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Abstract: A novel state estimation scheme is proposed for use in Model Predictive Control
(MPC) of an artificial pancreas based on Continuous Glucose Monitor (CGM) feedback, for
treating type 1 diabetes mellitus. The performance of MPC strategies heavily depends on the
initial condition of the predictions, typically characterized by a state estimator. Commonly
employed Luenberger-observers and Kalman-filters are effective much of the time, but suffer
limitations. Three particular limitations are tackled by the proposed approach. First, CGM
recalibrations, step changes that cause highly dynamic responses in recursive state estimators,
are accommodated in a graceful manner. Second, the proposed strategy is not affected by CGM
measurements that are asynchronous, i.e., neither of fixed sample-period, nor of a sample-
period that is equal to the controller’s. Third, the proposal suffers no offsets due to plant-model
mismatches. The proposed approach is based on moving-horizon optimization.
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1. INTRODUCTION

The overall goal of this work is an Artificial Pancreas
(AP) for automated insulin delivery to people with Type
1 Diabetes Mellitus (T1DM) (see, e.g., Cobelli et al.
[2009], Harvey et al. [2010], Cobelli et al. [2011], Zisser
[2011], Doyle III et al. [2014]). In particular, an AP
with glucose sensing (measurement for feedback) by a
Continuous Glucose Monitor (CGM) (Hovorka [2006]) is
considered. A crucial element of an AP is a feedback
control law that performs algorithmic insulin dosing that is
effective and safe. For example, glycemia controllers based
on Model Predictive Control (MPC) (Parker et al. [1999],
Hovorka et al. [2004], Magni et al. [2009], Breton et al.
[2012], Turksoy et al. [2013]) have been proposed. The
authors’ group is focusing increasingly on developing so-
called zone-MPC strategies (Grosman et al. [2010, 2011],
van Heusden et al. [2012], Gondhalekar et al. [2013, 2014]).

A critical ingredient of every MPC implementation is a
mechanism to characterize an initial condition from which
to perform predictions. Two main approaches exist. In
MPC based on general state-space models, a state esti-
mator is typically employed, e.g., a Luenberger-observer
or Kalman-filter (see, e.g., Levine [2011]). Alternatively,
when using input-output models, e.g., an Auto-Regressize
system with eXogenous inputs (ARX), the initial condition
consists trivially of past input and output values (even
when using the system’s state-space representation). The
state estimator approach is favored by the authors even for
ARX model-based predictive control, because it provides
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simple handles for tuning noise-rejection capabilities. The
input-output approach is employed in, e.g., Magni et al.
[2007], where it is stated that “The major advantages of
this input-output MPC scheme are that an observer is not
required”. Both recursive linear state estimators (the class
subsumes Luenberger-observers and standard Kalman-
filters) and the input-output initialization are straightfor-
ward to implement, but have weaknesses. The contribution
of this paper is to address three of these weaknesses.
A device that initializes MPC predictions is henceforth
simply termed a state estimator, regardless of the model
class. The proposed state estimator is applicable to both
general state-space models as well as input-output models.

The first weakness tackled in this paper is that sensor
recalibrations cannot be accommodated well in current
state estimators. CGM signals suffer two (at least) types
of noise. First, there is high-frequency stochastic noise,
the effects of which can, to some extent, be remedied by
tuning the gain of a recursive state estimator (Bequette
[2004]). Then there is a low-frequency drift, also termed
sensor bias, due to slowly undulating characteristics of the
CGM sensor gain and changes in the sensor site’s physi-
ology. These low-frequency disturbances are corrected by
taking sporadic blood-glucose measurements with a sensor
that is more accurate than the CGM, e.g., by a point
of care blood-glucose measurement device. The CGM is
subsequently “recalibrated” with respect to the reference
measurement. Upon receipt of a recalibrated data-point a
recursive state estimator could update its state estimate
as usual, or possibly employ a higher gain than when
updating using CGM data, to reflect the higher confidence.
Such an approach was proposed in Kuure-Kinsey et al.
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[2006] for glucose estimation based on Kalman filtering,
and such approaches appear to work well for the purpose
of glucose estimation. However, for the purpose of state
initialization in MPC the strategy is not ideal, because
after a recalibration the state estimator undergoes a period
of lively dynamics. These energetic responses may result
in meaningless predictions that can lead to serious over-
delivery. Thus, in the authors’ controllers, large recalibra-
tions are followed by a period where the insulin infusion
rate is constrained to the patient’s basal rate. This seems
wasteful, as a recalibration is the introduction of high-
fidelity data into the system. Preferably the system could
exploit this data and perform better after a recalibration,
not have to undergo intentional, temporary crippling.

The second weakness is that asynchronous CGM data can-
not be accommodated in current, recursive state estima-
tors, where “asynchronous” means both that the sample-
period of the CGM may not be fixed, and furthermore that
the time-instants the CGM and controller perform updates
may not be equal. The authors’ controllers (both physical
controller and discrete-time prediction model) are based
on a T = 5 min sample-period. Typical CGMs have the
same sample-period, much of the time. However, CGMs
may delay their output during times of high uncertainty.
Also, communication disruptions between sensor and me-
ter cause delayed measurement updates, only once data-
transfer is reestablished. A state estimator based on a
fixed sample-period may over-estimate the rate of change
of the data if the actual sample-period is elongated, and
not compensate for the delay between controller update
times and the latest CGM measurements. Both issues
cause MPC predictions that are initialized in such a way
that they veer off the CGM trajectory, possibly resulting
in inappropriate insulin delivery.

The third weakness is that due to plant-model mis-
match, model-based recursive state estimators cannot al-
ways achieve offset-free estimates, even in steady-state,
when the state is not admissible with respect to the model,
input, and measured output. Offsets can be partially reme-
died by increasing the estimator gain, but this undesirably
results in increased responsiveness to high-frequency noise.

The contribution of this paper is to propose a state es-
timation strategy that tackles the aforementioned three
weaknesses. The proposal is based on moving-horizon opti-
mization and is not a recursive estimator. It is inspired by,
but not equal to, the common notion of moving-horizon
estimation (Rawlings and Mayne [2009]). The proposed
method performs optimization to fit a continuous-time
function to the CGM data. Sensor recalibrations are ac-
commodated straightforwardly by including a discontinu-
ity in the glucose output value, but not its derivatives,
within the function definition. Importantly, the magni-
tude of the discontinuity need not be prescribed, but
is identified by the optimization. The data fitting ex-
ploits the CGM time-stamps and controller call time,
thus asynchronicity is handled naturally. Crucially, after
optimization the fitted function is sampled at exactly the
controller model’s sample-period T , ignoring the recali-
bration discontinuity, to synthesize an output trajectory.
In combination with historical input data, and assuming
observability, the current model state is constructed to
reflect the fitted output trajectory without offset. To the

authors best knowledge the proposed strategy is novel.
The proposed strategy can conceivably be combined with a
Kalman filter, or other signal processing technique, to pre-
treat the CGM data. However, for brevity, the exposition
of this paper is based on the use of raw CGM data.

2. PRELIMINARIES

2.1 Linear time-invariant insulin-glucose model

The insulin-glucose model of van Heusden et al. [2012] is
employed in this paper and is summarized as follows. The
model is a discrete-time, linear time-invariant (LTI) sys-
tem with sample-period T = 5 [min]. The time step index
is denoted by i. The scalar plant input is the administered
insulin bolus uIN,i [U] delivered per sample-period, and the
scalar plant output is the subject’s blood-glucose value
yBG,i [mg/dL]. The plant is linearized around a steady-
state, that is assumed to be achieved by applying the
subject-specific, time-dependent basal input rate uBASAL,i

[U/h], and is assumed to result in a steady-state blood-
glucose output ys = 110 [mg/dL].

The LTI model’s input ui and output yi are defined as:

ui := uIN,i − uBASAL,i
T

60 min

yi := yBG,i − ys .

We denote by Z−1 the backwards shift operator, by Y(Z−1)
and U(Z−1) the z-transform of the time-domain signals
of input ui and output yi, respectively. The transfer
characteristics from u to y are described by

Y
(
Z−1

)
U (Z−1)

=
1800Fc

uTDI

· Z−3

(1− p1Z−1) (1− p2Z−1)
2 (1)

with poles p1 = 0.98, p2 = 0.965, a so-called safety
factor F := 1.5 (unitless, personalizable but fixed to 1.5
throughout this paper), the subject specific total daily
insulin amount uTDI ∈ R>0 [U], and where the constant

c :=−60 (1− p1) (1− p2)
2 ∈ R

is employed to set the correct gain, and for unit conversion.
The 1800 term stems from the “1800 rule” for estimating
blood-glucose decline w.r.t. the delivery of rapid-acting
insulin (Walsh and Roberts [2006]).

The state-space realization of (1) for control synthesis is

xi+1 = Axi +Bui (2a)

yi = Cxi (2b)

A :=

 p1 + 2p2 −2p1p2 − p2
2 p1p

2
2

1 0 0
0 1 0

 ∈ Rn×n

B := 1800Fc
uTDI

[ 1 0 0 ]
> ∈ Rn

C := [ 0 0 1 ] ∈ R1×n

n = 3 .

Let O := [ C> (CA)
>

(CA2)
>

]
> ∈ Rn×n, and note that

O is equal to the identity matrix flipped top-to-bottom.

Remark 1. det(O) 6= 0, i.e., (A,C) is observable.
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2.2 Nominal model predictive control outline

The reader is referred to Rawlings and Mayne [2009] for
MPC background. Let Z denote the set of integers, Z+

the set of positive integers, and Zba the set {a, . . . , b} of
consecutive integers from a to b. Let N ∈ Z+ denote
the prediction horizon, and u and x the predicted values
of input u and state x. Then, MPC performs closed-
loop control by applying, at each step i, the first control
input u∗0 of the predicted, optimal control input trajectory
{u∗0 . . . u∗N−1}, characterized by the minimization

{u∗0 . . . u∗N−1} := arg min
{u0,...,uN−1}

J (xi, {u0, . . . , uN−1}) (3)

of a suitable cost function J(·, ·) (details omitted for
brevity), subject to suitable constraints, and furthermore
subject to the predictions performed employing model (2):

x0 := xi , xk+1 := Axk +Buk ∀k ∈ ZN−1
0 . (4)

The predicted state trajectory is initialized in (4) to the
estimated model state, the value of which profoundly
affects the performance of the resulting MPC control law.
No notational distinction between actual and estimated
state is made, because state x of (2) can only be estimated.

2.3 Controller timing and input history

The sample-period of (2), and the time interval between
controller updates of control input u, are assumed to be the
same and equal to T . For simplicity we further assume any
controller employing model (2) to have access to the exact
control input history, where previous control inputs ui
were applied at time intervals of exactly T . We denote the
actual time instants of the controller call by τi = τi−1 +T .

2.4 Sensor timing, sensor recalibration, and output history

Each measurement is defined by a triple (ỹj , tj , rj), where
j ∈ Z+ denotes the measurement index that is incre-
mented with each new measurement, ỹj ∈ R denotes the
CGM output, analogous to y of (2b) (i.e., with set-point ys

subtracted), as provided by the CGM at time-instant tj .
The variable rj ∈ Z denotes a recalibration counter, and is
incremented each time the sensor is recalibrated (r0 := 0).

The time interval between successive measurements may
not be precisely T . However, we suppose that tj − tj−1 <
2T for all j. Analogously, we assume the time interval
between a controller call at τi, and the most recent mea-
surement at tj , to be less than 2T . If the interval exceeds
two sample-periods then, for an interval of a low multiple
of sample-periods, a strategy employing open-loop predic-
tions of model (2) to “fill the gap” may be useful. For
simplicity such scenarios are not considered here, although
they are in the clinical controller implementations.

Each output measurement ỹi at time ti suffers from errors
due to process noise and measurement noise. However,
CGM noise has proven difficult to model accurately (Hov-
orka [2006]), thus in this work we make no assumptions
about the measurement errors, and include in the state-
estimation scheme no strategy for exploiting perceived
knowledge of the noise characteristics. However, we assume

that measurements ỹj such that rj 6= rj−1 are exact, be-
cause r is incremented when the sensor is recalibrated. The
proposed state-estimation strategy achieves rejection of
high-frequency disturbances to some (tunable) extent, but
even without recent sensor recalibrations, the proposed
strategy estimates the state under the assumption that the
low-frequency measurement bias is zero. Without further
knowledge there appears to be no alternative.

2.5 State-reconstruction based on exact outputs and inputs

We denote by Ia the a × a identity matrix, by 0{a,b} the
a× b zero matrix, and by ⊗ the Kronecker product.

At each step i, given the exact sequence {yk}ik=i−n+1 of
past outputs (and present), synchronized to the controller
timing τi = τi−1 +T , and further given the exact sequence

{uk}i−1
k=i−n+1 of past control inputs, the current state xi of

model (2) may be reconstructed, e.g., as follows. Let

Ui := [ ui−n+1 · · · ui−1 ]
> ∈ R(n−1)

Yi := [ yi−n+1 · · · yi ]
> ∈ Rn

Xi := [ x>i−n+1 · · · x>i ]
> ∈ Rn

2

Ā :=
[
In A

> · · ·
(
An−1

)> ]> ∈ Rn
2×n

Â :=


0 0 · · · 0
In 0 · · · 0
A In · · · 0
...

...
. . .

...
An−2 An−3 · · · In

 ∈ Rn
2×n(n−1)

B̄ := Â (In−1 ⊗B) ∈ Rn
2×(n−1)

C̄ := (In ⊗ C) ∈ Rn×n
2

F :=
[

0{n,n(n−1)} In
]
∈ {0, 1}n×n

2

such that

Xi = Āxi−n+1 + B̄Ui (5)

Yi = C̄Xi (6)

xi = FXi (7)

where at step i all except Xi are known. From (5) and (6):

xi−n+1 =
(
C̄Ā
)−1 (

Yi − C̄B̄Ui
)
. (8)

The current state xi is then characterized via (5) and (7).
The inverse in (8) exists by Remark 1, because C̄Ā = O.

3. PROPOSAL: STATE-ESTIMATION VIA OUTPUT
TRAJECTORY FITTING

3.1 Proposal outline

At each step i the parameter θi ∈ Θ defining a continuous-
time function f : R × Θ → R is identified such that it
closely fits recent data-points. The continuous-time func-
tion f(t, θi) is subsequently sampled at time instants τk,

k ∈ Zii−n+1 to synthesize a trajectory {ŷk}ik=i−n+1 of
synchronous, past (and one present) output values. This
manufactured output trajectory is employed, in conjunc-

tion with the exact sequence {uk}i−1
k=i−n+1 of past control
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inputs, to construct an estimate of the current state xi by
the mechanism described in Section 2.5.

The function fitting is performed using unconstrained
least-squares fitting of polynomials. More general cost
functions, more general functions f(·), and also con-
straints, could be considered, but these complexities are
dispensed with here to focus on the proposed advantages
in terms of timing and sensor recalibrations. The benefit,
with regards to timing and the asynchronous nature of
the CGM data-points, is that the function fitting can
be performed with data-points that are temporally dis-
tributed in an arbitrary way. The important, novel func-
tionality with respect to sensor recalibrations is that due
to the optimization-based nature (in contrast to recursive
estimators) a discontinuity can be accommodated when
a recalibration occurs. Crucially, the discontinuity’s size
need not be known, but is identified from the data via
the optimization. Assuming that at most one recalibration
occurred in the near history, the discontinuity is included
when fitting data points prior to recalibration, but is not
included when fitting more recent data-points. Critically,
the discontinuity is not included when sampling f(·) to
synthesize the fabricated output trajectory of ŷ values.

The optimization penalizes the deviation θi − θi−1 of the
parameter from one step to the next, thus introducing a
“viscosity” for rejecting high-frequency disturbances.

3.2 Data fitting with function discontinuity

For consistent interpretation of the value of parameter
θi as i progresses, the function f(·) is fitted shifting the
current time τi to the origin. The class of continuous-time
functions considered for fitting is the p-order polynomial

f (t, θi) :=
∑p
k=0 a(i,k) (t− τi)k (9)

= [ 1 (t− τi) . . . (t− τi)p ] θi

a(i,k) ∈ R ∀(i, k) ∈ Z× Zp0
θi :=

[
a(i,0) . . . a(i,p)

]> ∈ Rp+1 ,

where p is a design parameter. Let the design parameter
M ∈ Z+ denote a length of measurement history to
consider. For each step i, let ci ∈ Z+ denote the index
of the most recent measurement, and let di ∈ Zcici−M+1
denote the index of the most recent measurement that
followed a sensor recalibration. The range specified for d
implies that a recalibration occurred within the M -length
history horizon. The case when the latest recalibration
occurred prior to the M -length history horizon is simple
and not discussed further. For simplicity we do not discuss
the case with multiple recalibrations within the history
horizon M , although such cases could be accommodated.

At step i, the measurements employed for state estimation
are (ỹj , tj , rj), j ∈ Zcici−M+1. It holds that ri = rj +

1 ∀(i, j) ∈ Zcidi × Zdi−1
ci−M+1. Let δi ∈ R denote the

(unknown) size of measurement discontinuity resulting
from a recalibration, and define the augmented parameter
θ̄i := [ δi θ

>
i ]
> ∈ Rp+2. Denote the error, between the

discontinuous fitted function and the data, as follows:

e(i,j) :=

{
ỹj − [ 0 1 (tj − τi) · · · (tj − τi)p ] θ̄i if j ∈ Zcidi
ỹj − [ 1 1 (tj − τi) · · · (tj − τi)p ] θ̄i otherwise.

Let Rk ∈ R>0 ∀k ∈ ZM1 denote costs to penalize errors
e(i,j), time-dependent with respect to relative time the
measurement was taken, but not time-dependent with re-
spect to actual time. Further let Qi ∈ R(p+1)×(p+1), Qi � 0
denote a cost for penalizing parameter deviations θi−θi−1.
The optimal augmented parameter θ̄∗i is characterized by
the solution of the following quadratic program:

θ̄∗i := arg min
θ̄i∈R(p+2)

(
θi − θ∗i−1

)>
Qi
(
θi − θ∗i−1

)
+
∑M
k=1Rke

2
(i,ci−k+1) .

The cost Rk should, in general, be chosen such that Rk ≥
Rk+1, i.e., such that more recent measurements influence
the optimal parameter estimate θ∗i more than older ones.
The cost matrix Qi is chosen to penalize parameters a(i,k)

of (9), and should generally be diagonal. A higher cost
allows to set a “viscosity” on the rate of change of, e.g.,
the value via Q(1,1), or the velocity via Q(2,2), etc. Note
that after a recalibration it is desirable to select Q(1,1) = 0
in order to facilitate an instantaneous response to the
recalibration step change.

3.3 Output trajectory manufacture

Given the optimized parameter θ∗i , the synthesized output
trajectory, employed for constructing the estimated state
via the method described in Section 2.5, is defined by sam-
pling the function f(t, θ∗i ) at times t ∈ {0,−T,−2T, ...}.

4. ILLUSTRATIVE EXAMPLES

In this section the behavior and benefits of the proposed
state estimation strategy are demonstrated by simple,
numerical examples. The parameter choices were made
to produce the simplest, within reason, instance of the
proposed strategy. The order p = 1 of the polynomial of
(9) is employed, i.e., we perform a straight-line fit. Note
that the number of data-points M employed must equal, or
exceed, the degrees of freedom of the function fitting. Thus
we select a history horizon M = 3, facilitating a straight-
line fit with one recalibration. We let R1 = R2 = 1 and
R3 = 0.1, to penalize the error w.r.t. the eldest data-point
less than the error associated with the most recent two
data-points. Finally, we select Q = 0{2,2}, i.e., the optimal
parameter θ∗i is independent of the previous step’s θ∗i−1.

We compare the responses of the proposed state estimator
with a linear state estimator that is based on model (2):

x̃i =Axi−1 +Bui−1 , ỹi = Cx̃i (10a)

xi = x̃i + L (yi − ỹi) . (10b)

4.1 Rejection of plant-model mismatches

Fig. 1 demonstrates how the gain L of a linear state
estimator affects the ability to reject plant-model mis-
matches. The CGM is constant at 280 mg/dL, and insulin
infusion is performed at the basal-rate. A higher gain L
rejects mismatches more effectively, but results in elevated
responsiveness to noise (not demonstrated). Note that, in
this example, the linear state estimator’s state is initialized
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Fig. 1. Demonstration of plant-model mismatches. CGM =
280 mg/dL (•). Low-gain linear estimator (I). High-
gain linear estimator (�). Proposed estimator (•).

to achieve the CGM value in steady state. Despite this
optimal initialization (that is not possible in practice), the
linear state estimator’s state estimate drifts, inducing a
steady state mismatch in estimator output Cxi and the
CGM signal. The reason for this is that model (2) is based
on linearization around ys = 110 mg/dL, and that the
elevated, steady-state CGM value is not compatible with
the basal insulin delivery. In contrast, the proposed state
estimator suffers no such mismatches, because the synthe-
sized output trajectory is manufactured based solely on
the CGM data, not model (2), and because, by observabil-
ity, the mechanism of Section 2.5 constructs a state that
corresponds exactly to this fabricated output trajectory.

4.2 MPC & CGM synchronized – sample-period incorrect

In this example we demonstrate what happens when the
CGM data is transmitted every 9 min instead of T = 5
min, under the assumption that the controller updates
simultaneously, only every 9 min. This is not how the MPC
is implemented in practice (see Section 2.3). Nevertheless,
it is hoped the example is instructive.

We consider a CGM trajectory that is rising at 1
mg/dL/min, sampled every 9 min. The CGM data are re-
cursively input to estimator (10), that is not able to exploit
the data’s time-stamps, because model (2) is based on a
T = 5 min sample-period. The gain L is chosen high, i.e.,
the estimator is responsive and the output error is rejected
well. The result is depicted in Fig. 2. Despite achieving
an accurate starting value for the output Cxi, the rate of
change is clearly mis-initialized to an over-estimated value,
and the MPC predictions veer away from the CGM trajec-
tory. In contrast, the proposed estimator exploits both the
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Fig. 2. Demonstration of elongated sample-period. CGM
and MPC synchronized. CGM (•) rate of increase: 1
mg/dL/min. Linear estimator-based MPC predictions
(I). Proposed estimator-based MPC predictions (•).
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Fig. 3. Demonstration of 4 min delay between MPC
update and CGM. CGM (•) rate of increase: 1
mg/dL/min. Linear estimator-based MPC predictions
(I). Proposed estimator-based MPC predictions (•).

controller’s call time and also the CGM time-stamps, and
accounts for arbitrary timing in an appropriate manner.
Based on the proposed estimator’s state the MPC predic-
tions are a continuation of the CGM trajectory.

4.3 MPC & CGM sample-instants offset

In this example we demonstrate the ability of the proposed
estimator to accommodate delays between the controller
update time instants and the CGM. We consider a CGM
trajectory with rate of change of 1 mg/dL/min, with a
data-point every T = 5 min. The controller updates every
T = 5 min, delayed by 4 mins w.r.t. the latest CGM value.
The result is plotted in Fig. 3. Despite the delay the linear
estimator causes the MPC predictions to start at the most
recent CGM value. In contrast, the proposed estimator
initiates the MPC predictions from an extrapolated value
lying on a continuation of the CGM data trajectory.

The benefit of the proposed estimator, in regard to delay
compensation, is negligible when the CGM’s rate of change
is low, which is most of the time. However, the CGM
signal undergoes rapid change after, e.g., meal ingestion
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Fig. 4. Demonstration with MPC and CGM asynchronous.
MPC sample-period: 5 min. CGM sample-period: 7
min. CGM (•) rate of increase: 1 mg/dL/min. Top:
Linear estimator, MPC predictions (I). Bottom:
Proposed estimator, MPC predictions (•).
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Fig. 5. Demonstration of recalibration response with lin-
ear state estimator and no safety features. MPC and
CGM synchronous: T = 5 min. CGM (•). MPC
predictions (I). Estimated blood-glucose value (—).

or the commencement of exercise. It is exactly at these
challenging times that controller responsiveness is crucial.

4.4 MPC & CGM asynchronous

In this example we consider the case were the controller
updates the control input at a sample-period T = 5 min,
as intended. The CGM value rises at 1 mg/dL/min, but
updates its value only every 7 mins. Due to this mismatch
in sample-periods, MPC and CGM sometimes update
simultaneously, often times there is a delay between them,
and other times no CGM update occurred since the
previous MPC update.

We consider a linear state estimator with high gain, up-
dated with the most recent CGM value at each controller
call. The resulting MPC predictions are depicted in the
top subplot of Fig. 4. The predictions produce a feather-
like spread around the CGM trajectory, where this spread
is a result of both an offset in glucose value, as well as mis-
initialization of the rate of change. In contrast, plotted in
the bottom subplot of Fig. 4 are the MPC predictions when
initialized by the proposed estimator. The predictions
overlay tightly. They do not overlap perfectly due to the
controller tuning; the predictions veer slightly downwards
due to the predicted delivery of insulin.

4.5 Recalibration

The initial motivation for the proposed approach was to
gracefully accommodate sensor recalibrations – demon-
strated next. The controller and CGM are synchronized
to the correct sample-period; T = 5 min. The CGM reads
200 mg/dL until 14:25, is recalibrated to 250 mg/dL at
14:30, and remains at that reading thereafter.

The response with the linear state estimator is depicted in
Fig. 5. Looking at the estimated blood-glucose level (green
line), it can be seen that the linear estimator performs
admirably in terms of rapid convergence. The linear state
estimator has a high gain, leading to a “forceful” correction
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Fig. 6. Demonstration of recalibration response with pro-
posed state estimator and no safety features. MPC
and CGM synchronous: T = 5 min. CGM (•). MPC
predictions (I). Estimated blood-glucose value (—).

of the estimator state x to produce an output Cx that
equals the CGM value. However, such high gain estimation
is inappropriate for initializing MPC predictions, due to
the highly dynamic response of the predictions for a pro-
tracted period following the recalibration. This response
in the state estimate causes a large, undesirable overshoot
in the insulin delivery. A low gain linear state estimator
may be more desirable for MPC state initialization here,
resulting in predictions that have less incline and conse-
quently a more conservative insulin delivery. However, a
low gain estimator results in sluggish convergence to the
correct glucose level and, depending on the glucose value,
an offset due to plant-model mismatch (see Section 4.1).

Fig. 6 shows the response with the proposed estimator.
The estimated glucose value instantaneously changes at
14:30 to the recalibrated value, and the state estimate
instantaneously switches to a new value that, first, reflects
the new CGM value, and, second, reflects the rate of
change of the CGM trajectory in recent history. The MPC
predictions beyond the recalibration are therefore nearly
not visible. The resulting insulin delivery undergoes a step
change upwards at the recalibration time instant. The two
short-term deviations from steady-state delivery are due
to the pump’s discretization and carryover scheme. Both
before and after the insulin step change a delivery in excess
of the basal rate is desirable, due to the hyperglycemia.
Thus, a safety mechanism that enforces basal delivery
during the rapid transients of the state estimator would
pose an obstacle to effective glycemia control.

5. CONCLUSION

A novel state estimation scheme, based on moving-horizon
optimization, was proposed to tackle problems associated
with recursive state estimators for initializing MPC opti-
mizations based on CGM data. The mechanics and benefit
of the proposed strategy were demonstrated using simple,
synthetic examples. The proposed method was tested via
the University of Padova/Virginia Food and Drug Admin-
istration (FDA) accepted metabolic simulator (Kovatchev
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et al. [2009]) and behaves comparably to a responsively
tuned linear state estimator in “normal” circumstances,
i.e., when not dealing with the problem instances that
motivated the proposal. In future work more challenging
scenarios will be simulated, to challenge and verify the
proposed estimator’s performance with CGM data that
more closely resembles that obtained in clinical trials.

The proposed scheme offers a flexible foundation for ex-
tensions. (a) The proposed method can be combined with,
e.g., a Kalman filter, for tackling high-frequency noise,
when far from a recalibration. (b) The proposed method
was described using polynomials as the fitting function,
but in Miller and Strange [2007] it was suggested that
Fourier series are effective for fitting to CGM data. (c) Fu-
ture CGMs may provide data richer than only blood-
glucose estimates, e.g., with accompanying estimates of
confidence bounds. The optimization based approach may
offer an avenue to exploit such auxiliary information.
(d) The notion of bias-control – the ability to manipulate
the state estimate in a well-defined manner based on fur-
ther sensors or user input – may be facilitated, potentially
leading to improved safety after detecting, e.g., a meal, ex-
ercise, a pump failure, or a sudden loss of CGM sensitivity.
These avenues will be investigated in future research.
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