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Abstract: Dealing with traffic management for complex crossroads is a challenging problem
for traffic control planners. As a contribution to solve this problem, the present paper develops
a mesoscopic simulation model for detecting the most suited fire plan for a complex road
intersection, using a discrete event simulation tool and an evolutionary algorithm optimization.
The modeling goal is to eliminate congestion by choosing an appropriate fire plan which will
be adapted to the actual configuration of the intersection, as well as to a future reconfiguration
meant to accept a higher inflow of vehicles. The proposed model is applied to a down-town
crossroads from Nancy, France. Four different configurations of the input data flow were studied
under the proposed simulation-optimization approach, and an optimal fire plan is proposed.
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1. INTRODUCTION

In a modern world concerned by global warming and envi-
ronmental crisis, efficient transportation systems become
a major preoccupation when trying to solve mandatory
problems such as : congestion, fluidity in transport, ra-
pidity to reach the working place, pollution, etc. The
continuous development of urban agglomerations requires
new infrastructure, reconfiguration and rethinking of the
transportation systems. Often, the extension of the ac-
tual infrastructure is impossible due to the large costs
this action would imply or to the lack of space. Studies
have shown that the simple expansion of the traffic in-
frastructure will not solve the congestion problems, but
moreover will induce a bigger demand for traveling and
rapid depletion of the additional capacity.

Therefore a traffic optimization becomes mandatory. This
would improve mobility, safety, congestion and of course,
the time spent in traffic. In the last decade, efforts have
been made towards the implementation of Intelligent Traf-
fic Systems (ITS), which would provide drivers with useful
traffic information or traffic forecasts via electronic panels,
Internet or radio. For example, Hafstein et al. (2004) pro-
posed a freeway Traffic Information System based on high
resolution cellular automata; by running a java applet in a
web page they provide users with useful information after
simulating current traffic zones every 30 and 60 minutes.
Other studies evaluate the impact of travel time feedback
strategies; multiple comparisons and simulation results can
be found in (Chen et al. (2012), Wang et al. (2005)).

The simulation of the traffic flow becomes a powerful tool
for the analysis, the reproduction and the foresight of

⋆ The authors of this work are grateful to the data and support
provided by the Urban Community of Grand Nancy (CUGN).

a wide variety of problems, which would be difficult to
analyze with real traffic tests. The main challenge remains
of course the optimization and improvement of the traffic
simulation in order to obtain accurate and realistic results.
But one of the most important problems in traffic opti-
mization is choosing the right traffic light plan, as it has
a strong impact on the traffic flow results: Brockfeld et al.
(2001). This is a combinatorial problem which is difficult
to solve by deterministic methods. Regarding the fact
that various works combine traffic simulation tools and
genetic algorithms (GAs), and obtain encouraging results,
we concentrate our attention on bio-inspired optimization
methods such as evolutionary algorithms (EAs) which we
present in this article, in combination with a new traffic
simulation tool, FlexSim.

Our main challenge is to find an optimal traffic plan for a
complex crossroads, knowing that many optimal and local
solutions for the problem may exist. The method has been
tested on the intersection C129 from downtown Nancy
France, containing three main junctions. The intersection
is a part of the new ecological quarter “Nancy Grand
Cœur” currently under projection for future reconfigura-
tion. The main goal of the future reconfiguration is to
be able to absorb a bigger traffic inflow, and therefore to
choose an appropriate fire plan.

The current paper is organized as follows. In Section 2
we present the state of the art concerning different traffic
simulation tools, followed by the introduction of a new
simulation tool: FlexSim. Section 3 is reserved to the
discussion of different optimization approaches in traffic
control, followed by the presentation of our evolutionary
algorithm in subsection 3.1. In Section 4 we present the
C129 intersection from Nancy, by explaining the imple-
mentation in FlexSim (subsection 4.1), the statistics and
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the scenarios we have tested (subsection 4.2), as well as the
optimization results (subsection 4.3). The model has been
built using the data from the Urban Community of Grand
Nancy (CUGN) 1 . The last part of the article presents the
interpretation of the results and the future perspectives of
this work.

2. TRAFFIC SIMULATION TOOLS

During the last decades, a wide range of traffic flow models
and theories have been developed in order to respond to
the traffic congestion problems. These models have been
designed according to either the scale of the application
(networks, links, intersections), the representation of the
process (deterministic, stochastic) or the scale of indepen-
dent variables (continuous, discrete). But one of the most
popular classification criterion is the level of details, or
more explicitly, the level of description of the traffic enti-
ties, as in Hoogendoorn and Bovy (2001). In the following
present a brief summary of some of the most popular traffic
simulators according to the level of detail.

2.1 Microscopic or sub-microscopic simulators

The microscopic traffic models describe in high detail the
behavior of the simulated entities entering the system
(vehicles, drivers), and calculates at each time step the po-
sition, the speed and the acceleration of each entity, or the
behavior of the drivers. Consequently, they are more suited
for small urban areas or special transportation facility
studies, needing fast computers with powerful resources.
Nowadays some of the most popular microsimulation tools
are CORSIM: Fellendorf and Vortisch (2010), VISSIM:
Hidas (2005), PARAMICS: Cameron and Duncan (1996),
and DYNASIM: Nishimoto et al. (2002). If CORSIM and
VISSIM are widely used in China, PARAMICS and DY-
NASIM have been more popular in Europe. However the
great diversity of microsimulation models can raise diffi-
culty when choosing the appropriate simulation platform.
For a technical and comparative analysis between some
of the above mentioned micro-simulators, the reader is
directed to recent studies of Sun et al. (2013).

2.2 Macroscopic simulators

The macroscopic simulation models describe the traffic at
a high level of aggregation, as a flow, using characteristics
such as density, velocity or flow-rate. They offer a global
description of the traffic, using for example, differential
equations, instead of modeling the movement of each
vehicle in the simulation. For example, METACOR: Salem
and Papageorgiou (1998), is a macro-simulation model in
which the traffic network is represented as a graph having
the entrances (or exits) as nodes. Other macroscopic
simulation models can be found in the works of (Zegeye
et al. (2013), Li et al. (2011)).

2.3 Mesoscopic simulators

The mesoscopic flow simulators reproduce the traffic flow
at an intermediate level between the microscopic and the
macroscopic level. They do not distinguish nor trace the
1 http://www.grand-nancy.org/

individual behavior of the vehicles in the system, but
specify in terms of probabilities the behavior of small
groups of traffic entities moving together.

Every connection inside the model influences the next
computation, as the average passage time in a segment
is influenced by the flow, the occupation of the segment
or its capacity. Some examples of mesoscopic simulators
are: TransModeler 2 , DynaSmart 3 and Metropolis from
Palma and Marchal (2002), which offers the possibility
of modeling the departure time choice and a day-to-day
dynamics. Although interesting simulation features can be
found in the previous examples, new mesoscopic simulators
need to be taken into consideration. An efficient discrete
event simulator is FlexSim which we present in the next
section.

2.4 FlexSim simulation

FlexSim is a powerful analysis and simulation tool which
allows to model, visualize and optimize real-life process,
from manufacturing to supply chains 4 . With FlexSim
the users can interact with common spreadsheet database
applications in order to build realistic 3-dimensional mod-
els with model charts and graphs which can dynamically
display output statistics during the simulation. Using the
integrated built-in experimenter, we can optimize and test
many scenarios over a chosen number of replications, stock
results in either global tables or export the final visual
representations for later use.

The facility of 3-D testing and visualization made FlexSIm
popular for optimization problems in distribution centers,
Hou (2013), production and assembly plants or even hospi-
tals. In Cimino et al. (2010), the authors present a detailed
comparison and evaluation between some of the most
popular software used for the discrete event simulation :
Arena, Witness, Promodel, Anylogic, Automod, Emplant
and FlexSim. In addition to the presented simulation
software, FlexSim allows to create its own libraries and
classes of objects, graphical user interfaces, applications.
Although Arena can be as well used for the traffic flow
simulation: Wen (2008), the flowchart for a simple cross-
roads becomes complex and difficult to follow, especially
when congestion problems occur. For this reason a 3D
graphical representation of the crossroads will offer a more
realistic perception of real-life situations, such as detection
or visualization of collisions.

All the above features have led us to test and use FlexSim
for the mesoscopic traffic simulation model that we present
in this paper. The results of the FlexSim simulation will
be presented in Section 4.3.

3. TRAFFIC OPTIMIZATION SYSTEMS

Although a traffic flow simulation is a very good repro-
duction of the real-life situation, it remains a method of
testing scenarios and compare the results in order to take
the best decision. Once the simulation model has been
defined, optimization could be easily reached through an

2 www.caliper.com/transmodeler/
3 www.its.uci.edu/ paramics/Models.html
4 www.flexsim.com/
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Fig. 1. Block diagram of the traffic simulation and optimization procedure.

iterative procedure, in the case of a simple system, but this
becomes hard as the system complexity rises.

With the progressive growth of the urban traffic networks,
the decentralization of the traffic control and decision
making has become inherent. Several techniques based on
artificial intelligence, such as multi-agent systems, Fuzzy
logic or artificial neural networks (ANNs), have raised as
important simulation and optimization techniques, which
respond to the needs of a distributed control with the
goal of reaching an optimum traffic state. A detailed
comparative analysis of each of the above techniques can
be found in Liu (2007), or more recently in Qureshi and
Abdullah (2013). Some other interesting approaches are
the ones using Petri nets as a simulation tool combined
either with PLC or Matlab Simulink: Voinescu et al.
(2009).

In the urban traffic control, an important aspect is the
optimization of the fire plans. As this can be regarded
as a non-convex nonlinear programming problem, finding
a global optimal solution is difficult to achieve by tra-
ditional mathematical methods. Evolutionary algorithms
(EA) have the advantage of finding solutions for such prob-
lems, as proved by the works of Medina: Sanchez Medina
et al. (2008), in which they combine a Genetic Algorithm
(GA) as an optimization technique, with a traffic micro-
scopic simulator, and apply it to traffic junctions from
Santa Cruz de Tenerife. Other interesting combinations
which motivate our choice of combining EA and traffic
simulation can be found in (Zhiyong (2006), Anfilets and
Shuts (2012)).

One of the advantages of using the evolutionary optimiza-
tion procedures (EO), is the fact that EOs use stochastic
operators, without gradient information in the search pro-
cess, and use more than one solution in an iteration (a
population approach), unlike most classical optimization
algorithms, which update one solution at each iteration:
Deb and Kalyanmoy (2001). The evolutionary algorithm
which we adopt in this paper is presented in the next
section.

3.1 The evolutionary algorithm (EA)

During the traffic simulation, the vehicles are being gener-
ated at the main entrances inside the model, and recuper-
ated once they leave the network. The number of vehicles
leaving the network, as well as the mean average time spent
inside the network give us the optimization criteria which
is tested using the evolutionary algorithm we present in
this section. Our objective is to decrease the mean time
that the vehicles spend inside the traffic model, in order
to increase the number of vehicles exiting the model, and
thus increase the traffic flow. This would allow to choose

an adapted fire plan for the intersection, from the existing
available fire plans to be tested.

In Figure 1 we represent the logical schema of the traffic
simulation model we propose and the optimization pro-
cedure. Based on the information we receive from the
real-world traffic intersection: the current available fire
plans for testing (P55, P70, P90, P80, see Section 4.1), the
number of total cars entering the intersection during rush
hours, and the probability of lane switching, we build the
simulation model in FlexSim. The simulation model offers
the possibility of determining the mean number of cars and
the average staytime inside the intersection, which will be
used in the EA optimization procedure. The proposed EA
will then determine the optimal fire plan which is best
adapted for the C129 intersection.

The algorithm we present in this paper is based on the
general approach of evolutionary algorithms given in Deb
and Kalyanmoy (2001). This algorithm has been selected
due to a good compromise between the execution time
and the computational precision, as shown in Perrin et al.
(1997). The complete outline of the algorithm is given in
Algorithm 1, containing the following steps:

(1) The current EA is an iterative optimization pro-
cess, starting from an initial population of nind in-
dividuals, which are supplied by the traffic simu-
lation model, and which are characterized by two
variables: the mean number of cars and the aver-
age stay-time inside the intersection. The function
initialise population is responsible for the initial-
ization of all the individuals inside the algorithm.
By P (ngen) we denote the whole population we are
creating at each generation of individuals.

(2) The next step is the evaluation of the population,
by computing the objective criteria we have defined,
inside the function calculate objective fct.

(3) Once the objective criteria has been computed for
all the individuals of the current population, the next
step is to sort and select the best individuals which we
call: survivors, using the function select best indiv.
This step is usually known as a sorting of solutions
from best to worst, and can be also achieved by
computing a domination score: Halsall-Whitney and
Thibault (2006).

(4) At this point, we have a selection of best individuals.
Now, we randomly generate the mutants of the popu-
lation, inside the domain definition of the population,
using the function generate mutant.

(5) The main part of the algorithm is the creation of
new individuals (children), by randomly choosing two
different parents (Ip1 and Ip2) from the population
of survivors (function select parents). The combi-
nation of these two individuals inside the function
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Algorithm 1 Outline of the evolutionary algorithm.

Require: nind (the number of individuals in a popula-
tion), ngmax (the number of maximum generations to
be created);

Ensure: P - the optimized population ;
Parameters: nsurv (number of survivors), nmut (num-
ber of mutants), ngen (number of populations)
//Step 1: construct initial population from simulation
ngen = 0;
P (0) ← initialise population();
while do(ngen ≤ ngmax)

//Step 2: Compute the objective criteria
for all ind ∈ P (ngen) do

calculate objective fct(ind)
end for
//Step 3: select best individuals(survivors)
Psurv ← select best indiv(P (ngen), nsurv)
//Step 4: generate mutants
Pmut ← ∅
for i = 1 : nmut do

mutant← generate mutant();
Pmut ← Pmut

⋃
mutant

end for
//Step 5: generate children
Pchild ← ∅
for i = 1 : (nind− nsurv − nmut) do

(p1, p2)← select parents(Psurv);
child← create child(p1,p2);
Pchild ← Pchild

⋃
child

end for
//Step 6: create the whole new population
Pngen+1 ← Psurv

⋃
Pmut

⋃
Pchild

ngen++; // increase the population counter
end while

create child, is made according to the equation :

Ichild = DpIp1 + (1−Dp)Ip2,

where Dp is a randomly selected real number between
0 and 1, each time an input Ichild has been deter-
mined.

(6) Steps (2) to (5) will be repeated until we gener-
ate a predetermined maximal number of generations
(mgmax), where ngmax is chosen by considering the
expected precision of the results.

To resume, the EA we present here is a population-based
stochastic search procedure, which selects the best mem-
bers of a population, and uses them to recombine and per-
turb locally, in order to create new and better populations
until the predefined goal was reached. Overall the EA offers
the possibility of having a flexible optimization procedure
for the traffic flow problem we are trying to solve.

4. CASE STUDY

As stated in the introduction, the first aim of this paper
is to show that our proposition is able to model the traffic
flow of a real-life complex intersection (C129) which is
based in downtown of Nancy France (Figure 2).

One of the main interests is to know which areas of the
intersection are more crowded and which traffic plan would

Fig. 2. Aerial view of the C129 intersection from Nancy,
France (Google Maps).

be more adapted to the new configurations, meant to
receive an increased number of vehicles each day.

When analyzing C129, we can observe that the vehicles en-
ter the intersection either from the bridge Pont des Fusillés
which is the main artery (passing over the railway tracks),
the Joffre Boulevard which also receives the vehicles from
Boulevard Ghetto Varsovie (passing under the bridge) and
the Grand Rabin Haguenaeur street which first intersects
the Cyfflé road. The main roads to exit the C129 junction
are Abbé Didelot, Cyfflé and Joffre Boulevard as well.

4.1 FlexSim simulation model

When building the mesoscopic simulation model for the
above intersection, various elements need to be consid-
ered: the main structure and configuration of the inter-
section (static), the entering and exiting objects (vehicles,
pedestrians, buses, etc.) as well as the traffic light plans.
FlexSim offers a powerful and scalable 3D simulation
environment which allows the modeling and simulation
of various objects inside the junction, using simulation
objects such as : conveyors for the streets, FlowBin Items
for vehicles and pedestrians, Visual Tools for traffic lights,
sources and sinks for generating, respectively for disposing
vehicles, processors for the random insertion of vehicles,
AutoCAD drawings for background, etc. A snapshot of
the 3D FlexSim Simulation can be seen in Figure 3.

Fig. 3. Simulation of the C129 intersection in FlexSIm.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8771



Our work has been done in collaboration with the CUGN
which provided for us the structure of the intersection, the
fire plans which would be tested, along with the directional
metering of the vehicles during the rush hours: morning
(07:30 - 08:30) and evenings (16:30 - 18:00), for a whole
week. We will give a short description of these parameters
in the following.

Fig. 4. Probabilities of lane changing in C129.

We consider that after the vehicles randomly enter C129,
they follow directional probabilities for switching the lanes.
These probabilities are built from the metered data we
have received. For example, in Figure 4, the 220 cars
entering the Grand Rabin Haguenauer street, will either
turn right (in proportion of 4.54%), turn left (20.46%) but
most of them will continue to enter the intersection (75%).

As stated earlier, the main objective of the simulation is
to choose a suited fire plan which would ease the traffic
flow during rush hours when a bigger number of vehicles
would enter the intersection. By fire plan we denote the
planning of the red-yellow-green cycles for all the traffic
lights of the C129. Four fire plans have been implemented
and tested in the simulation (lasting respectively 55, 70,
80 and 90 seconds), which give us the possibility to test
different scenarios in the simulation. We note these plans
: P55, P70, P80 and P90, respectively.

The random characteristics of the system demands a
certain number of replications to be made, in order to
obtain accurate results. The method suggested by Archer
and Hgskolan (2005) is to run successive simulations
until the average mean and standard variation of the
average stay-time (or the mean number of cars) fall within
an acceptable confidence interval calculated in relation
to the standard t-distribution. Using this procedure in
accordance with a confidence interval of 95 per cent, the
number of runs indicated approximately 10-12 runs per
scenario. Given the importance of the accuracy in the
results, we decided to conduct 15 simulation runs for each
time-period scenario. An important aspect of FlexSim
is that it can run parallel replications of the simulation
model according to the number of available processors.
The simulations have been made using an Intel Quad

Core i7 (2.4 GHz) computer having 8 GB DDR3 SDRAM
memory.

4.2 Statistics in FlexSim

The first step of the result interpretation is to compare
and analyze the mean number of cars inside C129 (Ncars)
when each traffic plan is applied, as well as the average
stay-time (Tavg) needed to pass C129.

Fig. 5. The total number of cars inside C129.

Figure 5 shows the variation of the number of cars inside
C129, during the morning rush hours. We can notice that
the P90 plan seems to allow a bigger number of cars to
pass the intersection and thus to be the one suitable for
bigger inflow; the next step would be to verify if the plan
is also suitable in terms of average stay-time.

Fig. 6. Tavg on a) Pont des Fusillés and b) Joffre Boulevard.

Figure 6 shows a comparison of the Tavg on two different
streets from C129. Although we would tend to confirm
that the P90 plan gives the smallest stay-time on the Pont
des Fusillés street: Figure 6a), we can observe that this
plan would dramatically increase the waiting time on the
Joffre Boulevard: Figure 6b).

This observation made us questioning the behavior of the
intersection during each fire plan, when a considerably
big number of vehicles will enter C129, as well as the
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variation of the Tavg versus the Nrcars. We denote by D2

the total number of vehicles entering C129 according to the
configuration we have received from the CUGN (Figure
4). We will then test each fire plan (P55, P70, P90, P80)
within the D2 scenario, but as well with one the following
scenarios: D1 = D2/2, D3 = D2 ∗ 2, D4 = D2 ∗ 3. Figure
7a) present a full representation of these experiments.

Fig. 7. Data variations on a) C129 b) Abbé Didelot Street

Based on Figure 7a), we would tend to make the following
remarks: a) the average stay-time inside C129 will grow
as the number of vehicles entering grows, b) the best
adapted plan even when a bigger number of vehicles enter
the intersection, seems to be the P55, which is in a total
contradiction with the previous observations. For example,
when representing the same variations on the Abbé Didelot
street (Figure 7b)), we can notice that there is a mix of
possible plans which would better be adapted to a bigger
number of vehicles (see the set D3).

4.3 Optimization problem

The observations from the previous section show us that
we have a heterogeneous and a complex system, for which
a particular optimization technique would be necessary.
We therefore search to maximize the output flow of C129
(Q) during Tavg. In other words, we search the minimal
average stay-time which would allow a maximal number
of cars to pass the C129 intersection:

Maximize Q = Ncars

Tavg

subject to Tavg ≥ 0 and Nrcars ≥ 0.

This would be the objective criteria we want to optimize
using the EA from Section 3.1. The number of individ-
uals are the total number of points resulted from each
simulation, following the experimental plan as in Figure
7, while the number of survivors and mutants have been
set according to the input data. The optimal result we
obtain in Figure 8 shows us that the best fire plan which
would better manage a big number of input vehicles is the
P90 (given by the closest point to the horizontal axis of
the optimum). This plan is currently being used in the
intersection but for all the possible situations (bigger or
lower inflow, rush hours or relaxed periods).
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Fig. 8. Algorithm 1 applied to the whole C129

But when analyzing the results using the D2 data set, as
shown in Figure 9, we have to state that the optimal plan
which would be nowadays adapted to most of the streets
of C129 is the P70 plan.

Fig. 9. A comparison of the optimal solutions obtained for
each street of the C129 intersection using the EA 1.

This aspect shows us the complexity of the system and
the need to conduct a deeper analysis in a systemic way,
especially when proposing an optimal traffic light plan of
an urban intersection.

5. CONCLUSION

In this paper we have presented a mesoscopic traffic
simulation model for a complex road intersection from
Nancy, France (C129). The first part of the paper presents
the traffic simulation model, while the second part is
focused on the evolutionary algorithm we have applied for
the optimization problem. The results indicate which fire
plan should be used with the actual configuration of the
system, chosen from the current existing plans. A further
perspective is to be able to optimize and choose the best
adapted fire plan from all the possible fire plans we can
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conceive for this intersection. The C129 intersection is part
of a reorganization plan of the ecological central quarter of
Nancy, therefore an extension of the actual traffic model
is enhanced.
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6 www.flexsim.com/blog/flexsim-student-tournament-in-france-
and-morocco/

Hoogendoorn, S. and Bovy, P. (2001). State of the art of
vehicular traffic flow modelling. In The Delft University
of Technology, 283303.

Hou, S. (2013). Distribution center logistics optimization
based on simulation.

Li, J., Zhang, B., Liu, W., and Tan, Z. (2011). Research on
OREMS-based large-scale emergency evacuation using
vehicles. Process Safety and Environmental Protection,
89(5), 300–309.

Liu, Z. (2007). A survey of intelligence methods in urban
traffic signal control. International Journal of Computer
Science and Network Security, 7(7), 105–112.

Nishimoto, K., Fucatu, C.H., and Masetti, I.Q. (2002).
DynasimA time domain simulator of anchored FPSO.
Journal of Offshore Mechanics and Arctic Engineering,
124(4), 203–211.

Palma, A.d. and Marchal, F. (2002). Real cases appli-
cations of the fully dynamic METROPOLIS tool-box:
An advocacy for large-scale mesoscopic transportation
systems. Networks and Spatial Economics, 2(4), 347–
369.

Perrin, E., Mandrille, A., Oumoun, M., Fonteix, C., and
Marc, I. (1997). Optimisation globale par stratégie
d’évolution : Technique utilisant la génétique des in-
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