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Abstract:

This paper considers a boundary feedback control problem for a MIMO counter-propagating
Raman amplifier. The system is modeled as a set of coupled semilinear hyperbolic partial
differential equations with Lotka-Volterra type nonlinearity. The system is linearized about the
steady-state solution, and a boundary controller is designed based on a Lyapunov functional
whose time derivative is made strictly negative by an appropriate choice of boundary conditions.
As a result, exponential convergence to the steady-state solution is shown in the L?-norm. The
results are extended to the nonlinear system under a key assumption.
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1. INTRODUCTION

It is not always ideal to apply finite dimensional approx-
imation techniques to an underlying infinite dimensional
dynamical system (Lasiecka (1987)). Hyperbolic systems,
for example, have properties such as finite speed of prop-
agation that require higher order approximations if one
decides to take a finite dimensional approach as in Dower
and Farrell (2006). Boundary control operating directly
on infinite dimensional models has successfully been done
using Lyapunov-based techniques (see Pavel and Chang
(2012), Coron et al. (2004), Vazquez et al. (2011)).

In this paper, we consider a boundary control problem for
N coupled, first-order, semilinear hyperbolic partial differ-
ential equations of space and time. The nonlinear reaction
terms are of the Lotka-Volterra type which can be used to
model a number of different phenomena, but our particular
interest is that of stimulated Raman scattering used for
optical amplification (Dower and Farrell (2006)). In Pavel
and Chang (2012), static and dynamic boundary con-
trollers were designed using a Lyapunov functional whose
time derivative is made strictly negative along solutions
of the closed loop system. The paper showed that if the
H'-norm of initial conditions is chosen sufficiently small,
then exponential (asymptotic) convergence to the desired
steady state solution is guaranteed in the L? (C°) norm.
However, only the simplest 2x2 co-propagating setup was
considered. It is well known that the counter-propagating
configuration is preferred because amplitude fluctuations
in the pump power are averaged out in the Raman process
(Headley and Agrawal (2005)). Also, a typical setup has
several pumps and signals. Therefore we are primarily
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concerned with the NxN counter-propagating setup in
which the pump(s) and signal(s) propagate in opposite
directions. Our contribution is developing a Lyapunov-
based boundary control approach to treat the NxN fully
actuated counter-propagating case. Boundary control using
this method is currently not known to exist for the counter-
propagating case. In this paper, we see challenges arise
when searching for subsets invariant in the C° norm. For
the co-propagating system, sublevel sets of a Lyapunov
function solved this problem. However, this Lyapunov
function fails for the counter-propagating system.

The paper carries out analysis in a Sobolev space frame-
work as in Vazquez et al. (2011). The paper is organized as
follows. Section 2 presents the model and boundary control
problem along with existence and uniqueness of solutions.
Section 3 presents L? convergence results based on the
system linearized about the steady-state solution. Section
4 presents L? convergence results for the nonlinear system
under a key assumption, and Section 5 presents simulation
results.

The following notation is used. Let Q := (0,1),Q =
[0,1],00 = {0,1}. Let L*(Q;R") denote the Lebesgue
space of R™-valued square-integrable functions on 2, and
use £2(Q) := L?(Q2;R") as a compact notation for this
space of vector-valued functions. £2(12) is a Hilbert space
with the inner product denoted < -, > and the L2-norm
denoted by || « || z2

1
lullce = / u(z)[? dz
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where || - || denotes the Euclidean norm in R™. Let £>°(2)
denote the Lebesgue space of R"-valued measurable func-
tions on {2 that are essentially bounded with the norm

||| goe = esssup |u(z)]e < 00
E19)

and C°() the space of R"-valued continuous functions on
Q with the norm

[[ul[oc 1= max [u(z) o
2€Q
where |u|o, = max; |u;| in R™. For continuous functions

the £%°(Q)-norm is equal to the C°(Q)-norm. For k € Z,
we denote the usual Sobolev space by

d"u

HE(Q) = {uGLQ( )|d =

€ L2(Q),Vn < k:}

equipped with the usual H*-norm

d?L
ol = 3 1 e

n=0

2. MODEL AND PROBLEM FORMULATION

We consider a counter-propagating Raman amplifier model
with n signals and n pumps. Let N := 2n. Define the
vector of pumps and signals as

p(ta Z) = [pl (t7 Z) s pn(tv Z) pn+1(tv Z) s pN(t7 Z) ]T
where p;(t,2) > 0 is the i*" signal power if i € {1,...,n}
or the (i — n)* pump power if i € {n+1,...,N}.
These powers propagate with characteristic speeds \;
along the length of the amplifier Q& = (0,1). Without
loss of generality we may assume that 0 < A\ < -+ <
An. Consider the following NxN first-order semilinear
hyperbolic system which models this counter-propagating
configuration

Opi(t, 2) Op;(t,z

7*>\ —Pi i35
o S it Z pip;
Jj=n+1
1=1,...,n
Opi(t, 2) 8;01 t,z)
ot = N\ - szpj7
i=n+1,...,N (1)

t >0,z € Q with initial conditions

pi(O, Z)

Note in (1) the opposite signs for pumps and signals. Also
note that we use the non-depleted pump approximation as
in Dower and Farrell (2006) by neglecting coupling terms
between the pumps and signals themselves. Typically we

zpio(z), izl,...,N, Zeﬁ (2)

maintain a constant input signal p;(¢t,0) = ;s Vi €
{1,...,n} and a desired output signal (set point) p;(¢,1) =
yia Vi € {1,...,n} by manipulating only the pumps at
their input (2 = 1). This gives rise to the following
boundary conditions that hold V¢ > 0 for system (1)

ie{l,...,n} (3)
ie{n+1,...,N}

where u;.(t) are the control actions to be designed based

on the signal power at the output (z = 1). For constant
control actions u;.(t) = U, let

p(2) == [1(2) ... Bal2) Pusr(2) ... Dn(2)]"

denote the steady-state solution that satisfies the set point

#1(1), s Bn(1)) = Wads-- - »Yna), along with boundary
conditions
]51(0) = U;g, 1€ {1,...,7’L} (4)
Pi(1) = e, ie{n+1,...,N}

Let y,; € R™ denote the vector of desired output signals,
p.(t,z) € R™ as the vector of signals and p_(t,z) € R"
as the vector of pumps. We then have the following block
diagram (Fig. 1) for the closed loop system (1)-(3)

y{ﬁ
P, (t,0) p.(t.1)
3 (_J
PDE System
p_(t.0) p_(t,1)
= Controller

Fig. 1. Boundary controlled system

The following assumption is used

Assumption 1. There exists a unique steady-state solution
p(z) € H2(Q),pi(z) > 0Vi € {1,...,N},z € Q that
satisfies the set point p;(1) = yiq Vi € {1,...,n} and
satisfying boundary conditions (4).

The steady-state solution gives rise to the following the set
of coupled ordinary differential equations

dpi(2) .
Ai dz —pi + Z Pnga 1=1,...,n

j=n+1
dpi(2) -
Y (}Z = —pi— Z:pipj,

z € Q with boundary conditions (4). The following change
of variables is made

i=n+1,...,N (5

w(t, z) :==p(t, z) — p(z) (6)
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We represent the signal and pump deviations propagating
in the positive and negative directions by w4 (t,z) € R”
and w_(t,z) € R™ respectively . Using (1), (5), (6) the
closed-loop system is written in terms of w(t, z) as

0 0
ﬁw(t, z) + aaw(t7 z) +b(2)w(t, z) = F(w(t, 2)), (7)

t >0,z € Q where

a:=diag {\1.. \n, = Ant1, s —AN}

= [ bt

N

1-— ’lI)j (Z) le n—1
bi1(z) :== j:zn;ﬂ oy
O(n—l)xl
—'U_Jl(Z) —’(I]l(Z)
blg(Z) _ . .
—Wn () —Wn(2)
wn-&-l(z) wn-&-l(z)
ba(2) = | s
QI)N(Z) @N(Z)
1 + wJ(Z) le n—1
bgg(z) = ; ( )

O(n—1)x1

and w;(2) := pi(2), a,b(z) € RV*N_ F(w(t,z2)) is specif-
ically a column vector in RY with entries Fj(w(t, z)) de-
fined as F;(w(t, z)) = Z;-V:nﬂ w;wj for i € {1,...,n} and
Fi(w(t, 2)) = =Y 7_jwyw; for i € {n+1,...,N}. With
boundary conditions from (3) and (4) we have

where the map to be designed G : RN — R¥ is of class
C? and vanishes at 0. These boundary conditions are of
the same form as in Coron et al. (2008). We see through
Lyapunov analysis in Section III that a natural choice for
boundary conditions is of the form

wi(£,0)] _ [0 0] [ (t,1)
[w(m) =K 0| |w_(t0) t=0 O
00 .
where G := {K 0 , K := diag {k1,...,k,}. We have the

following initial conditions from (2)

p10(2) — P1(2)

w(0,2) = = wp(2) (10)

pno(z) — pn(2)
2.1 Linearized Model

In this section we present the linearized model for the
counter-propagating system. In Section 3 we apply Lya-
punov analysis to this model. It is easy to verify that the
right hand side of (7) vanishes after linearization and thus
gives rise to the following system

0 0
— + = > S
LLw(t,z) +a Zw(t,z) b(z)w(t,z) =0, t >0,z gl)

with boundary conditions (9) and initial conditions (10).
The following are initial-boundary compatibility condi-
tions for (9)-(11)

[ﬁm N [Kw%(l)]
0

£ (KU (1) + ag- (Kul (1) + (1) Kul (1) =0

(12)

(13)

In the next subsection we discuss existence and uniqueness
of classical solutions for the mixed initial-boundary value
problem (9)-(11).

2.2 Ezistence and Uniqueness of Solutions

For the co-propagating system considered in Pavel and
Chang (2012), existence and uniqueness of classical solu-
tions of the closed loop system follows from the results of
Pavel (2009), Pavel (2013). It is shown that if a uniform
apriori bound on the C°(Q2)-norm of the local in time
classical solution exists, then the H!-norm cannot blow
up in finite time and global existence is guaranteed. The
authors solved this problem by finding subsets that are
invariant in the C°(Q)-norm using sublevel sets of a Lya-
punov function. As a result, asymptotic properties of the
solution could be studied and an entropy-like Lyapunov
function was constructed to guarantee stability in both
the £2(Q) and C°(Q) norms.

Therefore, the next natural step is to derive a uniform
apriori bound on the C°(Q)-norm of the local in time clas-
sical solution for the counter-propagating system. Unfortu-
nately, the Lyapunov function used for the co-propagating
system fails for the counter-propagating system. The op-
posite signs in front of the spatial differential operators
do not allow a differential inequality comparison as was
elegantly done for the co-propagating case in Pavel and
Chang (2012).

However, some work has been done for hyperbolic systems
of conservation laws in H? spaces (see Coron et al. (2004),
Vazquez et al. (2011), Coron et al. (2008)). These systems
are similar to (7) in the sense that there is a counter-
propagating configuration. In Coron et al. (2008), it is
shown that a unique maximal classical solution exists
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provided that the H2-norm of the initial condition is
sufficiently small. The solution mapping is contained in a
subset that is uniformly bounded in the L*°-norm. Many of
the existence and uniqueness proofs for such systems deal
with R (see Lax et al. (1973), Majda (1984)) but Coron
et al. (2008) gives a detailed adaption of these proofs to
boundary conditions of the same form as in (9). Although
only the homogenous case for systems of conservation laws
is considered, the results can be extended to systems with
nonzero right hand side h(u) provided h is of class C? and
vanishes at zero. We therefore claim

If initial-boundary compatibility conditions (12), (13) are
satisfied then there exists a sufficiently small § > 0 such
that if ||wg|/z2 < 0 then the Cauchy problem (9)-(11) has
a unique maximal classical solution

w(t) € C°([0,T), H*())
with T € [0, 4+o0].

We directly apply the existence and uniqueness results
from Coron et al. (2008) to the linearized closed loop
system. In Coron et al. (2008), the stability analysis is
done for homogeneous systems of conservation laws. Our
linearized system is the inhomogeneous case. Therefore, it
is worth it to explicitly carry out the stability analysis,
which is done in the next section. From this, clear £? sta-
bility results are derived in terms of the system parameters
(b(2), A1, K).

Remark 2. Note that this existence and uniqueness result
could also be applied to the nonlinear counter-propagating
system (7), (9), (10). However, as we see in Section 4, this
case is treated using H' existence and uniqueness results
from Pavel (2009), Pavel (2013).

3. LYAPUNOV ANALYSIS

In this section we construct a Lyapunov functional for
the linearized counter-propagating closed loop system. The
Lyapunov functional is instrumental in showing expo-
nential stability in the £2-norm. Consider the following
quadratic-like Lyapunov candidate function for the lin-
earized counter-propagating system (9)-(11)

1T
*5/ waef“zdz+ / Z wieth=d
0 =1 i=n+1
(14)

where we define w; := w;(t, z) for simplicity of notation.
This type of function has been used in various other works
involving the stability of hyperbolic systems (see Coron
et al. (2004), Vazquez et al. (2011), Diagne et al. (2012)).
This function is instrumental in the proof of the theorem
stated below:

Theorem 3. For system (9)-(11), there exists constants
¢,0,0 > 0 and matrix K € R™" guch that if ||wo|lz <
then

lw(t)lz2 < ce™||wollz2, Vt € [0,T]
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where T > 0 is the duration of the unique maximal
classical solution of the closed loop system.

We begin by introducing the following two lemmas that
assist in proving Theorem 3.

Lemma 4. The following holds Vu > 0

e lw®)|Zze < V(w®) < e w(t)]z (15)

Proof. The proof is simple, and follows from the defini-
tions of the £2-norm and V (w(t))

1 N
el ()2 = / et S wid < V(u(t)  (16)

i=1

and it is also clear that

1 N
t)) < / el wa dz = et||w(t)| % (17)
0 i=1

O

Lemma 5. For sufficiently small ||wp||y2 and Vi > 0,

V9 € (0,1) such that if A > 35 (,+7>

I Z;V nt1 Wjlleo < 1 then the following holds for the closed
loop system (9)-(11) for V¢ € [0, T]

and

V(w(t)) < —phi8V (w(t))

+Z< n+zk2 2t1)

where K := Hbij(z)Hoo < %0

Proof. Evaluating the time derivative of (14) along solu-
tions of the closed loop system yields

t>)=/oléwi (220

n N
—l—/l Z Z ww;w; | e dz
0

bii(z)wi> e 1 dz (19)

i=1 j=n+1
/ Z w; ( z% — b”(z)wi> et dz
1=n+1
1 n
— / Z Zwiwiwj e"* dz
0 \i=n+t14=1

Define the following:

n >\1
= Sui,

i=1 1=n—+1

ve(wy(t, 2))
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Using (19), (20) and the fact that b;;(z) > 0 Vi,Vz € Q
(since by assumption we have || Z;\f:nﬂ Wjllso < 1) we can

write the following estimate for V (w(t))

1
dv, t, _
V(w(t)) S/ v (w-i‘( Z)) BZ ], (21>
0 dz
1 n N
+/ Z Z wyw;w; | e ¥ dz
0 i=1 j=n+1
1
+/ dv, w,(t,z))eMZdZ
0 dZ
1 N n
7/ Z Zwiwiwj et dz
0 \i=n+1j=1
We now derive estimates for the fourth term in (21)
N N n
> S| <k Y Sl (2
i=n+1 j=1 i=n+1 j=1
Kb N n
<Y (wiwd) (23
i=n+1j=1
N
K
<N w? (24)
i=1

where in (22) we used the fact that w; < K, Vi,Vz €
Q from (7) and the definition of Kj. We used Young’s
inequality in (23). An equivalent estimate holds for the
second term in (21). After integrating by parts the terms
involving v, and v, and using boundary conditions from
(9) together with estimate (24) we write the following

estimate for V (w(t))

V(w(t) < —uAlV( (t))

—|—Z < " 202 (E, 1) et ziw?(t,l)e”>
o[RS g e o) i
0 i=1

It is easy to verify that max (e*”z + e“z) =e P 4e” so
z€Q

(25)

that (25) becomes

V(w(t)) < —phV(w(t))
+Z< 20 k202 (t, 1) et %wQ(t 1)e—f‘>

nky , _
+0 (er et) uot) 2

We equivalently rewrite (26) as follows for V0 € (0, 1)

V(w(t)) < —p(1 =MV (w(t) — pbAV(w(t))
Z( Rl (1, 1)e — St 1)e” u)

K,
+ 5 (e +e") [lw(t) |7

Note that by assumption in the Lemma 5 statement

(27)

nky 1 e _ nk,
AL > (1 79) (N + M) = (1 — g)g(ﬂ)

Multiplying both sides of (28) by 1u(1 — 0)e™#|lw(t)| 2
we have

(28)

(Olleiha(1 ) > "2 (et e)ulb) o (29)

and using the left hand side of Lemma 4 we have

P (1= OV (w(t) 2 "

(e +e) Jw)lez (30)

hence the last term in (27) is dominated and we have

V(w(t)) < —pMV (w(t))

+Z( M E202(t, 1) et —%w (t,1)e” *t)

which completes the proof of Lemma 5. O

(31)

Remark 6. It may first appear that (28) imposes a min-

imum speed requirement on the slowest signal. However,

from a practical perspective this condition should always

be satisfied for an appropriate range of . One can verify

that r?gn )g(,u) ~ 7.18 occurs at pmin = 0.639. Since the
J3S]

)

A; are generally of much higher order, and K; on much
lower order, we see that (28) does not impose a strict
practical constraint for an appropriate value of 6.

3.1 Proof of Theorem 3

We now prove the main result for the linearized Cauchy
problem (9)-(11). We begin by showing that the following
holds for an appropriate choice of K and u.

V(w(t)) < —pAi8V (w(t)), Yt €[0,T] (32)

It suffices to use Lemma 5 and choose constants k; so that

An i )\z —
T—Fk%wf(t, 1)et — ?wf(t, e ™™ <0 (33)
and we see (32) holds provided that
s
k? - 34
T (34)

After applying Gronwall’s inequality (Robinson (2001)) to
(32) along with Lemma 4 we have
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()|l g2 < V(w(t)) < V(wp)e #0Mt

e/‘«e*yﬂ)\lt
<
N 2

YVt € [0,7]. Thus, by (35) we see that |w(t)]zz <
ce 7 wo| 2 Vt € [0,T] with ¢ = €2* and o = fuX;. This
completes the proof of Theorem 3. O

Remark 7. By Theorem 3 we conclude that the deviated
closed loop system (9)-(11) is exponentially stable Vt €
[0,7] in the £2-norm for any given T' € (0,c0) provided
|lwo]| 2 is sufficiently small. Hence, the pumps and signals
approach the desired steady-state solution p(z) in the £2
sense.

(35)

llwoll 22

Remark 8. Note the trade off between 6 and the minimum
speed requirement for the slowest signal \;. A larger value
of 8 will result in faster decay to the steady-state solution
(in the £2 sense), but it also strengthens the constraint on
A1 in (28).

4. EXTENSION OF RESULTS TO THE NONLINEAR
SYSTEM

We briefly explain how the results for the linearized system
(9)-(11) can be extended to the nonlinear system (7), (9),
(10) under a key assumption. This assumption is needed
to derive estimates on a Lyapunov functional and apply
existence and uniqueness results in Pavel (2013). First we
recall an entropy-like function used in Pavel and Chang
(2012) for the co-propagating system. For any given real
number 4 > 0 let v : [ = (—u,00) = Ry

v(u) :=u—7a;ln (1 + %) (36)

Then (36) has the following properties: v(0) = 0, positive
definite on I\ {0}, and radially unbounded. Also, Va,b > 0
such that 1/b < @ < 1/a , the following holds on the
domain R := {1/b—u <u<1/a—u}

1 1-
Salul? < o(w) < Sl (37

Using this entropy function we introduce a new Lyapunov
functional for the nonlinear counter-propagating system

Viw(t)) := /0 > wilw(t, z))e ™ dz (38)
i=1

1 N
+/0 Z vi(w;i(t, 2))eTH* dz

i=n—+1

where

vilwi(t, 2)) := wilt, ) — W(2) In <1 L wilt Z>)

Unlike the quadratic-like Lyapunov functional considered
n (14), the entropy-like Lyapunov functional (38) matches
the structure of the Lotka-Volterra nonlinearity in (7).

Global £? exponential stability can be obtained by fol-
lowing the same methodology in Pavel and Chang (2012)
for the counter-propagating system under the following
assumption

Assumption 9. Let Hi,(Q) denote the usual Sobolev space
with embedded initial-boundary compatibility conidition.
Then there exists constants a1, bg,a,b,é > 0 such that if
llwoll: < 0 then w(t) € Dy Vt > 0 where

D, = {u € Ho(Q) | lulloe < min{d,d;}}

(39)

d = min {(1/@) — Julloos Tm —

dy < min {um, (1/a1) —
K3

(1/6)}

e?f?)fn}“i(l)} (41)

(40)

and Vi € {1,...,n}

(1/a1) > wi(1), (1/bo) < wpi(1)

where %, := min; min__g ;(z), i € {1,..., N}. Note that
under this assumption we inherently assume a uniform
bound on the C°(Q)-norm of the solution. This implies
global in time existence and uniqueness by Pavel (2013).
Also note that D; C Dy N'D where Dy, D are defined
analogously to (39). w(t) € Dy Vt > 0 allows us to use
(37) on the terms that appear after an integration by parts
in the time derivative estimate of (38). w(t) € D ¥Vt > 0
allows us to use 2), Lemma 2 in Pavel and Chang (2012)
which is analogous to (15). The main difference now is
that the Lotka-Volterra terms do not cancel in the time
derivative estimate for (38) as they did in Pavel and
Chang (2012). This problem is solved by an application
of Young’s inequality as in (23) and we arrive at a similar
(but practical) constraint like (28) on A;. The following
constraints on the k; (i € {1,...,n}) appear in the
Lyapunov analysis

(42)

 @ara(1) — 1/ @nyi(1) — 1/bo

k; 4
Var —oi(D) <= 5,0 (43)
2 are M\

2 - °* 44
ki < boAnyi (44)

Note the similarity between (44) and (34). The extra
condition (43) comes from using (37) after an integration
by parts which was not required in the linearized case.

Remark 10. Note that Assumption 9 could be eliminated
if one can show how to choose initial conditions wgy so
that the solution w(t) remains in subsets invariant in the
C°(Q)-norm. This has two important consequences. First,
global in time existence and uniqueness is guaranteed by
Pavel (2013). Second, we may choose wgy so that w(t)
remains in D;. For the co-propagating system in Pavel
and Chang (2012), Assumption 9 is not required. Instead,
subsets invariant in the C°(Q)-norm are found using a
scalar comparison lemma for differential inequalities with
an entropy-like Lyapunov function. However, this method
fails for the counter-propagating configuration, hence the
requirement for Assumption 9.
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Time (s u Mormalized Distance

Fig. 2. Signal 1 evolution
5. SIMULATION RESULTS

We simulate the 4x4 counter-propagating case using the
nonlinear model. The simulation was done in MATLAB
using a hyperbolic partial differential equation solver (see
Shampine (2005)). The closed loop Cauchy problem (1)-
(3) was solved using a central finite-difference method
with a time step of 10™* and spatial discretization step of
2-1073. The open loop system (1), (2) was first simulated
to generate a steady-state with

51(1) = 0.0542, py1(1) = 0.8350
52(1) = 0.1083, pa(1) = 0.95

where s;(t,2) and p;(t,2) are the signals and pumps
respectively. At ¢ = 0, a 10% increase in reference was
added for the signals at z = 1. The following proportional
controller is used to to track this change for 10 seconds
with k1 = ky = —2.3 (see Fig. 2, 3, 4, 5).

p1(t,1) = ki(s1(t, 1) — y1a) + U1e
pa(t, 1) = ko(s2(t, 1) — y2q) + Uae

and tracking was achieved with 7.5% error.

Remark 11. One can verify that the conditions (42)-(44),
are satisfied for k1 = ko = —2.3. Using a; = 9.22,by = 1.5
along with (45),(46) we see that (42) is satisfied since
for i = 1,2 we have 1/bp < p;(1) and 1/ag > 5;(1).
Condition (43) gives rise to the lower bounds k; > —3.1
and ky > —3.8 - 103, which are satisfied. The simulation
was done with )\i‘ - ~ 1 and it is easy to verify (44) is
satisfied for u = 0.1.

Remark 12. Future work will address designing a dynamic
boundary controller with integral action for the counter-
propagating system (1)-(3). Such a controller was designed
in Pavel and Chang (2012) and performed with much
higher accuracy than the proportional controller.

6. CONCLUSION

In this paper, we considered a coupled, semilinear hy-
perbolic PDE model for a normalized NxN counter-
propagating Raman amplifier and designed a boundary
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controller. After a change of coordinates, existence and
uniqueness results for classical solutions of the linearized
closed loop system were used in H2? spaces. Boundary
conditions were chosen appropriately in order to ensure
the decay of a quadratic-like Lyapunov functional along
solutions to the closed loop system. As a result, an ex-
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ponential stability result was obtained in the £2Z-norm.
Based on a key assumption, these results were extended to
the nonlinear system following the same methodology in
Pavel and Chang (2012). Future work will address under-
actuated, non-normalized cases, as well as finding subsets
invariant in the C°(Q2)-norm to remove Assumption 9 for
the nonlinear counter-propagating system.
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