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Abstract: A method is proposed to detect if there is no coupling between an input and an
output in systems operating in open-loop. The proposed technique is applicable to multiple
input multiple output (MIMO) systems, i.e., the intent is to detect zeros in a transfer matrix.
Traditional approaches to input/output (IO) selection are usually performed after the plant
model is identified. The proposed approach is applied during the pre-identification stage and it
is based on cross-correlation and fuzzy logic analysis. A study case involving identification of a
20× 10 real system is discussed, as well as the advantages of detecting no-model IO pairs in the
identification process.
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1. INTRODUCTION

Advanced controllers use models to describe the relation-
ships among the system variables. The objective of this
controller is to determine the control signals (inputs) that
will make a process to satisfy physical constraints and at
the same time minimize (or maximize) its performance
index. The performance of such control structures relies,
mainly, on the accuracy of these models. Thus, the choice
of the plant model is an important part of the strategy of
the Control System Design. It involves six stages: defini-
tion of control objectives, derivation of a nominal model
G0, control structure design, controller design, control
system evaluation and tuning, and finally, control imple-
mentation (Van der Wal and de Jager, 2001).

The objective of the estimation of the models is to obtain
mathematical expressions that are able to predict the
response of the physical system to all inputs. In practice,
even around an operating point, it is impossible to propose
a linear model that exactly matches the real system. So,
any model has errors. Process models are usually based on
a statistical model whose building consists of the iteration
of the next steps: Identification, Fitting and Diagnostic
Checking (Box and MacGregor, 1974).

To reduce the number of iterations, a pre-identification
stage is usually applied, in which the process is excited by
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pulses or steps. Notice that it is a signal with excitation
persistence of order one, so that the models obtained
are not adequate for control purposes. Its objective is to
provide preliminary features of the system, like steady-
state gain, settling time, time delay and IO combination
analysis.

Generally, issues related to IO selection are part of the
Control Structure Design stage, after the plant model has
been estimated. IO selection is described as the procedure
of selecting suitable variables u to be manipulated by the
controller (plant inputs) and suitable variables y to be
supplied to the controller (plant outputs). This approach
can lead to model-plant mismatch and poor controller
performance, since models can be identified in IO pairs
where a relation does not exist (IO pairs with no-model).
An extensive survey of methods for IO selection can be
found in Van der Wal and de Jager (2001).

In this paper, a method to detect no-model IO combi-
nations for open-loop MIMO systems is proposed. The
main contributions of this work are the integration of
cross-correlation analysis, filtering of the IO signals and an
inference based on fuzzy logic and its application during
the pre-identification step. Although this method could
also be applied during the identification step, it provides
important advantages if performed previously. No-model
IO combination knowledge can reduce experiment time
in an identification, decrease model parameter variance,
improve the accuracy of the remaining models in the
transfer matrix and provide a matrix that informs about
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the existence or not of relations (models) between the IO
pairs. These issues are addressed along this paper.

2. IO MODEL SELECTION METHODS

There are many papers that address the issue of the no-
model IO combination. The most common methods used
for this purpose are based on the controllability of the
model. Methods based on controllability of inputs and out-
puts seek to determine which candidate sets of inputs and
outputs will be eliminated or kept, based on a quantitative
measure of this controllability. Some of these methods are
based on the singular value decomposition. The methods
based on the minimum singular value select candidate
sets of inputs and outputs that maximize the smallest
singular value in defined frequencies. Some methods that
use or support this approach were proposed in Tzoua-
nas et al. (1990), Havre et al. (1996) and Skogestad and
Postlethwaite (1996). Some derivations of these methods
are presented next.

2.1 Single-Input Effectiveness

The Single-Input Effectiveness (SIE) method (Cao and
Rossiter, 1997) select inputs to be included in a control
scheme. It considers G(s) as a m×n matrix, representing
an open-loop MIMO linear system with frequency response
matrixG(jω) and steady-state gain matrixK. The output
vector y is derived as

y = Ku (1)

where
u = un + uc (2)

is an input vector of dimension n× 1. Note that un ∈ K0

and uc ∈ K⊥
0 where K0 is the null space of K and K⊥

0 is
the orthogonal complement of K0. Using (2), the output
vector can be calculated as:

y = Ku = Kun +Kuc = Kuc (3)

It shows that only the orthogonal projection uc of u affects
the output. The following indices are proposed in Cao and
Rossiter (1997). A ratio of the norms of uc and u is defined
to describe the effectiveness of an input vector (IE):

η =
‖uc‖2
‖u‖2

(4)

The input ineffectiveness (IIE) of u, ζ, is defined as the
ratio of the norms of un and u:

ζ =
‖un‖2
‖u‖2

(5)

Single-IE (SIE), ηj , for the j -th input vector uj can be
computed considering a vector ej defined as the j -th
column of the n× n identity matrix.

ηj = ‖K+Kej‖2, 0 ≤ ηj ≤ 1 (6)

whereK+ is the pseudo or generalized inverse ofK. Single-
IIE, ζj , for the j-th input vector uj is obtained as:

ζj =
√

1− η2j , 0 ≤ ζj ≤ 1 (7)

The process transfer matrix G(s) can also be represented
by a set of linear MISO systems. From them, values of
ηj near 0 mean low effectiveness of the j-th input over
the output y. In the same way, values near 1 indicate
significant effectiveness of the j-th input over the output

y. This criterion is employed to include or exclude inputs
in a control scheme for the system represented by G(s).
Furthermore, values of ηj and consequently ζj , can also be
derived using Singular Value Decomposition (SVD), since
K can be factorized as:

K = UΣVH (8)

where U is a m × m real or complex unitary matrix, Σ
is a m × n rectangular diagonal matrix with nonnegative
real numbers in the diagonal and VH is the conjugate
transpose of V, which is a n × n real or complex unitary
matrix. Then, ηj can be obtained as:

ηj = ‖K+Kej‖2 =
√

eTj V1V
H
1 ej (9)

where V1 is the first k columns of V, being k the rank
of K. Thus, using SVD could yield the same estimate
of effectiveness, ηj , for every j -th input over an output
y of K. In a similar manner, in Perreault et al. (2005)
was proposed the Principal Component Analysis (PCA)
that uses the SVD to factorize the K matrix. It allows
to identify relevant inputs and represents them in a new
axis system. Based on this algorithm, a tool for selecting
optimal inputs to be used in an identification process of a
linear MISO plant was developed.

2.2 Relative Gain Array

Similar to PCA, the Relative Gain Array (RGA) was
first introduced by Bristol (1966) for steady-state as a
measure of process interactions. Skogestad and Morari
(1987) established that RGA is mostly a measure of
achievable control quality in a much wider sense, more
than just a tool for choosing pairs.

RGA is a normalized gain matrix that describes the impact
of each control variable in each output. The normalization
of these gains is based on the potential impact of each pair
of input and output. The RGA method can be defined as:

RGA = ∧ = K× (K+)T (10)

More conceptually, ∧ can be understood as:

RGA = ∧ = [λij ]mxm (11)

where λij is the ratio of kij , gain of the i − j-th element
of K with all the loops open and k∗ij , gain of the i − j-th

element of K with only the j-th loop open, see (12).

λij =
kij

k∗ij
(12)

In Skogestad and Morari (1987), ∧ is employed for steady-
state and the equivalence between λij and η2j was proved

in Cao and Rossiter (1997).

There are two ways to calculate the RGA, the first is an
experimental form and the second is by the stationary gain
matrix of the process.

The work by Chang and Yu (1990) showed that it is
possible to use the sum of the rows of the matrix elements
for selection of the outputs to be used. In Cao (1996)
the authors extended this analysis to use the sum of the
columns of the matrix for selection of entries to be used. In
both cases, if the sum is much smaller than the index under
examination (input or output), it should be disregarded.
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2.3 Cross-correlation

Another important approach to solve this problem is
to apply the Cross-correlation function. This technique
detects and measures significant associations between an
output, yi, and an input signal, uj .

Some limitations of cross-correlation methods to detect
input/output effects in closed-loop were stated in (Box and
MacGregor, 1974). However, good results can be obtained
if the input signal is dithered. In Webber and Gupta
(2008), a closed-loop cross-correlation method is employed
for detecting model-plant mismatch in MIMO model-
based controllers. In this proposal, IO subset pairings of
a linear MIMO system which demand re-identification are
detected. The method is based on the comparison of the
correlation between the prediction error and input u. A
dithering in the set point u is required to use this signal as
excitation. In this sense, the cross-correlation function had
already been employed in Aguirre (2007) and Ljung (1999)
to detect and measure significant associations between an
output and an input signal, but never as a tool to detect
IO combinations in the pre-identification stage.

3. THE PROPOSED METHOD OF DETECTION OF
ZEROS IN THE TRANSFER MATRIX

Different of the presented methods, the one proposed
here is focused on obtaining a preliminary information
about the IO combination in the pre-identification stage.
It is based on the cross-correlation analysis for MIMO
m × n systems. The algorithm is based on three steps
and its name is Fuzzy Inference based on Filtered Cross-
correlation (FIFC).

3.1 Step 1

Consider a MIMO system described by:

y(t) = G(q)u(t) + υ(t) (13)

where G(q) is a m × n transfer matrix representing the
process model, u is a n× 1 input vector and y and υ are
m× 1 output and disturbance vectors, respectively.

In this work the MIMO model is divided into m MISO
models as follows:

yi(t) = Gi(q)u(t) + υi(t) (14)

where Gi is the i-th row ofG for i = 1 . . .m. The first step
of the method consists in determining directly the linear
correlation between the input and output signals used in
the pre-identification stage. Herein the cross-correlation
used is the Pearson product-moment correlation coeffi-
cient, or simply Pearson’s correlation defined by:

ρ(1)yu (i, j) = corr(yi, uj) =
RN

yiuj
(τ)

σyi
σuj

(15)

where σyi
and σuj

are the standard deviations of the

signals yi and uj , respectively and RN
yiuj

is the covariance
of the signals yi and uj, each one composed of N points.
This correlation is exact when signals yi and uj are
orthogonal.

3.2 Step 2

As the signals are usually subject to disturbances and
measurement noise, another computation is required. This
step consists in a preliminary estimation of the model. For
this, consider that a SISO system:

yi(t) = Gij(q)uj(t) + υi(t) (16)

could be described by:

yi(t) =

∞
∑

k=1

gij(k)uj(t− k) + υi(t) (17)

where gij(k) are the impulse response parameters of Gij .
If the input is subject to a quasi-stationary sequence with:

Ēuj(t)uj(t− τ) = Ruj
(τ) (18)

and
Ēuj(t)υi(t− τ) ≡ 0 (19)

where (19) is valid only for open-loop systems, then in
accordance with the Theorem 2.2 of Ljung (1999),

Ēyi(t)uj(t− τ) = Ryiuj
(τ) =

∞
∑

k=1

gij(k)Ruj
(k − τ). (20)

It can be demonstrated that if the input is not white
noise, it is possible to estimate the covariance and cross-
covariance as:

R̂N
uj
(τ) =

1

N

N
∑

t=τ

uj(t)uj(t− τ) (21)

and solve

R̂N
yiuj

(τ) =

M
∑

k=1

ĝij(k)R̂
N
uj
(k − τ) (22)

for ĝij(k). Thus, a good estimate of gij(k) when the input
is not white noise is to truncate (17) at p and treat it as
a p-order Finite Impulse Response (FIR) model (Ljung,
1999).

In open-loop, the bias errors in the deterministic part of
the model can generally be minimized by using high order
FIR models, where its order is set equal to the settling
time of the process, which can be estimated in the pre-
identification stage. Then, with the input signals filtered
by the high order FIR, it is calculated again the linear
correlation, but now between the input signal and the
estimated output.

ρ(2)(i, j) = corr(ŷi, uj) =
R̂N

ŷiuj
(τ)

σŷi
σuj

(23)

The objetive of this procedure is to obtain a filtered
estimate of the linear correlation matrix.

To evaluate the performance of the MISO model obtained
by the FIR structure, the index FIT was employed. This
index is based on the difference between the real and the
estimated outputs and may be expressed by the equation:

FITi = 1−

√

∑N

t=0 (ŷi(t)− yi(t))
2

√

∑N

t=0 (yi(t)− ȳi(t))
2

(24)

where ȳi(t) is the mean of yi(t).

3.3 Step 3

The third step consists in analyzing the outcomes obtained
by the correlations of the steps 1 and 2. It was used a fuzzy
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Fig. 1. Universe of discourse for input correlation in step
1 (ρ(1)(i, j)).

Fig. 2. Universe of discourse for input correlation in step
2 (ρ(2)(i, j)).

Fig. 3. Universe of discourse for the FIT index of the FIR
model.

inference machine as an expert system for taking decisions.
It was designed by following the standard procedure of
fuzzy controller design, which consists of fuzzification,
control rule base establishment and defuzzification.

The fuzzification is a mapping from the crisp domain into
the fuzzy domain. In others words, it means to assign
linguistic values, defined by a small number of member-
ship functions to each input variable. Three membership
functions were used for each universe of discourse (two
trapezoidal and one triangular) named Low, Medium and
High. In addition to correlations ρ(1)(i, j) and ρ(2)(i, j), a
index FIT was used as a third input to the fuzzy inference
machine. Observe that the membership function Low of
the universe of discourse relative to ρ(2)(i, j) is shifted to
right due to the fact that when the signal is filtered, its
form is usually similar to the input signal, then the cross-
correlation between they tend to be higher. The index
FIT is used to make a weighting of the correlation value
ρ(2)(i, j), thus correlation ρ(2)(i, j) is taken into consid-
eration only if the adherence of the model to the plant,
evaluated by the FIT index, is good.

Figures 1, 2 and 3 show the membership functions used
by each linguistic input variable. All the input variables
are normalized in the range [0, 1]. The setting of each
membership function was made in empirical form.

A classical interpretation of Mandani for the rule bases
was used. For the logic operations and and or were used
the min and max functions. Then through a set of If-Then

Fig. 4. Universe of discourse for the output χ.

Fig. 5. FCC Unit flow diagram Grosdidier et al. (1993).

rules it was possible to implement the fuzzy algorithm. A
total of 27 rules were used by the inference machine.

The centroid or center of gravity method was used for
defuzzification. It determines the center of the area of
the combined membership functions. The output linguis-
tic variable has also three membership functions: Low,
Medium and High, like the input linguistic variables (Fig-
ure 4).

4. RESULTS

In this section the proposed method and the ones pre-
sented in Section 2 are tested. The experiment consists of
detecting no-model IO pairs in a Fluid Catalytic Cracking
Unit of the Brazilian company Petrobras. The no-model
IO pair detection is based on the signals used in the pre-
identification stage.

The complete unit has 39 controlled variables and 20
manipulated variables, but the study was performed only
in a subsystem of the plant composed by 20 controlled
variables (yi, i = 1 . . . 20) and 10 manipulated variables
(uj , j = 1 . . . 10). Each test had an average duration of ap-
proximately 2 hours. Their implementation was performed
in about two weeks.

The tests should start when the plant was stable and the
excitation in the manipulated variables tested must be
of sufficient magnitude to cause measurable changes in
the controlled variables relating to such variations. The
signals employed to excite the plant were steps or pulses
with a sample time of 1 minute. In all the cases only one
manipulated variable at a time was excited. The process
was subject to unmeasured disturbances and noise. When
the no-model IO pair detection method is used, the result
of the matrix χ is shown in Equation (25).
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Next it is proposed to create a margin of decision to specify
when there is a model. It is assumed that when the decision
index is higher than 0.5, there is a great possibility of
existing models, so it is used 1 in this position of the
matrix. On the other hand, if the range of decision is
between 0.2 and 0.49, there are doubts about the existence
of models. In this case it is used 0.5 in this position of the
matrix. Finally, if the decision index is lower than 0.2, it
is almost certain that there is no model in this IO pair, so
a 0 is used in this position. Using these assumptions, it is
created a new matrix show in (26).

χ =



























































0.23 0.12 0.74 0.12 0.12 0.78 0.12 0.40 0.12 0.13
0.12 0.14 0.13 0.12 0.12 0.12 0.23 0.12 0.12 0.14
0.14 0.12 0.14 0.12 0.12 0.12 0.13 0.34 0.12 0.13
0.13 0.13 0.13 0.12 0.13 0.12 0.12 0.14 0.12 0.13
0.13 0.12 0.12 0.12 0.13 0.12 0.12 0.12 0.13 0.13
0.28 0.12 0.66 0.12 0.19 0.79 0.53 0.13 0.12 0.14
0.20 0.27 0.33 0.12 0.12 0.12 0.65 0.15 0.14 0.30
0.12 0.14 0.13 0.12 0.14 0.12 0.40 0.33 0.28 0.57
0.12 0.12 0.32 0.13 0.70 0.13 0.62 0.36 0.18 0.22
0.12 0.12 0.32 0.13 0.69 0.13 0.67 0.40 0.25 0.14
0.14 0.13 0.13 0.12 0.28 0.25 0.12 0.12 0.12 0.75
0.34 0.12 0.13 0.12 0.12 0.12 0.12 0.40 0.40 0.58
0.34 0.12 0.13 0.12 0.12 0.12 0.12 0.40 0.40 0.57
0.30 0.24 0.37 0.12 0.12 0.24 0.52 0.20 0.13 0.13
0.17 0.14 0.21 0.13 0.80 0.13 0.40 0.40 0.40 0.40
0.41 0.12 0.12 0.14 0.78 0.14 0.48 0.12 0.35 0.20
0.13 0.13 0.13 0.12 0.13 0.12 0.12 0.40 0.77 0.70
0.13 0.17 0.44 0.12 0.12 0.12 0.62 0.14 0.16 0.13
0.24 0.12 0.14 0.12 0.30 0.40 0.13 0.33 0.14 0.32
0.12 0.13 0.13 0.12 0.14 0.12 0.14 0.12 0.23 0.13



























































(25)

ΦFIFC =



























































0.5 0 1 0 0 1 0 0.5 0 0
0 0 0 X 0 0 X 0 0 0
X X X X 0 0 0 0.5 0 0
0 0 X 0 0 0 0 0 0 0
0 X X X 0 0 0 0 0 0
0.5 0 1 0 0 1 1 0 0 0
0 0.5 0.5 0 0 0 1 X 0 0.5
0 0 0 0 0 0 0.5 0.5 0.5 1
0 0 0.5 0 1 0 X 0.5 0 0.5
0 0 0.5 0 1 0 X 0.5 0.5 0
0 0 0 0 0.5 0.5 0 0 0 1
0.5 0 0 0 X 0 0 0.5 0.5 X
0.5 0 0 0 X 0 0 0.5 0.5 X
0.5 0.5 0.5 0 0 0.5 1 0 0 0
X 0 0.5 0 1 0 0.5 0.5 0.5 0.5
0.5 0 0 0 1 0 0.5 0 0.5 X
0 0 0 0 0 0 0 0.5 1 1
0 0 0 0 0 0 1 0 X X
1 0 0 0 0.5 0.5 0 0.5 0 0.5
0 X 0 0 0 X 0 0 X 0



























































(26)

The result obtained in (26) was compared with the ex-
pected matrix given by Petrobras, thus the X in the matrix
represents an error in the estimation in that position. The
error rate represents 12% of the estimative, whilst the rates
of hit and doubt are 67% and 21%, respectively. A more
detailed analysis shows that in the majority of doubt cases
either the amplitude of the excitation signal is insufficient
or the disturbance signal hide the system response. Figure
6 presents the performance of the IO pair (y1, u1). This is a
typical case where the user expects the existence of a model
between the input and output signals, but in accordance

with the system response there is not clear evidence of that
relationship.

Although the filtered signal can present a high cross-
correlation with the input signal, as the index FIT as-
sociated with this model is low, this input is penalized
by the inference fuzzy machine. On the other hand, a less
common case appears in the IO pair (y12, u1) which is
shown in Figure 7. Here, there is a clear indication of a
model that relates the input and output signals; however,
it is not expected by the user. This phenomenon should
indicate an error in the test, an unknown relationship in
the plant or even a system malfunction. In this sense, the
power of the FIFC method over the others is to offer the
possibility of doubt when there is no absolute certainty of
the model existence.
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Fig. 6. Analysis of the IO pair (y1, u1).
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Fig. 7. Analysis of the IO pair (y12, u1).

Table 1 presents the hit rate of the methods discussed here
and the FIFC proposed. Observe that even without taking
into consideration the doubt cases, the FIFC method is
better than the others. The poor performance of the other
methods could be explained because they are based on an
identified model and the input signals used in this stage
are not good for identification purposes, then the models
obtained are poor. The objetive of the no-model IO pair
detection is to help in the design of the identification stage.
Thus, matrix ΦFIFC can be a good starting point for the
planning and configuration of the excitation signals.
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Table 1. No-model IO pair detection of each
method.

ΦFIFC ΦSIE ΦRGA

Hit 67% 40.5% 45%

Usually it is necessary to divide the plant into sub-plants
for identification purposes, due to the fact that it is not
recommended to excite a great number of manipulated
variables at the same time. To generate this division
matrix, ΦFIFC is useful again. After discussing with the
plant personnel, all the doubt cases were resolved and
the hit rate reached 88%. Once the matrix ΦFIFC is
validated, the next stage consists of grouping the IO pairs
for identification purposes. Constraints in the design of the
identification stage for this plant require the excitation of
at most five variables at a time. Thus, using the algorithm
proposed in Massaro (2014), the matrix was divided into
small groups as is shown in (27).

0 3 1 6 2 4 7 5 10 8 9

1 1(1) 1(1) 1(1) 0(1) 0(1) 0 0 0 0 0

3 1(1) 1(1) 0(1) 1(1) 1(1) 0 0 0 0 0

6 1(1) 1(1) 0(1) 0(1) 0(1) 1(2) 0(2) 0(2) 0(2) 0

14 1(1) 1(1) 0(1) 0(1) 0(1) 1(2) 0(2) 0(2) 0(2) 0

15 1(1) 1(1) 0(1) 0(1) 0(1) 0(2) 1(2) 1(2) 0(2) 0

5 1(1) 0(1) 1(1) 1(1) 1(1) 0(2) 0(2) 0(2) 0(2) 0

7 1(3) 0(3) 0(3) 0 0 1(2) 0(2) 0(2) 1(2) 0

9 1(3) 0(3) 0(3) 0 0 0(2) 1(2) 0(2) 0(2) 0

10 1(3) 0(3) 0(3) 0 0 0(2) 1(2) 0(2) 0(2) 0

4 1(3) 0(3) 0(3) 0 0 0 0 0 0 0

19 0(3) 1(3) 1(3) 0 0 0 0 0 0 0

16 0(3) 1(3) 0(3) 0(4) 0(4) 0(4) 1(4) 1(4) 0 0

20 0(3) 0(3) 1(3) 0(4) 0(4) 0(4) 0(4) 0(4) 0 0

2 0 0 0 1(4) 1(4) 0(4) 0(4) 0(4) 0 0

18 0 0 0 0(4) 0(4) 1(4) 0(4) 1(4) 0 0

13 0 0 0 0(4) 0(4) 0(4) 1(4) 0(4) 0 0

12 0 0 0 0 0 0 1(5) 0(5) 0(5) 0(5)

17 0 0 0 0 0 0 0(5) 1(5) 1(5) 1(5)

8 0 0 0 0 0 0 0(5) 1(5) 1(5) 1(5)

11 0 0 0 0 0 0 0(5) 1(5) 0(5) 0(5)

(27)

The first row and column represent the original positions
of the IO pair in matrix ΦFIFC , respectively. Index

(k) was
used to group the IO pairs. Notice that five groups were
obtained.

5. CONCLUSIONS

A new method for detection of no-model IO pairs in the
transfer matrix is discussed. The method is based on the
fuzzy analysis of a linear correlation between the output
and the inputs in MISO models and its use is suggested in
the pre-identification stage. It resembles the instrumental-
variables (IV) method, but unlike it, our method filters
only the signal noise using simple models as filters, whereas
IV methods filter the residual noise through different
predictors. The residual noise is composed of signal noise,
modeling errors and multiplicative noise, which is more
complex to analyze and filter than just signal noise.

To test the algorithm, a FCC process plant with some
no-model IO combinations was used. In this sense, a real
dataset provided by Petrobras was used. The experiment
shows that the FIFC method is useful, not only to detect

no-model IO pairs, but also to indicate errors in the test,
unknown relationships in the plant or even a system mal-
function. From the real dataset the method was validated,
with an error of only 12% in the IO pair detection. Finally,
information obtained from matrix ΦFIFC was used to
divide the IO pairs in groups for identification purposes.
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