a first order difference equation; yielding
a discretized model for the open channel system. Using
the Euler’s approximations for the derivative term (as
explained in Weyer (2001) and Eurén and Weyer (2007)),
we obtain the following model structure

y2[k + 1] = y2[k] + c1h
3
2
1 [k − τ ] + c2

(
y2[k]− p2[k]

) 3
2

,

(4)

where c1 (equivalent to T c̃1)and c2 (equivalent to T c̃2) are
the unknown system parameters and τ is the discretized
time delay (which is obtained by dividing the actual time
delay τ̃ by the sampling time T ). The system parameters
[c1, c2]T are estimated using the least squares, where
discretized time delay, τ , was approximated to the nearest
integer to facilitate algorithm implementation.

3. SIMULATIONS & EXPERIMENTAL DESIGN

In this section we apply the estimation techniques in
identifying the lumped parametric models of irrigation
canals, using data from simulated channel flows, as well as
from actual canal experimentation at Khaira Distributory
of Main BRB Canal, Lahore.

3.1 Open Channel Simulator

We used an open channel simulator (outlined in Nasir and
Muhammad (2011); Tariq et al. (2012)) to simulate water
profile in an open pool, assuming uniform rectangular
channel, subject to free-flow boundary conditions. In our
simulation, we modelled overshot gates at the upstream
and the downstream end (see Fig. 2) for various pools.

Channel Model: Based on previous discussion in Section
III, we can develop the simplified, parametric, model for
the open channel. The model is given by

Downstream

Upstream

y1

h1

yd y2

h2

p2

Fig. 2. Side-view sketch of a pool in open channel simulator
with overshot gates at upstream and downstream.

y2[k + 1] = y2[k] + θ1h
3
2
1 [k − τk] + θ2

(
y2[k]− p2[k]

) 3
2

,

(5)
where y2 is the downstream water level, h1 is the head
over the upstream gate, τk is the discretized time delay,
p2 is the downstream gate position and θ1 and θ2 are the
unknown parameters. To express this in linear regression

form, we assume φ[k+1] =
[
h

3
2
1 [k−τk],

(
yd[k]−p2[k]

) 3
2
]T

,

θ = [θ1, θ2]T and y[k+ 1] = y2[k+ 1]− y2[k]. Then we can
express the system model in the form of linear regression
as, y[k] = φT [k]θ.
In our simulations, we used step test (see Fig. 3) to de-
termine the time delay τk for the system model (Weyer
(2001), Nasir and Muhammad (2011)). Values of τk for
different pools have been tabulated in Table 1.
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Fig. 3. Step Test for Open Channel.

Simulation Results & Parameter Estimation: We
used our simulator, based on Saint Venant equations,
on some test input signals to generate representative
trajectories of an open channel. To excite different modes
in the pool, head over the upstream gate and downstream
gate position was randomly changed for a simulation time
of 100 min. In addition to simulation criteria, a rectangular
channel of uniform bedwidth of 5m was modelled and the
canal was ‘discretized’ into 20 equally spaced measuring
units to monitor water level at different locations in
the pool. Afterwards we used our system identification
techniques to extract system parameters of the simplified
model for various pools, which has been tabulated in Table
1. In Fig. 4, one such hydrograph (at 500m downstream)
and corresponding estimated water level is shown.
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Fig. 4. Simulated & Estimated Response for Downstream
Water Level.

Table 1. Estimation Results for Open Channel
Simulator

Pool 1 2 3

Length (m) 360 500 800

τk (sec) 120 180 300

θ1 0.3529 0.1893 0.0994

θ2 -0.6381 -0.3312 -0.3032

Avg. Sq. Error (m2) 0.003 0.0012 0.0011

3.2 Canal Experimentation: Khaira Distributory

We carried out extensive experiments and collected data
points from Khaira distributory. It stems from Main BRB
Canal and is approximately 18 km long, with channel
width of 10 ft (≈ 3.05m) and height 4 ft (≈ 1.22m). In
these experiments, we only had control over the upstream
gate (which was undershot) and there was no physical
(hydraulic) structure present at the downstream ends of
the canal, which happened to be points of measurement.
We modelled it as an always open, hypothetical, overshot
gate (see Fig. 5).

y1u

p1

y1d
y2

p2

h2

Upstream

Downstream

Fig. 5. Side-view sketch of Khaira Distributory Pool with
undershot gate at upstream and ‘hypothetical’ over-
shot gate downstream (point of measurement). The
value of p2 is always taken to b 0 to model an always
open overshot gate.

Channel Model: With an undershot gate at the up-
stream end and an overshot gate at the downstream the
model of Khaira Distributory Pool is given by

y2[k + 1] = y2[k] + θ1p1[k − τk]
[√

yu − yd[k − τk]
]

+θ2

(
y2[k]− p2[k]

) 3
2

,
(6)

where y2 is the downstream water level, p1 is the opening of
the undershot gate at the upstream and p2 is the position

of,‘hypothetical’, overshot gate at the downstream. In ad-
dition, yu is assumed to be constant (because distributory
is drawing water from a large water body) and p2 is the
always taken to 0, to model an ‘always open’ hypothetical
gate. Using similar substitutions (as in the previous sub-
section), the system model was expressed in the form of
linear regression to perform system identification.

Fig. 6. Upstream Gate at Khaira Distributory.

Experimental Procedure: Different phases of our canal
experimentation can be summarized in the following steps.

• Sensors are placed at appropriate sites (usually at
downstream bridges) along the length of canal (see
Fig. 7). They record the height of water in the channel
and communicate, through GSM module, to a cell
phone, or through GPRS to a server.

• At the Upstream, gate is closed and then opened to
model step input, while monitoring the gate position.

• The readings are recorded and in conjunction with
the input are used to perform system identification.

Fig. 7. Experimental Procedure: Sensor Deployment.

We kept the sampling time for our experiment at 10
seconds. As our readings were transmitted through GSM
module, it introduced non uniform delays between suc-
cessive messages. To cater for this discrepancy, we used
data interpolation to obtain a uniformly sampled data.
The data was adjusted with a uniform sample time of 10
seconds (as shown in Fig. 8). It can be verified that this
interpolation technique preserves the shape of the corre-
sponding hydrograph. This pre-processing was necessary
to generate a uniform data for linear regression.

Parameter Estimation: In our experiment we closed the
upstream gate and then re-opened it. The water level was
measured at 50m, 300m and 550m downstream lengths,
after every 10s (see Fig. 9). For channel modelling, we used
the data from 300m and 550m sensors. The correspond-
ing data was processed and interpolated. For estimation
process, the linear regression model was attempted to fit
the observed response. In our estimation, yu was assumed
to be constant and p2[k] was taken to be zero to model
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Fig. 8. Data Interpolation of Measurements.

an ‘always opened’, hypothetical, overshot gate. In addi-
tion, yd was measured near the opening of the upstream
gate. The response delay, τk, was inspected from the raw
data. In order to obtain a better estimate of the time
constant for the pool, the upstream gate was opened and
closed suddenly (as if to model a sudden impulse). This
accounts for the apparent ‘jump’ in the gate input and
the corresponding ‘blip’ in hydrographs. The results of our
experiments, along with the estimated parameters, have
been tabulated in Table 2. In Fig. 10, the response of
550m sensor along with respective upstream gate input
and estimated water level is shown.
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Fig. 9. Experimentation: 3D Overlay of Hydrographs.
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Fig. 10. Actual & Estimated Response for Khaira Distrib-
utory.

Our estimated parameters (for both the simulated and ac-
tual experimentation) make intuitive sense from a physical
point of view. θ1 is positive as it is related with the inflow
of the water (from upstream), while θ2 is negative as it is
associated with the outflow of water. For canal experimen-
tation, the difference in order of magnitude, for estimated

Table 2. Experimental & Estimation Results
for Khaira Distributory

Pool 1 2

Length (m) 300 550

τ̃ (sec) 200 350

θ1 0.0161 x 10−3 0.0152 x 10−3

θ2 -0.3271 x 10−3 -0.2737 x 10−3

Avg. Sq. Error (m2) 0.0164 0.0155

inflow and outflow parameters, can be attributed to the
absence of hydraulic structure at the downstream.

3.3 Model Validation

We performed model verification of our system identifica-
tion for both the channel simulations and canal exper-
imentation. For our open channel simulator, we stored
the estimated parameters and generated another water
level profile through some other randomly generated side
information (head over the upstream gate and downstream
gate position). The result of model verification for the open
channel simulator are shown in Fig. 11. From the superpo-
sition of estimated profile and actual hydrograph, we can
infer that under steady states, our model tracks the actual
water level relatively well. It is indicating the presence of
some distributed transient modes in the system (which
the hypothesized model does not take into account in its
simplified lumped construction) that eventually diminish
under steady boundary conditions.
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Fig. 11. Model Verification for Channel Simulations.

Similarly, for our actual experimentation, we carried out
another set of experiments at the canal (with different set
of input data). For the new side information, we compared
the response of the estimated water level to that of the
actual water level. This is shown in Fig. 12. Again, it can
be seen that when we re-open the gate, there is some poor
tracking exhibited by the estimated model. However, it
again begins to track the actual level after some time.

We also used average squared prediction error, given by

1
N

N∑
i=1

ε2(i, θ̂) where ε(i, θ̂) = y(i)−ŷ(i, θ̂), as a performance

metric for model validity. θ̂ is the vector of estimated

parameters and ŷ(i, θ̂) is the predicted value given θ̂,
obtained from an ARX type predictor (Ljung (1999))
defined from the model structure in Eq.(4). The results
of our model verification have been tabulated in Table 3
and Table 4
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Fig. 12. Model Verification for Canal Experimentations.

Table 3. Errors in Channel Simulation

Sim 1 Sim 2 Sim 3

Length (m) 360 500 800

Prediction Error(m2) 0.0094 0.0054 0.0087

Table 4. Errors in Canal Experimentation

Pool 1 Pool 2

Length (m) 300 550

Prediction Error(m2) 0.0077 0.0014

It is important to notice that the choice of data for system
identification is very important. One of the drawbacks
of system identification is that (at times) it can become
very specific to only certain kinds of input signals (thus
undermining generalization). For this purpose, we excite
the channel with many modal inputs to extract the most
out of the distributed nature of the system and capture
these behaviours as a lumped parameter in our model.

4. CONCLUSION

In this paper, steps have been taken towards realizing
controlled irrigation systems in Pakistan. We have pre-
sented complete system identification procedure, from ex-
perimental design to model validation, for actual irrigation
canals. It was found that a first-order nonlinear model,
derived from prior knowledge about the physical system,
gave accurate results in predicting downstream water level
of an actual irrigation canal. In this study we have verified;

• Design of an accurate canal model can be obtained
through elaborate experimentation, which captures
dynamics of the underlying physical system.
• The proposed methodology of system identification is

suitable for introducing controlled irrigation systems
in developing countries.

Moreover, the estimated models are simple which makes
them suitable for control design. These results illustrate
that system identification, for control in irrigation canal,
can play an important part in managing water resources
for developing countries.
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