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Abstract: This paper gives a new viewpoint for steady-state analysis of classical job-shop cyclic 

scheduling (CJCS). After refining the constraints in the analysis of steady-state, improved models are 

achieved. By using the improved models, two kinds of problems can be solved, which are minimizing 

work-in-progress (WIP) with optimal cycle time and minimizing the cycle time with limited WIP. 

Moreover, the mathematical models are programmed in CPLEX 12.5 and good experimental results are 

presented. 
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

1. INTRODUCTION 

The cyclic scheduling is seen as a scheduling problem in 

which some set of activities is to be repeated an infinite 

number of times (Draper et al., 1999). More precisely, if x(n) 

is the starting time (or ending time ) of one activity, and n 

means the repeat numbers, then there is a constant C (called 

the cycle time which is the inverse of the periodic throughput) 

and one integer K such that 

 (   )   ( )       for              

It is has been shown that the cyclic scheduling is NP-hard 

(Carlier and Chrétienne, 1988; Hanen, 1994; Bodin et al., 

2012), for which the heuristics algorithm are always 

recommended (Kampmeyer, 2006; Jalivand-Nejad and 

Fattahi, 2013). The k-cyclic scheduling is studied in 

(Chrétienne et al., 1997; Brucker and Kampmeyer, 2008; 

Amraoui et al., 2013). Especially, in (Camus et al., 1996; 

Korbaa et al., 2003; Bourdeaud’huy and Korbaa, 2006; Amar 

et al., 2011), the 1-cyclic (k=1) scheduling of job-shop is 

considered. It is assumed that, in our work, only the 1-cyclic 

scheduling technique is studied. It is admitted that 1-cyclic 

scheduling is more easily to be controlled, because if the 

scheduling of system is known in just one cycle time C, we 

can predict all the system’s activities in the future. 

In this paper, the cyclic scheduling is applied on the classical 

job-shop (CJCS). In this kind of job-shop scheduling problem, 

a finite set of jobs is processed on a finite set of machines. 

Each job is characterized by a fixed order of operations, each 

of which is to be processed on a specific machine for a 

specified duration. Each machine can process at most one job 

at a time and once a job initiates processing on a given 

machine it must complete processing uninterrupted. The 

objective of the problem is to find a schedule either to 

minimize the cycle time of job-shop or to minimize the work-

in-progress (WIP) in job-shop.  

In our model, the pallets allocated to products are used to 

transport the job between machines, and the pallets will only 

be removed from the products after completely finishing the 

job, so in this paper, the number of pallets for one job is 

equal to the number of WIP for this job. 

Factually, this kind of job-shop problem can be described as a 

strongly connected event graph (SCEG) (Ohl et al., 1995). It 

has been shown that the cycle time of system should be the 

maximal cycle time of all the elementary circuits in SCEG. 

This conclusion can be used as a good cut technique to set a 

low bound for system’s cycle time, which obviously reduces 

the research space of admissible solutions. 

Basically, the paper is organized as the follows: in the second 

part, a new viewpoint of cyclic scheduling on steady-state 

analysis will be presented step by step; after the explanation 

of the new viewpoint, two refined mathematical model are 

given, one is to resolve the job-shop cyclic scheduling with 

WIP minimization, another is to resolve the job-shop cyclic 

scheduling with limited WIP for minimizing the cycle time of 

system; in the end, the experimental results by using CPLEX 

are presented, and comparisons with models in 

(Bourdeaud’huy and Korbaa, 2006; Amar et al., 2011) are 

also made.  

2. STEADY-STATE ANALYSIS  

2.1  Basic Notation 

Before the analysis of steady-state in job-shop cyclic 

scheduling, some basic notation would be given firstly. 

    : jobs or products,    is the index of jobs,        

   : machines,   is the index of machines,        

      : the kth operation of     processed on   ,        
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      : start date of operation     ,         

      : the duration of operation     ,         

       : the mth WIP for   ,        

    : total number of pallets for   ,        

        : limit number of pallets for system,            

   : variable stands for cycle time of system,     

      : the optimal cycle time for cyclic scheduling of a 

production system, it is also the  low bound of system’s 

cycle time,        

   :       *   +, the quantity of jobs 

   : number of operations for    

   :       *   +, the quantity of Machines 

     : Boolean variables 

    
    

 : Boolean variables 

     : integer number,       

2.2  Explanation of CJCS 

The new view point to explain CJCS will be presented step 

by step. A simple CJCS with saturation of machines in 

figure.1 is taken as an example. 

 

Fig.1.One simple CJCS example. 

In this example, the job-shop has two kinds of jobs: job1 and 

job2. For job1, it has two WIP or pallets, WIP11 and WIP12, 

and it has 4 operations for one complete part; for job2, it has 

one WIP, WIP21, and it has 2 operations for one complete 

part. All the operations of job1 and job2 should be executed 

on 4 different machines, and it is easily to find that    is 

saturated, which implies the cycle time of system is the sum 

of all the durations of operations on    which is the 

bottleneck machine.  

Constraints on viewpoint of both     and    : 

However, as shown in figure 1, if we observe the cyclic 

scheduling in one cycle time  , all the start date of operations 

should be in the interval [0,  [. Constraints family (1) permits 

the cross cycle of one operation, which means one operation 

start in one cycle but end in another. Hence, (1) doesn’t lose 

the generality for arranging the start time of one operation. 

                                                                                (1) 

Constraints on viewpoint of     : 

If we observe all the operations which are executed on the 

same machine   , one machine can only process one 

operation at a moment, so no overlap between the operations 

executed on the same machine should be respected. 

Constraints families (2) and (3) give proper constraints for 

avoid the overlapping of operations      and        which are 

executed by   . 

                      
    

                                              (2) 

                        
    

                                            (3) 

Constraints on viewpoint of     : 

 

Fig.2. Different parts in one cycle time. 

For 1-cyclic scheduling, in one cycle time, different parts for 

the same job can be observed. For example, in one cycle time 

as in figure 1, two parts for job1 are observed; in one cycle 

time as shown in figure 2, three parts for job1 are observed. 

Surely there is an order between the parts for the same job. 

Hence, constraints family (4) should be given. 

                                                                    (4) 

As shown in figure 2, in one cycle time, it exists (N-   )th 

part, (N-   )th part, and (N-   )th part. The up bound of     

is   , which implies the situation that on one pallet just one 

operation is executed in one cycle time. 

The value of difference between     and       is 0 or 1, 

which can be determined by one Boolean variable    . As 

shown in figure 3, when operation        starts after the end 

of     , it stands for these two consecutive operations belong 

to the same part, thus                   , else they 

belong to different parts,                  . The % 

means complementation in math, which can connect the 

operations of one part as a cycle.  
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  (      )                                                                 (5) 

   = 0 or 1                                                                            (6) 

(          )     (      )                                        (7) 

.  

Fig.3. Value of the Boolean variable     . 

WIP or pallets quantity formula: 

Factually,       means the necessity to add one pallet for 

operation      of job   .  And operation % can connect the 

last operation with the first operation of   . It is interesting to 

find that the sum of     is exactly the quantity of pallets as 

presented in the following formula: 

∑   
 
  ∑ ∑    

  

 
 
                                                               (8) 

Optimal cycle time formula: 

The optimal cycle time      for the production system is 

defined by the following expression: 

        (∑                         
)                               (9) 

the expression ∑                         
 describes the sum of 

durations of the operations associated to the machine   . Let 

us denote by bottleneck machine the machine for which this 

sum is the greatest. Thus, the optimal cycle time is the sum of 

durations of the operations associated to the bottleneck 

machine. It is possible to obtain an optimal total production 

time by saturating the bottleneck machine of the considered 

production system (Bourdeaud’huy and Korbaa, 2006). 

2.3 Refined Mathematical Models 

Generally, two kinds of problems are studied for CJCS: one 

is to find the minimal number of pallets or minimal WIP with 

machines saturated, another is to find the minimal cycle time 

(not necessary the optimal cycle time     ) with limited 

pallets or limited WIP. These two kinds of models are 

presented as follows. 

Model for CJCS with machines saturated for WIP 

minimization 

This model could be directly refined by the constraints in 

section 2.2: (4) (5) (6) (7) could be combined into (13). This 

is a linear model. And some machines are saturated, so the 

optimal cycle time      is reachable, let us change   with 

    . 

Objective function:  

Minimize ∑ ∑    

  

 
 
                                                          (9) 

Constraints both on viewpoint of     and   : 

                                                                           (10) 

Constraints on viewpoint of     : 

                      
    

                                        (11) 

                     (     
    

)                            (12) 

Constraints on viewpoint of     : 

(          )     (      )                                   (13) 

Thus a refined model with only 4 constraints families (10) - 

(13) is gotten, which is simpler than the model with 7 

constraints families in (Bourdeaud’huy and Korbaa, 2006).  

However some cut techniques about bounds of objective 

function to reduce the research space could be used (Amar et 

al., 2007). 

The low bound for WIP:  

∑ ∑    

  

 
 
  ∑ ⌈

∑     

  
 

    
⌉ 

                                                   (14) 

⌈ ⌉ stands for the ceiling operator. The above bound means 

if the sum of operations for one part is superior than      , 

more pallets should be used to guarantee the system run in 

     cycle time. 

The up bound for WIP: 

∑ ∑    

  

 
 
  ∑   

 
                                                               (15) 

 Constraint (15) implies that, in one cycle time, one pallet is 

proposed as transport resources for each operation. 

Model for CJCS with limited WIP for minimizing cycle 

time 

This is an un-linear model. First, it needs to change the 

objective function as follow: 

Minimize                                                                            (16) 

For the constraints, it needs to change          with   in the 

constraints families. The minimal cycle time is not the 

optimal cycle time, because the number of pallets is inferior 

than the minimal quantity of pallets to realize optimal cycle 

time, other words, the transport resources are limited, thus no 

one machine is saturated.  

Constraints both on viewpoint of     and   : 
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                                                                                 (17) 

∑ ∑    

  

 
 
                                                                     (18) 

Constraint (18) means the job-shop can use at most        

pallets. 

Constraints on viewpoint of     : 

                      
    

                                             (19) 

                     (     
    

)                                 (20) 

Constraints on viewpoint of     : 

(          )     (      )                                       (21) 

Thus a refined model with only 5 constraints families (17) - 

(21) is gotten, which is simpler than the model with 8 

constraints families in (Amar et al., 2011). 

However some cut techniques about bounds of objective 

function to reduce the research space can be used. 

The low bound for cycle time: 

                                                                                   (22) 

Because the WIP quantity is limited to be less than the 

minimal number of WIPs to realize optimal cycle time, low 

bound of cycle time can’t be reachable as shown in (22). 

The up bound for cycle time: 

  ∑ ∑     

  

 
 
                                                                    (23) 

The up bound stands for the job-shop process only one job at 

a moment, only when this job is finished, the new job can be 

processed. Obviously, this is a stupid scheduling with low 

production efficiency. 

3. EXPERIMENTAL RESULT 

In section 2, two improved models and the relative cut 

techniques are given. In this section, the experimental results 

for the two models are presented using example in (Seo and 

Lee, 2002). CPLEX 12.5 is used for the constraints 

programming, on a computer with Intel (R) Core (TM) i3-

2310M at 2.10 GHz and 4 Go RAM, under Window 7 (64 

bit).  

3.1 Example Description 

This example consists of three machining centres:   ,   , 

  , three set-up stations   ,    , and    (that can be also 

considered as machines). The job-shop produces three types 

of parts:   ,   , and   . The pallets fixed to   ,   , and    are 

allocated or removed at   ,    , and    respectively. The 

pallets are transported by stack cranes, and when there is no 

available machine for one part, this part can be stocked into a 

stocker which has enough capacity to store the parts to 

release the move of cranes. However, the time of cranes’ 

move isn’t considered to avoid excessive complexity. 

The machine visit sequences of    ,   , and    are      , 

     , and      , respectively. A part should visit a 

set-up station for fixing the part on a pallet before starting 

each machining operation. After finishing all operations, the 

part is removed from the pallet at the set-up station. The 

detailed visit sequences of the parts and the required times 

(written in the parentheses) are given in Table 1. 

Table 1.  Visit sequences and processing duration 

Part Visiting sequences 

     (2)   (8)   (4)   (6)   (2) 

     (2)   (10)   (4)   (4)   (2) 

     (2)   (4)   (4)   (4)   (2) 

3.2 Numerical experiments for WIP minimization 

In this kind of problem, some machines are saturated. 

Specially, in this example,    is saturated. This condition 

implies that in one cycle    process the parts without waiting 

time. Thus, it is easy to get the value of     . 

                                                                       (24) 

By (14) and (15), the bounds for WIP could be gotten. 

                                                                               (25) 

By programming the model in CPLEX 12.5, a cyclic 

scheduling with optimal number of pallets 6 and cycle time 

14 can be gotten as shown in the following Gantt diagram 

figure 4. It is easy to find that, in one cycle time, the machine 

   is saturated. For this machine, there is no free time for 

waiting the next job. It is the bottleneck machine of the 

production system. The cycle time of system is exactly the 

sum of operations on this bottleneck machine in one cycle 

time. 

 

Fig.4. Scheduling of WIP minimization by using model in 

this paper. 

However, by using the model in (Bourdeaud’huy and Korbaa, 

2006), a good result can also be achieved by CPLEX 12.5 on 

the same computer (figure 5). Even the two modes could both 

give 1-cyclic scheduling, but the computing time is different, 

the comparison will be made in section 3.4. 
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Fig.5. Scheduling for minimizing WIP by using model in 

(Bourdeaud’huy and Korbaa, 2006). 

3.3 Numerical experiments for cycle time minimization 

In this kind of problem, the number of WIP or pallets is 

limited as 5, for instance, 2 WIPs for   , 2 WIPs for   , and 1 

WIP for   . The aim is to get a minimal cycle time. By (22) 

and (23), the bound for cycle time can be gotten. 

                                                                               (26) 

Note that the cycle time found is 16 equal to the result in (Seo 

and Lee, 2002). This value is optimal if we take into account 

that the limit of WIP is fixed to 5. Indeed, under this fixed 

level of WIP, the job    has to be processed with only one 

pallet. On considering the process cycle, the cycle time is 

fixed by this job. Thus the low bound of cycle time is 16 

exactly. 

First, the result by using the model in this paper is shown as 

the following Gantt diagram. 

 

Fig.6. Scheduling for minimizing cycle time by using model 

in this paper. 

However, by using the model in (Amar et al., 2011), a cyclic 

scheduling with cycle time 16 can also be given as shown in 

figure 7.  The processing times of these two models are 

different, and the comparison will be made in section 3.4. 

 

Fig.7. Scheduling for minimizing cycle time by using model 

in (Amar et al., 2011). 

3.4 Comparisons of the Numerical experiments 

The models in this paper have two improvements on 

comparing with models in (Bourdeaud’huy and Korbaa, 2006) 

and (Amar et al., 2011). 

First, the models in paper have less number of constraints 

families as said in 2.3. The new model (call it NMW) for 

WIP minimization in this paper has only 4 constraints 

families, on considering 7 families in model (Bourdeaud’huy 

and Korbaa, 2006) (call this model MBK); The models (call 

it NMC) for cycle time minimization in this paper has only 5 

constraints families, on considering 8 constraints in model in 

(Amar et al., 2011) (call this model MAR). 

Second, the models in this paper shorten obviously the 

computing time as shown in Table 2 and Table 3. The 

average computing time   for 10 times of experiments is used 

to make the comparison among the models. The unit of the 

data is second (s). 

Table 2.  Computing time for WIP minimization 

Model Processing time   (s)   

NMW 0.07 0.12 0.06 0.09 0.10 0.04 0.10 0.07 0.07 0.07 0.079 

MBK 0.15 0.20 0.21 0.24 0.17 0.15 0.15 0.17 0.15 0.24 0.183 

Table 3.  Computing time for cycle time minimization 

Model Processing time   (s)   

NMC 0.07 0.12 0.10 0.12 0.12 0.12 0.10 0.09 0.12 0.10 0.106 

MAR 0.14 0.15 0.14 0.17 0.15 0.12 0.12 0.17 0.20 0.17 0.153 

The gain for computing time can be calculated by the 

following formulation (Amar et al., 2007). 

         (
                                    

                               
  )     (27) 

Gain for Table 2: 
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         (
     

     
  )                                         (28) 

Gain for Table 3: 

         (
     

     
  )                                          (29) 

Thus gain of the new model in this paper for WIP 

minimization problem is 131.65, and for cycle time 

minimization with limited WIP is 44.34. The results 

demonstrate that the new models in this paper have an 

obvious improvement for computing time. Anyway, the new 

models have much simpler structure with less constraints 

families. And, less Boolean variables in the new models 

reduce the branches for the searching tree. 

6. CONCLUSIONS 

In this paper, firstly, a new viewpoint to analyse steady-state 

of CJCS (1-cyclic) is presented step by step with simple 

examples. After a complete analysis about CJCS, two new 

models are given for WIP minimization with optimal cycle 

time and for cycle time minimization with limited WIP. By 

using CPLEX 12.5, good results of the new models compared 

to the original models are shown. In the end, the 

improvement for the new models can be found in the 

computing time gain. 

The contribution of this paper is to propose new MIP models 

for CJCS (1-cyclic) with simpler structure (less constraints 

families) and better performance in computing time than 

previous models. However, more works still should be done 

in the future:  

First, the models should be applied to examples more 

complex to evaluate the efficiency of models in general 

conditions.  

Second, more details in real production process could be 

taken into account. However, in this paper, the time for 

moving the part by cranes between the machines is neglected, 

and the duration for the operations is fixed (in reality, the 

duration may change in a proper time interval). It is 

interesting to assign the operations’ duration with time 

windows and to add the constraints of cranes’ moving time, 

thus the robustness margin of machines or transportation 

resources in system (Collart-Dutilleul et al., 2013) might be 

studied. 
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