
OPC-DB Link for the Management of New
Systems in a Remote Laboratory

Manuel Domı́nguez, Seraf́ın Alonso, Juan J. Fuertes
Miguel A. Prada, Antonio Morán, Pablo Barrientos

SUPPRESS research group, Esc. de Ing. Industrial e Informática,
Campus de Vegazana s/n, 24071, León, Spain

(e-mail: author@unileon.es).

Abstract: The remote laboratories are proven tools for technological training. In these
laboratories, the students interact with a real system through the Internet, as if they were
physically in front of the system. When a remote laboratory is developed, many technical
difficulties arefound, mainly with respect to the links between the different elements such
as physical system, database and clients. In this sense, it is necessary to make an effort to
standardize the implementation of the links. In this paper, we propose a standard application
to communicate the physical systems and the database. This middleware, called OPC-DB, uses
OPC (OLE for Process Control) for communication with control systems and has been developed
in LabVIEW. The software can be easily reused in different laboratories by means of a database.

Keywords: Web-based laboratories, remote monitoring, control education, laboratory
management system, data exchange, OPC-DB link, OPC protocol.

1. INTRODUCTION

A complete learning experience in engineering education
should include experimentation with systems to introduce
professional practice and skills, support analytical con-
cepts and increase the involvement of the students (Lind-
say and Good, 2005). Remote laboratories have proven to
be effective educational tools in engineering, with compa-
rable results to traditional on-site labs (Nickerson et al.,
2007). Indeed, they provide additional advantages, such
as their flexibility, which is appealing for the students.
The remote laboratories also enable sharing the scarcely
available equipment. This is a relevant issue because ed-
ucation on technological subjects often requires the use
of complex and expensive equipment. As a result, the
development of virtual and remote laboratories in the
field of automatic control has advanced significantly in
the last years (Guzmán et al., 2010; Leva and Donida,
2008). The Remote Laboratory of Automatic Control of
the University of León (LRA-ULE) (Domı́nguez et al.,
2011)is a laboratory oriented to research and education
with a focus on real industrial equipment.

The experience has shown that, in order to provide educa-
tional value with a reasonable use of resources, a remote
laboratory needs to be more than a working prototype and
ensure certain standards in manageability, extensibility,
security and accessibility (Garćıa-Zubia et al., 2009). It
is necessary to recognize the importance of software to
provide the performance and scalability needed to ensure
its educational usefulness. Convenient approaches will also
alleviate the workload needed to create new experiments
or set up new physical devices. For that reason, research
in the field of remote laboratories is progressively focusing
on hardware and software solutions that address usual
problems or provide general frameworks.

The traditional architecture of remote laboratories is N-
tier, also a usual structure in general web development
(Eckerson, 1995). Between the client application that runs
in the computer of the user and the physical systems, there
is a number of layers that provide different services such
as authentication, scheduling, data logging, additional ed-
ucational content or security. The communication between
adjacent layers is a key issue because its implementation
should balance effectiveness, flexibility and rapid develop-
ment. Usually, these aims is met through the provision of
interface libraries that can be used by the applications to
communicate transparently. These application program-
ming interfaces (API) often make use of state-of-the-art
technologies such as web services.

In the field of industrial automation, there is a standard
called OPC (Object Linking and Embedding for Process
Control) for the communication of real-time plant data
between control devices from different manufacturers. This
paper proposes leveraging the OPC standard to communi-
cate between the industrial plants and the upper manage-
ment layers. It presents a middleware based on OPC that
acts as interface between the industrial equipment and the
middle layer of the LRA-ULE platform. Section 2 describes
the state of the art regarding the architecture of remote
laboratories and the solutions proposed to communicate
between their layers. Section 3 presents the proposed
approach and its implementation. After that, section 4
explains the usage of the middleware in the LRA-ULE
platform. Finally, the conclusions are discussed in 5.

2. ARCHITECTURES AND COMMUNICATION
APPROACHES IN REMOTE LABORATORIES

The field of remote laboratories has achieved a certain
level of maturity. Nowadays, several platforms provide

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 9715



much more than the simple remote control/monitoring
of a physical system through the Internet. They provide
resource-efficient solutions oriented to achieve aims such
as scalability, platform independence, security and acces-
sibility. There are nevertheless two main goals that any
effective remote laboratory must address. One is the abil-
ity of connecting heterogeneous physical systems easily.
The other one is to alleviate the workload of the website
administrators, who are sometimes faculty and need to
spend their time developing educational content instead of
performing tasks such as user management, new systems
configuration, etc. In order to provide the required level
of manageability, the approaches use multi-tier architec-
tures, centralize some core services and use standardized
interfaces for communication.

In this section, some relevant examples of remote labora-
tories, which are not constrained to the field of control en-
gineering, are presented. It can be seen that some of them
manage the communication with the system completely,
storing data and controlling the interaction, whereas other
platforms simply set up a connection and do not partici-
pate in the data exchange. We are more interested in the
platforms that support completely managed experiments.

A platform that supports managed and unmanaged ex-
periments is the WebLab-Deusto remote laboratory. This
remote laboratory is a framework developed to decouple
infrastructure development and experiment development
(Garćıa-Zubia et al., 2009). Through plug-ins and APIs
available in different client-side and server-side technolo-
gies, they achieve certain aims such as scalability or dis-
tribution. Regarding infrastructure, the architecture uses
a login server for authentication and core server to man-
age scheduling, storage, requests, etc. The laboratory and
experiment servers are used to manage the laboratory.
The unmanaged experiments can use, for instance, virtual
machines. In the experiments that are managed by the
platform, the communication is made through a set of
commands using web services. The clients need to use the
client library, with methods for submitting a command,
whereas the experiment servers can implement the server
library or use XML-RPC directly.

On the other hand, the University of Technology, Syd-
ney (UTS) Remote Laboratory follows an unmanaged ap-
proach. The architecture of the UTS remote laboratory is
developed to be flexible, extensible and able to manage
multiple sets of equipment (Lowe et al., 2009). The user
needs a web browser and a remote desktop client. The user
stars session on a web browser, the arbitrator allocates
equipment to the the student, provides visual monitoring
of the experiment and boots a virtual machine on a master
server to enable control of the system. To control the sys-
tem, the user creates a remote desktop connection to this
virtual machine. The arbitrator supports access queues
and management of access to multiple identical systems.

Another example of comprehensive remote laboratory is
the iLab Shared Architecture (ISA) of the Massachusetts
Institute of Technology (MIT), which follows a typical
three-tier structure. This distributed software toolkit pur-
sues scalability, platform independence and efficient man-
agement (Hardison et al., 2008). The first tier is the user
application, available in a web browser. The second tier

is called the service broker, which provides authentica-
tion and manages access to the experiments. The third
tier comprises the lab servers that are connected to the
physical devices and controls the experiment. The lab
client and the lab server only communicate directly to the
service broker. For that purpose, two APIs exposed as web
services with pass-through methods are available. Each
experiment needs a lab server. The clients must be able to
produce and interpret XML documents in compliance with
a lab client/server communication schema. The lab servers
also need to interpret and produce those documents and
transform experiment parameters to physical commands.
The architecture can be shared between two or more in-
stitutions, the two first tiers are located in an institution
and the broker server communicates with the lab server
on charge of the experiment.

As can be seen from the overview of available platforms,
there are 3 key issues that need to be addressed in the
design of a remote laboratory. First, it is necessary to
decide how to implement the client-side communication,
because this choice influences the development of the
clients. Second, we need to establish the functionality and
structure of the core server, sometimes also known as
arbitrator or broker. This server, or set of servers, is in
charge of authentication, user and session management,
resource allocation, etc. and therefore it is crucial in the
operation of the laboratory. Third, the communication
interface with the control systems of the physical systems
must be designed. This interface must enable easy config-
uration of existing and new equipment in the platform.

The LRA-ULE remote laboratory addresses client-side
communication by providing a library for client develop-
ment, available both in Java and JavaScript. This library
provides a simple interface for system interrogation and
I/O operations. The interface communicates with a PHP
module in the server-side, running in a Drupal content
management system (CMS). The set of CMS, specific
LRA-ULE modules developed in PHP and proxy server
performs equivalent tasks to the broker/arbitrator servers
available in other platforms (Domı́nguez et al., 2012). This
is a similar approach to the one proposed in (Mej́ıas et al.,
2013), where user management is performed by a plug-in
of a content management system and another component
called Remote Access System for Laboratories (RASLAB)
is used to set up the needed links between the user interface
and the experimental system without compromising secu-
rity. Apart from managing the communication between a
client in a public network and the experimental system in
the intranet, RASLAB can also handle the power supply
of that system.

Several approaches have been proposed to alleviate the
work necessary to make existing local systems accessible
through the web. For instance, a middleware applica-
tion (JIL) is proposed in (Vargas et al., 2009) to enable
communication between clients in the common form of
Java applets and a platform widely used in the field of
instrumentation, control and acquisition systems such as
LabVIEW. This tool have been tested by several Span-
ish universities with Easy Java Simulation applets in the
client-side and LabVIEW in the server side.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9716



Regarding the communication with the end systems,
the approach taken by the LRA-ULE remote laboratory
should address its main goal: to connect industrial-oriented
equipment. For that reason, it is convenient to reuse com-
mon procedures in industry for the communication and
control of the physical system. This way, the work and
knowledge required to configure or add a system will be
minimized. For that reason, contrary to other approaches,
the proposed mechanism avoids the implementation of an
ad-hoc application, using a certain API, in the computer
associated to the physical system. Instead, it uses the OPC
Data Access standard. OPC provides a common bridge
between PC applications and process control hardware,
with consistent access methods to field data regardless of
the control system device. Thus, general OPC clients can
communicate with any hardware as long as an OPC server
is available. Therefore, there is no need to re-implement
the interface for new devices in a SCADA/HMI.

This paper presents a middleware (OPC-DB) that com-
municates the industrial systems with a standard database
associated to the system. Since the middleware acts as an
OPC client, it is only necessary to install and configure the
OPC server that is compatible with the control system in
the end computer. The OPC server is usually provided
by the manufacturer and its configuration procedure is
common knowledge among control engineers. Therefore,
this approach enables easy and fast configuration of new
systems and, in turn, fewer problems and increased flex-
ibility. The main drawbacks are that the acquisition of
OPC servers will increase the cost of the solution and that
some low-end devices might not be OPC-enabled.

3. THE OPC-DB LINK

In this section, the proposed middleware, OPC-DB link, is
described. This middleware connects the physical system
with the intermediate layer of the remote laboratory by
acting as a link between the OPC server associated to the
system and the database of the remote laboratory.

3.1 Description and purpose of the OPC-DB link

The management system of a remote laboratory generally
relies on a database that, apart from other information,
deals with data sampled from the systems and actions
submitted by the users. The purpose of the OPC-DB link is
to read the status from the input variables of a system and
store them in the database, and to retrieve the actions from
the database and write them to the corresponding output
variables of the system. Fig. 1 summarizes this operation.

As discussed in the previous section, communication with
the system is performed through the OPC Data Access
standard. The middleware works as an OPC client that
obtains from a database the information about which
OPC server and variables it needs to connect to. The
communication with the database is performed by means
of a standard ODBC driver. This way, the middleware
preserves its modularity and independence from the type
of system, so that the integration of new equipment in
an existing laboratory is easier. The database needs to
be integrated in the operation of the remote laboratory.
It is common that interactions in the client applications

PHYSICAL SYSTEMS

CLIENT SIDE SCRIPT
(RICH INTERNET APPLICATION)

Server Side 
Script

ODBC link

Retrieve/Store

OPC link

OPC-DB Link

Read/Write

DATABASE

REMOTE LABORATORY 
MANAGEMENT

Fig. 1. General structure of the OPC-DB link

result in the execution of server-side scripts that update
and query the database by means of stored procedures.
In that case, the requirements to apply the proposed
middleware would just be the creation of some tables with
the distinctive parameters of the system (variables, data
types, OPC tags, etc.). It is also possible to add/erase
system variables by simply adding/removing rows of the
table. The OPC server of the real system must also be
configured and activated.

3.2 Functionality of the OPC-DB link

The OPC-DB link carries out several tasks to accomplish
its functionality (see Fig. 2). A call to the OPC-DB
link needs two parameters: the name of the database
associated with the system and the run or stop command.
When a running command is sent, the connection with
the corresponding database is opened and the event and
reference to the application instance are registered in
the log table. After that, the configuration parameters
associated to the system (OPC name, sampling period,
lifespan limit, etc.), the system variables and their data
type and the OPC tags are retrieved from the database.
The data types configured in the database must match the
ones from the OPC server.

Once all the information is known, the connection to the
OPC server is established and the acquisition loop starts.
In each iteration of the loop, the values of each of the
OPC tags corresponding to the system input variables
are read and stored into a table of the database. This
way, the remote laboratory services can provide real-time
data of the operation of the system to their clients. The
data (actions) sent by the remote clients are updated in
the database and, in turn, written to the OPC tags that
correspond to the system output variables. However, for
efficiency purposes, data are only written when the values
in the table differ from the ones in the last iteration. In

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9717



WEB SERVICE

SYSTEM CONFIGURATION 
RETRIEVAL

SYSTEM VARIABLES RETRIEVAL

OPC-DB LOG UPDATE

SYSTEM
RUN 

COMMAND

OPC TAGS RETRIEVAL

OPEN OPC CONNECTION

READ OPC DATA / STORE 
DATABASE DATA

 DATABASE DATA RETRIEVAL / 
WRITE OPC DATA

ERROR CHECKING

OPC-DB LOG UPDATE

CLOSE DATABASE AND OPC 
CONNECTIONS

STOP 

COMMAND

OPEN DATABASE CONNECTION

DATABASE
INDUSTRIAL 

SYSTEM

OPC-DB LINK

ODBC 

Protocol

VI status (running), time 

and reference to VI 

clone

OPC 

Protocol

Time to live, sampling 

period, OPC name, etc

Names and data types 

of system variables

OPC tags

Output variables from 

the user

Output variables to the 

system

Input variables from the 

system 
Store input variables

OPC bad quality, OPC 

error, Database error 

and time to live limit

Errors, VI status 

(stopped) and time 

System Database

System OPC server

Fig. 2. Functionality of the OPC-DB link

each loop iteration, possible errors in the connection with
the OPC or the database are checked. The middleware
stops automatically whenever an error is detected and
writes the details in the log. Besides, the quality of the
data provided by the OPC server for each tag is checked
and an error, which stops the middleware, is reported
whenever the quality of any variable is found to be bad
for ten consecutive iterations.

Finally, when the OPC-DB link receives the stop com-
mand, it is logged into the database and the connections
with both the OPC and the database are closed. The OPC-
DB link also stops whenever it detects inactivity by the
users, i.e., when a time longer than the lifespan limit has
passed since the last update of the output variables. The
inactivity control avoids the undefined link execution if the
remote laboratory platform fails to detect the user exit.

3.3 Programming and deployment of the OPC-DB link

The OPC-DB link has been programmed in LabVIEW 1 ,
a graphical programming language developed by National
Instruments for scientists and engineers, which uses in-
tuitive graphical blocks instead of written code for the
development of applications involving acquisition, control,
analysis and data visualization (National Instruments,
2003). LabVIEW includes extensive libraries of basic and

1 http://www.ni.com/labview/esa/

Fig. 3. Remote client of the electro-pneumatic cell

specific functions for data acquisition, instrumentation
control, communication and data storage, as well as a
web server which lets us publish remote front panels, web
services, etc. Standard communication protocols such as
serial, GPIB, Modbus, OPC, etc. are also available. Due
to its extensive functionality and connectivity, LabVIEW
programming language has been chosen.

LabVIEW programs are called Virtual Instruments (VIs)
and consist of two parts: the front panel (graphical user
interface) and the block diagram (source code). In this
case, the design of front panel is not important since the
OPC-DB link runs transparent to the user. The LabVIEW
project of the OPC-DB link has been structured in two
VIs: the main VI implements the complete functionality of
the OPC-DB link whereas the command VI is only used
to command (run/stop) the main one. The LabVIEW VI
server is used to communicate between both VIs. The main
VI is defined as re-entrant to allow that multiple instances
of itself can run in parallel without interfering with each
other. Therefore, the OPC-DB link allows multiple calls
so that many users can use different physical systems
(different variables, parameters, etc.) at the same time
in the remote laboratory. For each different system, a
different instance is running. On the other hand, the
command VI is deployed as web service to facilitate the
integration with the management of the remote laboratory.
It requires that the LabVIEW web server is active.

4. USAGE OF THE OPC-DB LINK IN THE LRA-ULE
REMOTE LABORATORY

As stated before, the LRA-ULE remote laboratory is a
platform used for education and research with a focus
on industrial-oriented devices. Therefore, the architecture
has to be flexible enough to be able to integrate new
equipment easily. The OPC-DB link is well adapted to
this structure, because it is based on open technologies and
facilitate the communication between the database and a
physical controller regardless of the manufacturer. In this
section, the physical systems that have been connected to
the platform through the OPC-DB link application are
described in detail.

The electro-pneumatic classification cell is a physical sys-
tem that aims to classify steel pieces (6×6×8 cm) in three
categories This system includes many different industrial
equipment such us PLCs, drives, sensors, actuators or a six
degrees or freedom robot. For the user interaction with the
electro-pneumatic classification cell, an HTML5/AJAX

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9718



Table 1. Variables of the system included in
the remote laboratory.

ID System output variables

1 System activation signal
2 Activation sequence of the cylinders in the conveyor belt
3 Number of cycles performed by the system
4 Frequency of the drive
5 Acceleration curve of the frequency drive
6 Deceleration curve of the frequency drive

ID System input variables

1 Frequency of drive 1
2 Power of drive 1
3 Speed of drive 1
4 Frequency of drive 2
5 Power of drive 2
6 Speed of drive 2
7 System status
8 Rail 1 activation
9 Rail 2 activation
10 Rail 3 activation
11 Start signal for code recognition
12 Status signal for code recognition

Web
Access

OPC-DB Link

Fig. 4. OPC-DB link application in the LRA platform

client (see Fig. 3) is used. It allows to read and modify
some of the physical system variables, which are shown in
Table 1.

Figure 4 shows the architecture to integrate the electro-
pneumatic cell into the LRA platform by means of the
OPC-DB link. As discussed in section 2, this architecture
is three-tier. The first layer is formed by the physical
equipment and their control and acquisition systems. In
the intermediate layer, there are the servers that manage
most of the aspects needed in a remote laboratory. The
content management system, web server, security and
communication manager and database are found in this
layer.

The purpose of this work is to include the OPC-DB link
middleware in this intermediate layer to manage the com-
munication between the database management system,
where the data of the remote laboratory are stored, and the
physical system. The database enables a seamless integra-
tion of the OPC-DB link in the platform, which previously
used other non-standard ad-hoc solutions to provide that
functionality. This is achieved by a minor adaptation of the
stored procedures to work with the predefined structure
of the tables needed to use the middleware. It needs to
be noted that those tables store not only values of the
variables, but also configuration parameters of the link
with the OPC server.

In more detail, a database suited to work with the OPC-
DB middleware must contain the six tables listed in the
Table 2. In the “Input variables” and “Output variables”
tables, the user must create a row for each of the I/O
system variables. These tables have three columns: iden-
tifier (ID), data type (analog or digital) and OPC tag.
Each column of the “OPC data” and “OPC actions” tables
corresponds to a variable of the system. The OPC-DB link
application reads the values of the variables introduced in
the “Input variables” table in order to insert them into the
“OPC data” table. Apart from that, the middleware de-
cides whether to update an output variable in the physical
system by reading the current values in the “OPC actions”
table and looks up the “Output variables” table to get the
OPC tags where the values need to be updated. The “Log-
ging” table is used to record the events and errors of the
middleware and the “Config” table includes the address
of the OPC server, the desired sampling period and the
desired maximum idle lifespan. The server-side scripts call
directly some stored procedures for reading/writing data
and starting/stopping the acquisition. In order to integrate
the middleware, those store procedures have been adapted.

On the other hand, it is necessary to configure the
OPC server, which in the particular case of the electro-
pneumatic cell is a Scheider Electric OPC Factory server.
This is achieved by generating a symbol table from the
system control strategy, in this case implemented in a
Premium TSX PLC using Unity Pro. The symbol table
includes all the variables of the strategy, but only the
variables in the “Input variables” and “Output variables”
are used by the remote laboratory.

The top layer includes the client application, implemented
with HTML5 and AJAX, which only communicates with
the server-side script through the library implemented for
that purpose. Therefore, the use of the OPC-DB link will
be transparent to the user.

In addition to the electro-pneumatic cell, the OPC-DB
link application has been used for the communication
with another physical system, the quadruple-tank model.
The steps to include the system are equivalent to those
presented for the electro-pneumatic cell. A database with
the aforementioned structure needs to be created for this
particular system. The necessary stored procedures will
be exactly the same than in the previous case, so there is
no need to write any further code. The input variables in
this system are basically the levels of the four tanks and
the status of the actuators, whereas the output variables
comprise the speed of the pumps, the openings of the

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9719



Table 2. Structure of the database tables

Name Description

OPC actions Output var. sent by Drupal & data types
OPC data Input var. and data types

Config Sampling time, OPC server address & lifespan
Logging System errors and events

Input var. Name, ID, type & OPC tag of input var.
Output var. Name, ID, type & OPC tag of output var.

valves and the status of the digital valves but also the gains
of the PID controller that is implemented in the strategy.
In this case, the OPC Server is an Opto OPCServer
because the strategy was developed in PAC Control Basic
for an OPTO SNAP Ultimate I/O controller

The OPC-DB link has represented a clear advance regard-
ing the workload needed to configure or add a device, when
it uses a control or acquisition system that has an OPC
server available. Several instances of the middleware can
run simultaneously for different systems. The existence of
a single piece of software in the server-side and no ad-hoc
applications running in the computers associated with the
systems is also and advantage with regard to maintenance
and reusability.

5. CONCLUSION

The remote laboratories provide web environments to in-
teract with physical systems. From a technical point, de-
signing a remote laboratory is a complex task. In contrast
to the traditional laboratories, where it is just necessary
to select the physical system and develop the educational
contents, a technological platform to manage student ac-
cess has to be developed. This platform is composed of
several layers such as the local connection to the physical
system, the database and core management system, or the
client interface. A software solution is needed to communi-
cate these layers. In the last years, alternatives have been
proposed to implement those communication in standard
and reusable applications, but these approaches usually
focus on the usage of ad-hoc libraries. To let faculty focus
on the development of educational contents, it is necessary
to enable connection of new hardware without much need
of programming or technical tasks.

For that reason, we proposed a standard solution to link
industrial-oriented physical systems with a database in
remote laboratories. A middleware has been programmed
in LabVIEW, so that the link uses the OPC standard
on the side of the physical system and the ODBC driver
on the side of the database. If administrators want to
use this standard solution to include a system in their
remote laboratory, they only need to install and configure
the OPC server associated to the control system (usually
provided by any manufacturer of control equipment) and
create the associated tables in the database. The proposed
link has been used to integrate two physical systems in
the remote laboratory LRA-ULE at the University of
León: an electro-pneumatic cell and a 4-tank process. The
steps needed to incorporate these systems into the remote
laboratory have been explained in detail. This approach
decreases the workload and knowledge needed to add or
configure physical systems.

REFERENCES

Domı́nguez, M., Fuertes, J.J., Prada, M.A., Alonso, S.,
and Morán, A. (2011). Remote laboratory of a quadru-
ple tank process for learning in control engineering
using different industrial controllers. Computer Ap-
plications in Engineering Education, n/a–n/a. doi:
10.1002/cae.20562.

Domı́nguez, M., Prada, M., Morán, A., Alonso, S., and
Barrientos, P. (2012). Improving user interaction
in remote laboratories through html5/ajax. In Ad-
vances in Control Education, volume 9, 282–287. doi:
10.3182/20120619-3-RU-2024.00036.

Eckerson, W.W. (1995). Three tier client/server architec-
tures: Achieving scalability, performance, and efficiency
in client/server applications. Open Information Sys-
tems, 3(20), 46–50.

Garćıa-Zubia, J., Orduña, P., López-de Ipiña, D., and
Alves, G.R. (2009). Addressing software impact in
the design of remote laboratories. Industrial Electron-
ics, IEEE Transactions on, 56(12), 4757–4767. doi:
10.1109/TIE.2009.2026368.

Guzmán, J.L., Domı́nguez, M., Berenguel, M., Fuertes,
J.J., Rodŕıguez, F., and Reguera, P. (2010). Entornos
de experimentación para la enseñanza de conceptos
básicos de modelado y control. Revista Iberoamericana
de Automática e Informática Industrial, 7(1), 10–22. doi:
10.4995/RIAI.2010.01.01.

Hardison, J., DeLong, K., Bailey, P., and Harward, V.
(2008). Deploying interactive remote labs using the
ilab shared architecture. In Frontiers in Education
Conference, 2008. FIE 2008. 38th Annual, S2A–1–S2A–
6. doi:10.1109/FIE.2008.4720536.

Leva, A. and Donida, F. (2008). Multifunctional re-
mote laboratory for education in automatic con-
trol: The CrAutoLab experience. Industrial Electron-
ics, IEEE Transactions on, 55(6), 2376–2385. doi:
10.1109/TIE.2008.922590.

Lindsay, E. and Good, M. (2005). Effects of labo-
ratory access modes upon learning outcomes. Edu-
cation, IEEE Transactions on, 48(4), 619–631. doi:
10.1109/TE.2005.852591.

Lowe, D., Murray, S., Lindsay, E., and Liu, D. (2009).
Evolving remote laboratory architectures to leverage
emerging internet technologies. Learning Technolo-
gies, IEEE Transactions on, 2(4), 289 –294. doi:
10.1109/TLT.2009.33.

Mej́ıas, A., Márquez, M.J., Andújar, J.M., and Sánchez,
M.R. (2013). A complete solution for developing remote
labs. In 10th IFAC Symposium Advances in Control
Education, 96–101. IFAC. doi:10.3182/20130828-3-UK-
2039.00057.

National Instruments (2003). LabVIEW user manual, no.
320999E-01. URL http://www.ni.com.

Nickerson, J.V., Corter, J.E., Esche, S.K., and Chassapis,
C. (2007). A model for evaluating the effectiveness
of remote engineering laboratories and simulations in
education. Computers and Education, 49(3), 708–725.
doi:doi:10.1016/j.compedu.2005.11.019.

Vargas, H., Sánchez-Moreno, J., Dormido, S., Salzmann,
C., Gillet, D., and Esquembre, F. (2009). Web-enabled
remote scientific environments. Computing in Science
& Engineering, 11(3), 36–46.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9720


