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Abstract:  Off-line robot dynamic identification methods use the Inverse Dynamic Identification Model (IDIM), 
which calculates the motor torques that are linear in relation to the dynamic parameters of both links and drive chains, 
and use linear least squares technique (IDIM-LS technique). For most robots, the only available data are the motor 
position and the motor torques which are calculated as the product of the known current reference signal by the joint 
drive gains. Then the accuracy of links parameters may be limited by noise and error modeling in the drive chains. 
The Kuka LWR robot (industrial version IIWA: Intelligent Industrial Work Assistant) gives the possibility for an 
industrial robot to investigate this problem using the joint torque sensors data, measured at the output of the harmonic 
drive geared drive chains, to identify only the links inertial parameters without the errors coming from the drive 
chains. This paper focuses on the comparison of the accuracy of the identification of the dynamic parameters of the 
rigid model of the LWR4+ version, which is very popular in robotics research, using measures of the motor positions 
and the motor currents, or the torque sensors measurements or both side data. This paper is giving a first complete and 
reliable identified rigid dynamic model of the LWR4+, publicly available for the robotics community. Moreover, this 
work shows for the first time the strong result that motor torques calculated from motor currents can identify the links 
inertial parameters with the same accuracy than using joint torque sensors at the output of the joint drive chains. 
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1. INTRODUCTION 

The usual identification process is based on the Inverse 
Dynamic Model (IDM) and Least Squares (LS) estimation. 
This method, called IDIM-LS (Inverse Dynamic Identification 
Model with Least Squares), has been performed on several 
prototypes and industrial robots with accurate results 
(Hollerbach et al., 2008). This method needs the measurement 
of joint positions and the motor torques. These latter are 
computed as the product of the measurement of motor 
currents by the joint drive gains. Thus the accuracy of links 
parameters may be limited by noise and error modeling in the 
drive chains. 

The Institute of Robotics and Mechatronics at German 
Aerospace Center (DLR) collaborated with Kuka Roboter has 
manufactured a new generation of lightweight robot: the 
Kuka LWR 4+ (LightWeight Robot or LBR) (Albu-Schäffer et 
al., 2007)(Bischoff et al., 2010)(Rackl et al., 2012). It is 
mainly designed for collaborative work with humans. 
Consequently, the robot is provided with joint torque sensors 
located at the output of the drive chains, after the gearboxes. 
They measure joint torques without the drive chains effects 
for accurate and sensitive collision and failure detection. This 
robot gives the possibility to study the effect of noise and 
error modeling in the drive chains on the accuracy of links 
parameters by the use of the joint torque sensors data, 
measured at the output of the harmonic drive geared drive 
chains, to identify only the links inertial parameters. 
Futhermore, the manufacturer don't give any information 
about dynamic parameters of the robot and this paper is 

giving a first complete and reliable identified rigid dynamic 
model of the LWR4+, publicly available for the robotics 
community.  

A parameter identification of the robot is performed in 
(Rackl et al., 2012) and (Bargsten et al., 2013) with the joint 
torque sensors measurement. But some identified parameters 
are not given and the authors do not compare their results 
with the identified parameters using the motor torques. The 
use of motor torques allows to identify the complete dynamic 
model with drive chain inertias and frictions parameters. 

In this paper, a comparison of the dynamic identification of 
the Kuka LWR4+ Robot using measures of the motor currents 
or/and the the joint torque sensors measurements is performed 
with IDIM-LS method. So four models are compared from 
measurement of the actual robot: one with only the motor 
currents and motor positions, one with joint torque sensors 
measurement and motor positions, one with joint torque 
sensors measurement, motor currents and motor positions and 
the last with the same data of the previous one but for identify 
only the drive chains parameters.  

This paper is divided into six sections. Section 2 describes 
the modeling of robots and the four models. Section 3 
presents the usual method for dynamic identification based on 
IDIM-LS method. Section 4 is devoted to the experimental 
identification on the Kuka LWR. Section 5 is the conclusion. 

2. MODELING  

The IDM of a robot calculates the torques idm  as a 
function the motor positions, velocities and accelerations. It 
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can be obtained from the Newton-Euler or the Lagrangian 
equations (Khalil and Dombre, 2002). In this paper, only the 
rigid model is studied, not the flexible model (Albu-Schaffer 
and Hirzinger, 2001). It is noticed that the Kuka LWR is 
provided with torque sensors located after the gearbox of each 
joint (see figure 1).  

 
Encoder on the 
motor side gearbox Torque sensor 

Motor 

Link j 

Link j+1

 
Figure 1. Scheme of a joint of robot  

 
The complete IDM of the robot is given by the following 

relation with the consideration of motor torques and torque 
sensors measurements : 

   _ ( ) ,idm m fm fldiag q Iam M q q H q q          (1) 

   _ ,idm l flM q q H q q      (2) 

_ _ ( )idm m idm l fmdiag q Iam      (3) 

with: 

( ) ( ( ))

( ) ( ( ))

fm

fl

diag q Fvm diag sign q Fcm offm

diag q Fvl diag sign q Fcl offl





  

  

 
 

 (4) 

Where q , q  and q  are respectively the (nx1) vectors of 

motor positions, velocities and accelerations; τidm_m is the 
(nx1) vector of motor torques; τidm_l is the (nx1) vector of joint 
torque sensors measurement; M(q) is the (nxn)  robot inertia 
matrix;  ,H q q  is the (nx1) vector of Coriolis, centrifugal, 

gravitational and friction forces/torques; Iam is the (nx1) 
vector of total inertia moments for rotors and gears; Fvm and 
Fcm are the (nx1) vector  of viscous and Coulomb friction 
parameters of motor side; Offm is the (nx1) vector of motor 
current amplifier offset parameters; Fvl and Fcl are the (nx1) 
vector  of viscous and Coulomb friction parameters of link 
side; Offl is the (nx1) vector of torque sensor offset 
parameters; n  is the number of moving links. All 
measurement and mechanical variables are given in S.I. unit 
in joint side. 

Four sets of parameters can be identified with this IDM, the 
first called 'A' uses only the measurement of motor torques 
(equation (1)), the second called 'B' uses only the joint torque 
sensors measurement (equation (2)),  the third called ' C' uses 
both the motor torques and the joint torque sensors 
measurement (equations (1) and (2)) and the last called 'D' 
uses difference between the motor torques and the joint torque 
sensors measurement to identify only the drive chain 
parameters (equation (3)). 

The choice of the modified Denavit and Hartenberg frames 
attached to each link allows a dynamic model that is linear in 
relation to a set of standard dynamic parameters ST  

(Hollerbach et al., 2008) (Gautier and Khalil, 1990): 

  1 2

/A _ /  B _

/  C _ _ /  D _ _

, ,  with 

with:   , 

,  

TT T T

st st st stnidm st st

idm idm m idm idm l

TT T
idm idm m idm l idm idm m idm l

χ χ χ χIDM q q q χ

   

     

   
 

    

 

(5) 

Where  , ,stIDM q q q   is the (nxNs) jacobian matrix of τidm, 

with respect to the (Nsx1) vector  stχ  of the standard 

parameters. stjχ  is composed of the following standard 

dynamic parameters of axis j :  

          

with with measure  A and C 

       with measure B ,

with m
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 (6) 

Where Iamj is a total inertia moment for rotor and gears of 
actuator of link j (to simplify: it is named drive inertia 
moment) ; Fvmj and Fcmj are the viscous and Coulomb 
friction parameters of joint j (motor side); Offmj is the motor 
current amplifier offset of joint j ;  XXj, XYj, XZj, YYj, YZj, ZZj 
are the six components of the robot inertia matrix  of link j; 
MXj, MYj, MZj, are the components of the first moments of 
link j; Mj is the mass of link j; Fvlj and Fclj are the (nx1) 
vector of viscous and Coulomb friction parameters of joint j 
(link side);  Offlj is the torque sensor offset of joint j .  The 
maximum number of standard parameters is Ns=17xn. 

3. IDIM-LS: INVERSE DYNAMIC IDENTIFICATION MODEL WITH 

LEAST SQUARES METHOD 

1. Theory 

Because of perturbations due to noise measurement and 
modeling errors, the actual torque  differs from idm  by an 
error e, such that: 

 
A B

C D

with:   ,   , 

  

idm ST st

m l

T

m l m l

e IDM q,q,q χ e

,

 

   

     

   

 

    

 

  (7) 

Where  l  is the joint torque sensors measurement andm is 
the actual motor torques computed as the product of the 
measured motor currents by the joint drive gains: 

j
m j jg I    (8) 

Where j
m , ,gj and Ij, are respectively the motor torque, the 

manufacturer's joint drive gain and the motor current of joint 
j. 

The vector stχ̂  is the least squares (LS) solution of an over 

determined system built from the sampling of (7), while the 
robot is tracking exciting trajectories (Gautier and Khalil, 
1991): 

st stY = W χ + ρ   (9) 
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Where: Y is the (rx1) measurement vector, stW  the (rxnst) 

observation matrix, and ρ is the (rx1) vector of errors. The 
number of rows is r=nxne, where the number of recorded 
samples is ne. When Wst is not a full rank matrix, the LS 
solution is not unique. The system (9) is rewritten: 

Y =Wχ+ ρ  (10) 

Where a subset W of b independent columns of Wst is 
calculated, which defines the vector χ of b base parameters 
(Gautier and Khalil, 1990)(Mayeda et al., 1990). The base 
parameters are obtained from standard dynamic parameters by 
regrouping some of them with linear relation (Gautier and 
Khalil, 1990)(Mayeda et al., 1990).  
ρ is assumed to have zero mean, be serially uncorrelated 

and be heteroskedastic, i.ie., to have a diagonal covariance 
matrix  partitioned so that (Gautier, 1997)(Janot et al., 
2014): 

 2 2 2
1 ne j ne n nediag I I I       (11) 

where Ine is the (nexne) identity matrix. The 
heteroskedasticity hythesis is based on the fact that robots are 
nonlinear multi-input multi-output (MIMO). 

2
j  is the error variance calculated from subsystem j 

ordinary LS (OLS) solution: 
j j jY W     (12) 

Thus, the weighted LS (WLS) estimator is used to estimate 
χ. The WLS solution of (10) is given by: 

  11 1ˆ T TW W W Y
     (13) 

Usually, such weighting operations normalize the error 
terms in (10). Indeed, with: 

1/ 2    (14) 

one obtains T 1/2 T 1/ 2( )= ( ) rE E I        .  

The estimated covariance matrix of WLS estimates is: 

  11T
LS W W

    (15) 

2
ˆ ( )ˆ ( , )i LS i i   is the ith diagonal coefficient of LS . The 

relative standard deviation ˆ ( )ˆ% i  of ̂ (the ith component of  

̂  ) is given by: 

ˆ ˆ( ) ( )
ˆ ˆˆ ˆ% 100 / ( ) with ( ) 0i i i i       (16) 

2. Identification of the payload inertial parameters 

In order to identify the payload parameters, it is necessary 
that the robot carried out two sets of trajectories: without the 
payload and with the payload fixed to the end-effector (Khalil 
et al., 2007). The payload is considered as a link 1n  fixed to 
the link n  of the robot (Khalil et al., 2007).  

3. Filtering 

Calculating the LS solution of (10) from perturbed data in 
W and Y may lead to bias if W is correlated to ρ. Then, it is 
essential to filter data in Y and W before computing the WLS 
solution. Velocities and accelerations are estimated by means 

of a band-pass filtering of the positions (with Butterworth 
filter). More details about the adjustment of cut-off frequency 
of Butterworth filter can be found in (Gautier, 1997) and 
(Gautier et al., 2012). 

 To eliminate high frequency noises and torque ripples and 
to avoid that  W  and Y  are statistically correlated with error 
terms, a parallel decimation (decimate filter) is performed on 
Y and on each column of W. To chose the cut-off frequency of 
the decimate filter, a Durbin-Watson test is performed  (Janot 
et al., 2014), the dw value is computed with the following 
relation: 

    

 

r 2

i 2
r

2

i 1

i i 1
dw

i

 







 




  (17) 

The dw value must be between 1 and 3 with ideal value at 
2. The choice of  the cut-off frequency of the decimate filter is 
a compromise between the minimization of |dw-2| value and 
the conservation of the robot dynamics in W and Y.  

4. Model reduction 

Some parameters have no significant contribution on the 
robot dynamics. These parameters can be cancelled in order to 
keep a set of essential parameters of a simplified dynamic 
model with a good accuracy. Recently, a new model reduction 
method based on the F-statistic (Davidson and MacKinnon, 
1993) was introduced in (Janot et al., 2014).  

The F-statistic is run as follows: 
- compute the vector of errors ||  || with the system (10) 

which contains the b base parameters, 
- for each b base parameter , compute the vector of errors 

|| c || with the system (10) reduced to the bc=b-1 base 

parameters (with removing the current parameter) and 
computes: 

   
 

2 2

c c

2

b b
F̂

r b

 



 


   (18) 

If F̂ is less than or compatible with Fd then the F-statistic 
accepts the model reduction i.e. the current parameter can be 
deleted from the model; otherwise, the model reduction is 
rejected, i.e the current parameter is kept in the model. 
Parameters that show the largest relative standard deviation 
are eliminated first and the process is executed until the F-
statistic fails.  

 Fd can be read on the Fisher-Snedecor table with α=5%, if 
r 1,  Fd is equal to 3.85.  

It is noticed that it is needed to perform a Kolmogorov-
Smirnov test to verify the normality of ||  || before to apply 

the F-statistic. 
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4. EXPERIMENTAL VALIDATION 

5. Description of the robot and its kinematics  

The Kuka LWR (see figure 2) robot has a serial structure 
with n=7 rotational joints. Each motor has encoder which 
measures the motor position.  

 

3rl  

3 4,x x  

0 1 2, ,x x x  

4z  
5rl  

6z  

5 76 8( ), ,, Px x x x  

5 70 1 3 8( ), , , , , Pz z z z z z  

2z  

 
 
 
 

 
Figure 2. Link frame of the robot and robot without and with payload 

 
The kinematics of serial robots is defined using the 

Modified Denavit and Hartenberg (MDH) notation (Khalil 
and Dombre, 2002). In this notation, the link j fixed frame is 
defined such that: the zj axis is taken along joint j axis; the xj 
axis is along the common normal between zj and zj+1; j and dj 
parameterize the angle and distance between zj-1 and zj along 
xj-1, respectively; j and rj parameterize the angle and distance 
between xj-1 and xj along zj , respectively; a(j) denotes the link 
antecedent to link j.  

The geometric parameters defining the robot frames are 
given in table I. The 8th joint 'L' corresponds to the payload. 
The model A of the Kuka LWR has b=79  base parameters 
with payload parameters (b=74 for model B, b=102 for 
model C and b=28 for model D). The regrouped parameters 
are detailed in appendix 1 for models A,B and C. There are no 
regrouped parameters for model D.  

 

TABLE I. MDH PARAMETERS OF THE KUKA LWR4+ 

j a(j) j dj j rj 
1 0 0 0 q1 0 

2   0 q2 0 

3   0 q3 rl3(= 0.400 m) 

4   0 q4 0 

5   0 q5 rl5(= 0.390 m) 

6   0 q6 0 

7   0 q7 0 

8(P)  2 0 0 0 0 

 

6. Data acquisition, exciting trajectories and filtering 

The KRL controller of the Kuka LWR provides motor 
positions, motor currents and joint torque sensors 

measurement using an internal special function called 
“Recorder” in S.I unit in joint side. The sample acquisition 
frequency is 1(KHz). The exciting trajectories PTP (Point-To-
Point) consist of 44 points additional of start and stop 
positions chosen that make the robot moving in most of its 
workspace areas. The motion profiles are trapezoidal 
acceleration profiles and the total motion has duration of 90 
seconds by trajectories.  

In order to identify the payload parameters, it is necessary 
that the robot carried out two sets of trajectories: without the 
payload and with the payload fixed to the end-effector  (see 
figure 2).  The mass of payload has been measured with an 
weighing machine at ML=4.6136 (Kg)±0.1(gr). The robot has 
severable possible control law. In this paper, only the joint 
position control is used with a decentralized feedback 
controller (Albu-Schäffer et al., 2007).  

For each axis j, Kuka controller estimates the joint position 
qaj from the joint torque sensor measurementcj , motor 
position qj and an a priori stiffness value kap

j: qaj=qj-cj /k
ap

j 
with kap

j is 10000(Nm/rad) for axis 1 to 5 and 7500(Nm/rad) 
for axis 6 and 7. In this paper, only the motor positions q are 
used for the four models. A brief comparison between using 
of motor positions and joint positions on model B is 
performed in appendix 2.  

The cut-off frequency of the Butterworth filter is fixed at 
10(Hz) . The cut-off frequency of the decimate filter is fixed 
at 0.8(Hz) and allows to have dw=1.7 .  

7. Dynamic identification 

The identification of dynamic parameters of the Kuka 
LWR with payload is performed for the four models. The 
results are given in table II with relative errors ||e%||

 
between 

the identified values of model B, C and D to model A.  
The Fvmj and Fcmj  identified value of model A are 

respectively the regrouped parameters Fvmj+ Fvlj and Fcmj+ 
Fvlj (see appendix 1). The parameters with the subscript R 
stand for the regrouped parameters (see appendix 1).  

The relative error between measured and reconstructed 
torques are respectively 9.0%, 2.6%, 3.2% and 12% for the 
four models. The torque of the axis 1 and 2 are show on 
figure 4 to 7. 

Only 34 essential parameters are identified for model A, 23 
for model B, 44 for model C and 21 for model D. The payload 
is well identified for the first three models (<1% error). The 
relative standard deviations are low and the histogram of error 
on figure 3 show us that the errors terms are normalized thus 
the identification is relevant.  
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Figure 3. Histogram of error and estimated Gaussian
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TABLE II. IDIM-LS identified values with motor positions 

Model A Model B Model C Model D 

Par. χ̂
 rˆ%   χ̂

 rˆ%   
||e%|| χ̂

rˆ%   
||e%|| χ̂

 rˆ%  ||e%||

Iam1 - - - - - 3.19 2.8 - 3.20 1.9 - 
Fvm1 14.4 1.5 - - - 14.4 2.0 - 14.3 1.3 0.7 
Fcm1 11.9 2.2 - - - 11.6 3.0 - 11.6 2.0 2.5 
Iam2 - - - - - 3.05 6.5 - 3.05 4.9 - 
Fvm2 15.3 2.6 - - - 15.1 3.5 - 15.5 2.6 1.3 
Fcm2 11.5 3.3 - - - 11.1 4.5 - 10.7 3.6 7.0 
Iam3 2.01 2.5 - - - 1.98 2.9 - 1.98 2.3 1.5 
Fvm3 6.55 2.1 - - - 6.51 2.5 - 6.50 2.0 0.8 
Fcm3 8.98 1.9 - - - 8.58 2.4 - 8.60 1.9 4.2 
Iam4 1.92 4.3 - - - 2.05 4.3 - 2.06 3.0 7.3 
Fvm4 11.0 1.7 - - - 11.0 2.3 - 11.1 1.6 0.9 
Fcm4 8.35 2.1 - - - 8.04 3.0 - 8.02 2.0 4.0 
Iam5 0.776 3.3 - - - 0.787 4.0 - 0.801 3.0 3.2 
Fvm5 4.29 1.8 - - - 4.38 2.1 - 4.37 1.6 1.9 
Fcm5 8.31 1.4 - - - 7.37 1.9 - 7.38 1.4 11 
Iam6 0.391 7.4 - - - 0.391 9.8 - 0.48 8.7 23 
Fvm6 2.26 3.6 - - - 2.25 4.9 - 2.42 5.0 7.1 
Fcm6 4.72 1.3 - - - 4.67 1.8 - 4.64 2.0 1.7 
Iam7 0.399 3.2 - - - 0.394 3.8 - 0.381 7.5 4.5 
Fvm7 1.6 2.3 - - - 1.6 3.0 - 1.75 5.2 9.4 
Fcm7 6.04 0.98 - - - 5.91 1.3 - 6.02 2.4 0.3 
Fcl1 ‐  ‐  0.384 6.6 - 0.386 6.1 - - - - 

Fcl2 ‐  ‐  0.522 6.1 - 0.524 5.5 - - - - 

Fcl3 ‐  ‐  0.452 3.1 - 0.452 2.8 - - - - 

Fcl4 ‐  ‐  0.317 4.2 - 0.317 3.7 - - - - 

Fcl5 ‐  ‐  0.861 2.5 - 0.935 3.0 - - - - 

Fcl7 ‐  ‐  0.080 6.8 - 0.079 5.9 - - - - 

ZZ1Ra 3.20 2.6 - - - - - - - - - 

XX2R 1.31 11 1.29 1.6 1.5 1.3 1.5 0.8 - - - 

ZZ2Ra 4.46 4.1 - - - - - - - - - 

ZZ2Rc ‐  ‐  1.28 1.8 - 1.28 1.6 - - - - 

MY2R 3.37 1.6 3.46 0.19 2.7 3.45 0.18 2.4 - - - 

XX4R 0.368 9.0 0.441 1.0 20 0.441 0.91 20 - - - 

ZZ4R 0.491 9.2 0.44 1.2 10 0.441 1.0 10 - - - 

MY4R -1.37 1.2 -1.35 0.21 1.5 -1.35 0.18 1.5 - - - 

MY5R 0.049 17 0.040 4.2 17 0.040 3.6 17 - - - 

MY6R 0.042 17 0.036 7.4 15 0.035 6.4 17 - - - 

MY7 ‐  ‐  0.006 16 - 0.006 14 - - - - 

XXL 0.118 19 0.106 6.2 10 0.106 5.2 10 - - - 

XZL -0.037 20 -0.037 5.1 1.6 -0.037 4.3 1.3 - - - 

YZL ‐  ‐  0.025 8.8 - 0.025 7.6 - - - - 

ZZL ‐  ‐  0.038 4.4 - 0.039 3.7 - - - - 

MXL 0.332 1.9 0.277 0.46 17 0.278 0.39 16 - - - 

MYL -0.314 2.0 -0.269 0.58 14 -0.270 0.49 14 - - - 

MZL 0.548 2.3 0.544 0.87 0.7 0.545 0.73 0.5 - - - 

ML 4.68 1.4 4.60 0.25 1.7 4.60 0.21 1.7 - - - 

8. Discussion 

The relative errors between the parameters of model A 
(only motor torques) and model B (only joint torque sensors 
measurement) are between 0.5 and 20%.  For axis 2, the 
relative error between ZZ2Ra  and ZZ2Rc+Ia2c  is 3% (less than 
relative standard deviation of  ZZ2Ra). The model C allows to 
separate ZZ2R and Ia2 . With only using motor torques, the 
link’s parameters (like XX, MX, MY...) are identified as well 

as when the joint torque sensors measurements are used 
(relative error between 0.5 and 16%). It shows that only using 
motor torques is relevant to identify the major part of dynamic 
parameters of a robot.  

The major advantage of using motor currents (model A) is 
that allows identifying the drive inertia moment and frictions 
parameters presents before torque sensor (motor side). But 
some drive inertia moments (2) are regrouping with robot’s 
inertial parameters (see appendix 1). Using only the joint 
torque sensors measurement (model B) allows identifying 
only the joint parameters and some frictions parameters 
presents after torque sensors. The simultaneous use of the 
motor currents and the joint torque sensors measurement  
(model C) allows to identify separately all drive inertia 
moment from the robot inertia parameters additional of 
frictions parameters and joint parameters, using both 
measurements allows to identify more parameters compared 
of the model A and B. However, the simple use of motor 
torque is relevant because almost all parameters are identified. 
The model D shows us that it is possible to identify only the 
drive chain parameters.  

5. CONCLUSION 

In this paper, a comparison between using motor currents 
measurement, using  joint torque sensors measurement and 
using both data for the dynamic identification of a Kuka LWR 
robot was performed. The use of either or both measurements 
allows to identify all or a subset of dynamic parameters. Only 
the link’s parameters are identifiable when using joint torque 
sensors measurement while almost all parameters are 
identifiable using motor torques data. Using both 
measurements allows separating some drive inertia moment 
from the robot’s inertial parameters. But the main strong 
result is that motor torques calculated from motor currents can 
identify the link’s inertial parameters with the same accuracy 
than using joint torques sensors at the output of the drive 
chain. With the off-line IDIM-LS identification technique, the 
motor currents can measure accurately the dynamics of the 
links through the geared drive chains. 

APPENDIX 1: REGROUPED BASE PARAMETERS OF KUKA LWR 

The regrouped base parameters (Gautier and Khalil, 
1990)(Mayeda et al., 1990) are given in table IV. 

 
TABLE III. REGROUPED PARAMETERS OF THE KUKA LWR4+ ROBOT 

Model A Model B and C

ZZ1R=ZZ1+Iam1+YY2 

ZZ2R=ZZ2+Iam2+YY3+2rl3MZ3  
+ rl3

2 (M3+ M4+ M5+ M6+ M7) 

FvmjR= Fvmj+ Fvlj 

FcmjR= Fcmj+ Fvlj 

ZZ1R=ZZ1+YY2 

ZZ2R=ZZ2+YY3+2rl3MZ3  
+ rl3

2 (M3+ M4+ M5+ M6+ M7) 

Model A,B and C 
XX2R=XX2-YY2+YY3+2rl3MZ3+ rl3

2 (M3+ M4+ M5+ M6+ M7) 

MY2R=MY2+MZ3+ rl3(M3+ M4+ M5+ M6+ M7) 

XX3R=XX3-YY3+YY4 ;ZZ3R=ZZ3+YY4 ;MY3R=MY3+MZ4  

XX4R= XX4- YY4+YY5+2rl5MZ5+ rl5
2(M5+ M6+ M7)  

ZZ4R= ZZ4+YY5+2rl5MZ5+ rl5
2(M5+ M6+ M7) 

MY4R= MY4- MZ5- rl5(M5+ M6+ M7); XX5R= XX5 -YY5+YY6  

ZZ5R= ZZ5+YY6  ;MY5R= MY5-MZ6 ;XX6R= XX6 -YY6+YY7 

     ZZ6R= ZZ6 +YY7 ; MY6R= MY6 +MZ7 ; XX7R= XX7 -YY7 
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APPENDIX 2: COMPARISON BETWEEN USING MOTOR POSITIONS 

AND JOINT POSITIONS 

The relative difference between the estimation of joint 
position and the motor position (in S.I. unit on joint side) is 
between 2 10-5 and 3.5 10-3. A brief comparison between the 
use of motor positions and joint positions is performed for 
model B. The results are given in table V with the relative 
error between the parameters identified with motor positions 
(see table V) and the parameters identified with joint positions 
with the following model: 

   _ ,idm c a a a aM q q H q q     (19) 

     The results with the use of joint positions are close to 
the results with the use of motor positions. So if the 
flexibilities are not excited, the motor positions can be used 
for performing identification.  

 

TABLE IV. IDIM-LS IDENTIFIED OF MODEL B WITH JOINT POSITIONS 

Par. χ̂  
rˆ%   e%  Par. χ̂  

rˆ%   e%

Fsl1 0.386 6.7 0.5 MY5R 0.040 4.1 1.7 
Fsl2 0.524 6.1 0.4 MY6R 0.036 7.13 0.8 
Fsl3 0.451 3.2 0.2 XXL 0.093 6.75 13 
Fsl4 0.322 4.0 1.6 XZL -0.035 5.11 3.8 
Fsl5 0.861 2.4 0 YYL 0.078 8.15 14 
Fsl7 0.80 6.7 0.1 YZL 0.024 8.72 2.8 
XX2R 1.26 1.6 2.3 ZZL 0.037 4.31 2.7 

ZZ2R.a.b 1.25 1.7 2.3 MXL 0.276 0.44 0.4 
MY2R 3.45 0.19 0.3 MYL -0.269 0.57 0 
XX4R 0.432 1.0 2.0 MZL 0.544 0.83 0 
ZZ4R 0.439 1.1 0.2 ML 4.57 0.24 0.7 
MY4R -1.35 0,21 0     
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Figure 4. Model A, measured (red) and reconstructed (blue) motor torques 

with error (black) (motor torques 1 and 2) 
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Figure 5. Model B, measured (red) and reconstructed (blue) joint torque 

sensors measurement with error (black) (joint torques 1 and 2) 
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Figure 6. Model B, measured (red) and reconstructed (blue) torques with 

error (black) (motor torque 1 and joint torque 1) 
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Figure 7. Model D, measured (red) and reconstructed (blue) torques with 

error (black) (torques 1 and 2) 
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