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Abstract: This paper considers the problem of continuous-time model identification from non-uniformly
sampled input-output data, having the measured output corrupted by colored noise. We concentrate on
the continuous-time transfer function model identification. A Box-Jenkins model structure is used to
describe the system, thus providing independent parameterizations for the plant and the noise. Monte
Carlo simulation analysis is also used to illustrate the properties of the proposed estimation method.
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1. INTRODUCTION

Non-uniform sampling is a common practice in scientific re-
search, and the reasons for that can be manifold. One example
is the Lebesgue sampling, where the sampler takes action only
when a certain change in the signal has been detected. This
leads to a non-uniformly distributed sampling time instants.
Another reason to have irregular sampling is when, for ex-
ample, a part of the data is lost. Typically, data is sampled
equidistantly, but when we proceed to the recording stage, some
can go missing unexpectedly. This phenomena also raises the
issue of non-uniformly (irregularly) sampled data set.

In general, the discrete-time (DT) approach is not suited to
handle non-uniformly sampled data. The reason is that the
DT model parameter depends on the sampling period, see
e.g Garnier and Wang (Eds.) [2008] and Chen et al. [2013].
It is, however, more natural to consider a continuous-time
(CT) model when we encounter a sequence of non-uniformly
sampled data.

The Box-Jenkins (BJ) model structure is a very well known
model representation for dynamical systems. One of its main
advantages is that the plant and the noise models (G and H, re-
spectively) are independent (or equivalently, the denominators
of the plant and the noise models have no common roots). In
this paper, the system to be identified is assumed to have a BJ
structure.

A vast literature is dedicated to the estimation of BJ mo-
dels. One popular approach is the refined instrumental variable
method for CT system identification (RIVC). In the RIVC al-
gorithm [Young and Jakeman, 1980], which was first developed
by Young and Jakeman considering that the additive noise is

purely white in the open-loop situation. The extension of this
initial algorithm to its hybrid form, where the process is mod-
eled in CT while the noise is modeled in DT, was outlined in
this earlier paper and was very recently developed and evalu-
ated in Garnier et al. [2007], Young and Garnier [2006], Young
et al. [2008]. However, the DT noise model assumption requires
uniformly sampled data, thus the previous RIVC method cannot
be extended to handle non-uniformly sampled data. In our pre-
vious work Chen et al. [2013], an CT approach was proposed
to estimate a simplified CT BJ model, where the noise was
regarded as a CT autoregressive (CAR) process. A shifted least-
squares estimator [Larsson and Söderström, 2002] was used to
estimate the noise model, it is computationally efficient and
shows good convergence properties. Unfortunately, this method
only considers a CAR noise model and cannot be extended to
the CT autoregressive moving average (CARMA) noise model
case.

As an extension to Chen et al. [2013], a CARMA noise model
is considered in this paper. The difficulty to estimate CARMA
models is that input (CT white noise) is missing. Thus, the
widely used methods for deterministic system identification
cannot be applied directly. However, if the second order prop-
erty of the input is known, the missing data (e.g. state) can still
be reconstructed by the Kalman filtering or smoothing, which
can be used for parameter identification. Due to the fact that a
CARMA model can be represented by a partially parameterized
state-space model, we propose here to estimate the CARMA
model in state-space form.

In Johansson [2009], identification of continuous-time state-
space models, which are composed of an input-output model
and a stochastic innovations model, from finite non-uniformly
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sampled input-output sequences was studied. Yuz et al. [2011]
used the expectation-maximization (EM) algorithm to estimate
a CT state space model from non-uniform fast sampled data,
a so called incremental model was used to approximate a CT
model. Dembo and Zeitouni [1986] also used the EM algorithm
to estimate CT processes, but the state variables were estimated
by a CT smoother. Our problem is a little bit different to
Yuz et al. [2011], Dembo and Zeitouni [1986], because of
the different noise assumptions. A maximum likelihood based
method is used to solve the problem (see Section 4).

This paper is organized in the following way. We first define
the parameter estimation problem in Section 2. In Section 3,
the optimal IV estimator is recalled. Subsequently the CARMA
noise estimation problem and the solution are described in
Section 4. The optimal IV solution for identifying CT BJ
models is summarized in Section 5. Finally, in Section 6, an
example is presented to illustrate the properties of the proposed
method.

2. PROBLEM STATEMENT

In this paper, the identification problem will be concentrated on
the case of single-input, single-output system. So let us consider
the following CT system

x(t) = G(p, ρo)u(t) =
B(p, ρo)

A(p, ρo)
u(t) (1)

with
B(p, ρo) = bo0p

nb + bo1p
nb−1 + · · ·+ bonb

A(p, ρo) = pn + ao1p
na−1 + · · ·+ aona

(na > nb)

where u(t), x(t) are the excitation and the noise-free response.
p denotes the differentiation operator, i.e. px = dx/dt. It is
further assumed that B(p, θo) and A(p, θo) are coprime.

In practical situations, the deterministic output x(t) is in-
evitably corrupted by a colored noise ξ(t), which is generated
from the following process

ξ(t) = H(p, ηo) =
C(p, ηo)

D(p, ηo)
e(t) (2)

with
C(p, ηo) = pnc + co1p

nc−1 + · · ·+ conc

D(p, ηo) = pnd + do1p
nd−1 + · · ·+ dond

(nd > nc)

where e(t) is a CT Gaussian white noise has the covariance
function of

E {e(t)e(τ)} = σ2δ(t− τ)

where δ is the Dirac’s delta function. H(p, ηo) is assumed to be
stable and invertible stable.

The input and output signals u(t), y(t) are sampled instan-
taneously (see e.g. Wahlberg et al. [1993]) at irregular time
instant tk, for k = 1, 2, · · · , N , and this gives rise to u(tk),
y(tk). The time varying sampling interval is denoted as

hk = tk+1 − tk (3)
Subsequently the data-generating system can be written in a
more appropriate CT BJ form

x(t) = G(p, ρo)u(t)

ξ(t) = H(p, ηo)e(t)

y(tk) = x(tk) + ξ(tk)

(4)

It is assumed that there are no common factors in the plant
G(p, ρo) and the noise H(p, ηo) components. Then, the param-
eter vector can be decomposed in the following way

θo = [ρo; ηo] (5)
where ρo and ηo include the dynamic plant model and the noise
parameters stacked column-wise as

ρo =
[
ao1 · · · aona

bo0 · · · bonb

]T ∈ Rna+nb+1 (6)

ηo =
[
do1 · · · dond

co1 · · · conc

]T ∈ Rnd+nc (7)

The identification objective is then to estimate the parameters
of the CT BJ model (4) from the non-uniformly sampled input
and output data ZN = {u(tk); y(tk)}Nk=1.

3. OPTIMAL IV ESTIMATORS

In this section the main conditions for obtaining optimal (con-
sistent and minimum variance) IV parameter estimate are re-
called. Consider the general class of IV estimators

ρ̂ =

{
solρ

1

N

N∑
k=1

ζf (tk)
[
y
(na)
f (tk)− ϕTf (tk)ρ

]
= 0

}
(8)

where the subscript (·)f means the filtering operation, (·)f =
F (p)(·). ζ(tk) and ϕT (tk) are the instrument and the regressor.

ϕT (tk) =
[
− y(na−1)(tk) · · · − y(tk)

u(nb)(tk) · · · u(tk)
]

(9)
It has been shown that a minimum variance estimator is
achieved under the following conditions [Young and Jakeman,
1980] (see also Söderström and Stoica [1983]):ζ

opt
f (tk) = F opt(p)ϕ̊(tk)

F opt(p) =
1

Ho(p)Ao(p)

(10)

where ϕ̊(tk) is the noise-free version of ϕ(tk)

ϕ̊T (tk) =
[
− x(na−1)(tk) · · · − x(tk)

u(nb)(tk) · · · u(tk)
]

(11)

4. NOISE MODEL ESTIMATION

In this section, identification of the CARMA noise model is
considered. First we write (2) in the following alternative state
space form (see Wahlberg et al. [1993], Goodwin et al. [2013])dz(t)dt

= Fcz(t) +Kce(t)

ξ(t) = Cz(t)
(12)

where z(t) is a nd × 1-dimensional state variable and

Fc =


−d1 · · · · · · −dnd

1 0 · · · 0
. . . . . .

...
0 1 0

 ,Kc =


1
0
...
0


C = [0 · · · 0 1 c1 · · · cnc ]

Let w(t) = Kce(t) be process disturbance with covariance of

E
{
w(t)wT (τ)

}
= Qcδ(t− τ) =

[
σ2 0
0 0

]
δ(t− τ) (13)

Instantaneous sampling of (12) yields an equivalent DT state-
space model (see e.g. Wahlberg et al. [1993])
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{
z(tk+1) = F (hk)z(tk) + w̃(tk)

ξ(tk) = Cz(tk)
(14)

with F (hk) = eFchk , the covariance matrix of the DT noise
term w̃(tk) is given by

E
{
w̃(tk)w̃(ti)

T
}

= Q(hk)δk,i

=

∫ hk

0

eFctQce
FT

c tdt δk,i (15)

where δk,i is the Kronecker’s delta function. Note that even
though Qc is singular, Q(hk) is still full rank [Goodwin et al.,
2013]. For the sake of simplicity, let Fk, Qk, wk, zk and ξk
denote F (hk), Q(hk), w(tk), z(tk) and ξ(tk), respectively.

In order to find out the connections between DT and CT
parameters, expand Fk to a Taylor series and omit the terms
with the order higher than 1

Fk = I + F δkhk ≈ I + Fchk (16)
then we have {

zk+1 − zk = F δkhkzk + w̃k
ξk = Czk

(17)

It is necessary to point out that when hk goes to zero

lim
hk→0

F δk = Fc, lim
hk→0

Qk
hk

= Qc (18)

4.1 Gradient-based parameter estimation scheme

In this subsection, a maximum-likelihood method is introduced
to estimate the CARMA noise model.

The log-likelihood function is defined as the logarithm of the
conditional joint probability density function of ξk, which can
be given as

l(η,Qc) = log p (YN |η,Qc) (19)
where Yk = {ξ1, ξ2, · · · , ξk}, k = 1, . . . , N , denotes the
observation. With this in mind, the maximum-likelihood (ML)
estimate for η,Qc is defined as

(η̂, Q̂c) = arg max
η,Qc

l(η,Qc) (20)

Numerical methods based on gradient search algorithms are the
typical ways to solve (20).

By repeating the well-known Bayes’ rule, p(YN |η,Qc) can be
decomposed as

p(YN |η,Qc) =p(ξ1|η,Qc)p(YN−1|ξ1, η,Qc)

=p(ξ1|η,Qc)
N∏
k=2

p(ξk|Yk−1, η,Qc) (21)

Consequently the log-likelihood function l(η,Qc) can be refor-
mulated as

l(η,Qc) =

N∑
k=2

log p(ξk|Yk−1, η,Qc) + log p(ξ1|η,Qc) (22)

where (22) contains conditional means. The Kalman filter (see
e.g. Shumway and Stoffer [2011]) can be used to compute these
terms.

It is well known, see e.g. Agüero et al. [2012], that the log-
likelihood function (22) can be equivalently reformulated as

l(η,Qc) = −1

2

N∑
k=1

(
εTkR

−1
k εk + log det Rk

)
+ constant

(23)

where
εk = ξk − ξ̂k/k−1

ξ̂k/k−1 = E{ξk|Yk−1, η,Qc}
Rk = E{(ξk − ξ̂k/k−1)(ξk − ξ̂k/k−1)T |Yk−1, η,Qc}

can be obtained by using the Kalman Filter.

To maximize l(η,Qc), gradient methods can be applied. The
partial derivative with respect to the i th element of η is given
by

∂l(η,Qc)

∂ηi
=− 1

2

N∑
k=1

(
2
∂εTk
∂ηi

R−1k εk − εTkR−1k
∂Rk
∂ηi

R−1k εk

)

− 1

2

N∑
k=1

TraceR−1k
∂Rk
∂ηi

(24)

The derivative with respect to Qc can be similarly obtained.
Thus, η and Qc can be estimated in the following iterative way

(η̂j+1, Q̂j+1
c ) = (η̂j , Q̂jc) + µjqj (25)

where µj is the step length that can be found by a line-
search procedure. Notice that µj can be chosen such that
l(η̂j+1, Q̂j+1

c ) ≥ l(η̂j , Q̂jc), and qj indicates the search direc-
tion that can be computed with an approximated Hessian.

4.2 Some modifications

As can be seen from (24), the computation of the necessary
derivatives are quite involved. Fortunately, there are alternatives
ways to solve the optimization problem posed in (20). We split
η as

η = [ηD; ηC ]

where ηD, ηC denote the unknown parameters involved in
D(p, η) and C(p, η), respectively. It turns out ηC can easily be
estimated when we froze the value for ηD and Qc. On the other
hand, when we froze the value of ηC , the resulting estimation
problem becomes more involved. To solve the latter problem,
we will explore the use of the Expectation-Maximization (EM)
algorithm as used in Yuz et al. [2011]. Notice that in Yuz et al.
[2011], non-uniform fast sampled is data is used, but the system
in (17) does not consider an output noise. Thus, the algorithm in
Yuz et al. [2011] needs to be crafted to our particular problem.

One way to optimize the likelihood function (19) is by con-
structing a surrogate convex function. This is the principle of
the EM algorithm, see e.g. Dempster et al. [1977], Dembo
and Zeitouni [1986], Gibson and Ninness [2005], Shumway
and Stoffer [2011], Agüero et al. [2012], where one optimizes
the maximum likelihood function iteratively. Thus, the EM
algorithm will generate a sequence of estimates

(
η̂jD, Q̂

j
c

)
,

j = 1, 2, · · · , of the parameters (ηD, Qc), which is guaranteed
to converge to a local maximum of the log-likelihood func-
tion Dempster et al. [1977]. The basic idea is to use a hidden 1

variable, which in our case is taken to be ZN := {z1, . . . , zN}.
The complete data is given by ZN since we have no measure-
ment noise. Thus

Q(ηD, Qc, η̂
j
D, Q̂

j
c) = E

{
log p(ZN |ηD, Qc)|YN , η̂jD, Q̂

j
c

}
= E

{
lc(ηD, Qc)|YN , η̂jD, Q̂

j
c

}
(26)

where lc(ηD, Qc) can be expanded as follows using the Bayes’
rule
1 The terminology arises from the statistics literature.
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lc(ηD, Qc) =

N∏
k=2

log p(zk|Zk−1, ηD, Qc) + log p(z1|ηD, Qc)

Because zk is a Markov process, the predictions for the future
of the process are solely dependent on its present state, thus we
have

lc(ηD, Qc) =

N∏
k=2

log p(zk|zk−1, ηD, Qc) + log p(z1|ηD, Qc)

(27)

A new estimate of ηD and Qc, η̂
j+1
D and Q̂j+1

c , are then
obtained by maximizing the function Q(ηD, Qc, η̂

j
D, Q̂

j
c), that

is,

(η̂j+1
D , Q̂j+1

c ) = arg max
ηD,Qc

Q(ηD, Qc, η̂
j
D, Q̂

j
c) (28)

Expressions in (26) and (28) are known as the E-step and M-
step of the EM algorithm.

Considering the above, we suggest to estimate ηD and ηC
separately, meaning we froze one of the parameters while
we estimate the other one, and vice versa. This procedure is
detailed below.

Provided that
zk+1 ∼ N (Fkzk, Qk) (29)
z1 ∼ N (µ1, P1) (30)

we have
− 2Q(ηD, Qc, η̂

j
D, Q̂

j
c)

=log detP1 +

N∑
k=2

log det Qk

+ Trace E
{
P−11 (z1 − µ1)(z1 − µ1)T |YN , η̂jD, Q̂

j
c

}
+

N∑
k=2

Trace E
{
Qk
−1 (zk+1 − Fkzk)

× (zk+1 − Fkzk)
T |YN , η̂jD, Q̂

j
c

}
+ constant (31)

In (31), xTAx=Trace
{
ATxxT

}
is used.

If the following terms are obtained by a Rauch–Tung–Striebel
(RTS) smoother (see e.g. Shumway and Stoffer [2011])

zk/N = E
{
zk|YN , η̂jD, Q̂

j
c

}
Pk/N = E

{(
zk − zk/N

) (
zk − zk/N

)T |YN , η̂jD, Q̂jc}
Sk/N = E

{(
zk − zk/N

) (
zk−1 − zk−1/N

)T |YN , η̂jD, Q̂jc}
Then

E
{
zkz

T
k |YN , η̂

j
D, Q̂

j
c

}
=zk/Nz

T
k/N + Pk/N (32)

E
{
zkz

T
k−1|YN , η̂

j
D, Q̂

j
c

}
=zk/Nz

T
k−1/N + Sk/N (33)

If Fk = I + Fchk, Qk = Qchk is assumed, differentiate
Q(ηD, Qc, η̂

j
D, Q̂

j
c) with respect toFc,Qc and set the derivative

to zero, we have (see Yuz et al. [2011])
Fc = ΨΓ−1 (34)

Qc =
(
Φ−ΨΓ−1ΨT

)
/
(
N − 1) (35)

where

Ψ = E

{
N−1∑
k=1

(
zk+1z

T
k − zkzTk

)
|YN , η̂jD, Q̂

j
c

}

Γ = E

{
N−1∑
k=1

zkz
T
k hk|YN , η̂

j
D, Q̂

j
c

}

Φ = E

{
N−1∑
k=1

(zk+1 − zk) (zk+1 − zk)
T

hk

∣∣∣∣YN , η̂jD, Q̂jc
}

4.3 The final algorithm for noise modeling

The algorithm to estimate the CARMA noise model is com-
posed of two stages, namely:

(i) We estimate ηC by the traditional gradient algorithm with
frozen ηD, and choosing the step size µj such that the log-
likelihood function increases,

(ii) We estimate ηD using the EM algorithm with frozen ηC .

Algorithm 1: The combined Gradient and EM algorithms for
noise modeling

Step 1. Initialization: Set the initial guess η̂0 ={
η̂0D, η̂

0
C

}
, Q̂0

c
Step 2. Iteration:

for j=1:convergence
(1) Estimate ηC using numerical search method

η̂j+1
C = η̂jC + µj q̄j (36)

where

q̄j =

(
∂2l

∂ηC∂ηTC

∣∣∣∣
ηj
C
,Q̂j

c

)−1
∂l

∂ηC

∣∣∣∣
ηj
C
,Q̂j

c

(37)

(2) Estimate ηD using EM algorithm
• E-step

Q(ηD, Qc, η̂
j
D, Q̂

j
c)

=E
{
lc(ηD, Qc)|YN , η̂jD, η̂

j+1
C

}
• M-step(

η̂j+1
D , Q̂j+1

c

)
= arg max

ηD,Qc

Q(ηD, Qc, η̂
j
D, Q̂

j
c)

(3) Form η̂j+1 =
{
η̂j+1
D , η̂j+1

C

}
, then return to (1)

end

5. RIVC METHOD FOR CT BJ MODELS

The complete RIVC algorithm is summarized below.

Algorithm 2: The RIVC algorithm for CT BJ model
identification

Step 1. Initialization: Specify η̂0, Q̂0
c . Apply the SRIVC algo-

rithm [Chen et al., 2013, Young et al., 2008] to compute ρ̂0.
Step 2. Iterative IV estimation with prefilters:
for j = 1 : convergence

(1) If the estimated plant model of (j − 1)th iteration is
unstable, reflect the unstable zeros of the estimated
Â(p, ρ̂j−1) polynomial into the stable region of the
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â1 â2 b̂0 b̂1 d̂1 d̂2 ĉ1 σ̂2 Niter

True value 2.8 4 1 3 1 2 5 1.8× 10−3

SRIVC
2.8006 3.9849 1.0017 2.9961

—— —— —— —— 3.7
±0.1588 ±0.3405 ±0.0319 ±0.2644

RIVC
2.8032 4.0075 1.0001 3.0079 1.0632 1.9657 5.0888 2.1× 10−3

12.1
±0.0918 ±0.1472 ±0.0083 ±0.1277 ±0.1319 ±0.1061 ±0.3253 ±7.5× 10−5

Table 1. Mean and standard deviation of the estimated parameters. σ̂2 - Estimated intensity of the CT
white noise. Niter - Number of iterations for convergence.

complex plane. Generate the noise response from the
system ‘auxiliary model’

x̂(tk, ρ̂
j−1) = Ĝ(p, ρ̂j−1)u(tk)

(2) Obtain the latest estimate η̂j of the CARMA noise
model parameters based on the estimated noise sequence

ξ̂(tk) = y(tk)− x̂(tk, ρ̂
j−1) (38)

using the combined Gradient and EM algorithms (see
section 4).

(3) Prefilter u(tk), y(tk) and x̂(tk, ρ̂
j−1) signals by the filter

F (p, ρ̂j−1, η̂j) =
1

Â(p, ρ̂j−1)Ĥ(p, η̂j)

(4) Based on these prefiltered data, compute the estimate ρ̂j
of the plant model parameter vector from

ρ̂j =

[
N∑
k=1

ζf (tk, ρ̂
j−1, η̂j)ϕTf (tk, ρ̂

j−1, η̂j)

]−1
N∑
k=1

ζf (tk, ρ̂
j−1, η̂j)y

(na)
f (tk, ρ̂

j−1, η̂j) (39)

where ζf (tk, ρ̂
j−1, η̂j), ϕf (tk, ρ̂

j−1, η̂j) are given in
(11) and (9) but where a dependency to the CARMA
noise model parameter estimates η̂j is made clear.

end

Remark: When computing y
(na)
f (tk) = pnaF (p)y(tk), the

degree of numerator is larger than the degree of denominator
in pnaL(p). This implies that pure time-derivatives of the signal
are computed. In this case, we approximate the time-derivatives
by difference quotient.

6. NUMERICAL EXAMPLES

Consider now the following continuous-time system
x(t) =

p+ 3

p2 + 2.8p+ 4
u(t)

ξ(t) =
p+ 5

p2 + p+ 2
e(t)

y(tk) = x(tk) + ξ(tk)

(40)

u(t) is chosen to be a pseudo-random binary sequence (PRBS)
that is generated from a shift register with 9 stages. The shift
clock of the shift register is assumed to be 1 sec.

The estimation procedure is carried out under the following
conditions:

• The length of the sampled data is N = 10, 000.
• The intensity of e(t) is set to σ2 = 1.8 × 10−3, thus the

signal to noise ratio (SNR) is 15dB approximately.
• Monte Carlo simulations (MCS) of 100 runs are per-

formed.

• The sampling period hk is uniformly distributed over the
following interval.

hk ∼ U(0.01, 0.09) (41)
• When using the SRIVC algorithm in step 1 (see Algorithm

2 above), we need to specify the cutoff frequency ωSVF
c of

a state variable filter (see e.g. Young et al. [2008]). This
value is set to ωSVF

c = 0.6π.
• The initial values of d1, d2, c1 are random numbers uni-

formly distributed in the following intervals, the initial
guess of Qc is assumed to be a fixed value.

d̂01, d̂
0
2 ∼ U (0, 3) , ĉ01 ∼ U (0, 10) , Q̂0

c =

[
1 0
0 0

]
(42)

• The stopping rule is chosen to be

max
{∣∣∣∣ ρ̂i+1 − ρ̂i

ρ̂i

∣∣∣∣} ≤ 10−6 (43)

Figure 1 shows a portion of the measured input-output data
where the time-varying sampling can be observed.
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Fig. 1. A portion of the sampled data. Top - The sampling pe-
riod. Middle - The sampled output. Bottom - The sampled
input.

The estimated parameters are presented in Table 1. The SRIVC
method from the CONTSID toolbox 2 is run here to give a
comparison. Even though the additive noise is colored, in the
estimation procedure, simpler SRIVC assumes the noise to be
white. As can be seen from this table, both the SRIVC and the
RIVC methods are unbiased. However, because the noise model
is mis-specified, the SRIVC estimates have larger variance
in estimated parameters. The proposed RIVC algorithm takes
the merits of the noise modeling, so it reduces the variance
of the estimates. However, it is at the expense of increasing
computational load, as can be seen from this table, the RIVC
2 see http://www.iris.cran.uhp-nancy.fr/contsid/
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method needs on average 12 iterations to converge. The Bode
plots of the 100 estimated RIVC models presented in Table 1
are also available in Fig.2 and Fig.3.

The gradient-based estimation procedure is known to converge
to local minima. In the chosen example and initializations, this
problem is not very significant, for the reason that only one
parameter is estimated by the numerical search. All of estimated
models have been used to compute the mean and standard
deviation.
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Fig. 2. Bode plots of the estimated plant models with the true
system
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Fig. 3. Bode plots of the estimated noise models with the true
system

7. CONCLUSION

The issue of continuous-time Box-Jenkins model identification
from non-uniformly sampled data has been considered in this
paper. Refined instrumental variable-based method has been de-
veloped to solve this problem, with CARMA noise estimation.
The performance of the proposed scheme has been investigated
by means of simulation examples.
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