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Abstract: Mathematical model simulations may assist in the selection of mechanical ventilator settings. 

Previously, simulations have been limited to control ventilator modes, as these models lacked representation 

of respiratory control. This paper presents integration of a chemoreflex respiratory control model with 

models describing: ventilation and pulmonary gas exchange; oxygenation and acid-base status of blood; 

circulation; interstitial fluid and tissue buffering; and metabolism. A sensitivity analysis showed that typical 

response to changing ventilator settings can be described by base excess (BE), production of CO2 (V̇CO2), 

and model parameters describing central chemoreceptor behavior. Since BE and V̇CO2, can be routinely 

measured, changes in ventilator support may therefore be used to identify patient-specific chemoreceptor 

drive, enabling patient-specific predictions of the response to changes in mechanical ventilation. 



1. INTRODUCTION 

Setting mechanical ventilation is a difficult and time-

consuming process. Poor settings can increase the time spent 

on mechanical ventilation, and the risk of lung injury and 

mortality (Arnal et al., 2012). Consequently, Decision Support 

Systems (DSS) have been developed to advise upon or 

automate the selection of mechanical ventilator settings 

(Tehrani and Roum, 2008a). These include rule-based systems 

such as the commercially-available SmartCare and Adaptive 

Support Ventilation (ASV) systems. SmartCare has been 

shown to be effective for managing pressure support 

ventilation to keep the end tidal partial pressure of CO2 

(PETCO2
) and respiratory frequency (fR) within a comfort zone 

(Lellouche et al., 2006), and ASV has been shown appropriate 

for selecting ventilator settings that minimize the inspiratory 

work of breathing (Iotti et al., 2010). Research systems have 

also been developed based upon mathematical physiological 

models rather than rules, these including SOPAVent (Wang et 

al., 2010), Flex (Tehrani and Roum, 2008b) and the Intelligent 

Ventilator (INVENT) project (Rees, 2011). The potential 

advantage of such systems is that the physiological models can 

be tuned to the individual patient and used to simulate the 

patient’s response to changes in mechanical ventilation, a 

useful process when selecting optimal ventilator settings. 

To develop a model-based DSS for selecting optimal 

mechanical ventilator settings requires mathematical models 

of: 1) ventilation and pulmonary gas exchange; 2) oxygenation 

and acid-base status of blood; 3) circulation; 4) metabolism 

and 5) respiratory control. Using such models it should be 

possible to simulate the effects of changes in mechanical 

ventilation combined with the effects of, for example: changes 

in CO2 production (V̇CO2) or O2 consumption (V̇O2); 

metabolic acidosis or alkalosis; impairment of gas exchange; 

and changes in respiratory drive due to sedation. The DSS 

INVENT includes all of these model components with the 

exception of a model of respiratory control (Rees, 2011). The 

absence of a model of respiratory control limits it use to fully 

sedated patients in controlled ventilator modes. As these 

patients represent only a small fraction presenting in the ICU, 

further development of the system to include a model of 

respiratory control is essential if the system is to have routine 

clinical application. 

This paper presents the integration of a mathematical model of 

respiratory control (Duffin, 2005; Ainslie and Duffin, 2009) 

into the current INVENT set of models. The integrated model 

of respiratory control needs to be a) sufficiently complex to 

represent physiology adequately, and b) sufficiently simple to 

be tuned to the individual patient from routinely available 

clinical data. Accordingly, the paper has two objectives: 1) to 

postulate which respiratory control model parameters can be 

identifiable from patient data; and 2) to evaluate whether the 

model is sufficiently complex by exploring its ability to 

simulate the respiratory response to changes in ventilator 

support considering different levels of V̇CO2 and different 

blood acid-base states, represented by arterial base excess 

(BEa). 

2. METHODS 

2.1 Model description and calibration 

Figure 1 illustrates the set of mathematical model components 

of INVENT including the mathematical representation of 

respiratory control. Figure 1A illustrates the structure of the 

model of ventilation and pulmonary gas exchange. This model 

has previously been shown to be identifiable from clinical data 
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Fig. 1. Structure of the integrated model of respiratory control. The model includes sub-models of: ventilation and pulmonary 

gas exchange (A); oxygenation and acid-base status of blood (B); acid-base status of CSF (C); cardiac output, arterial and mixed 

venous pools (D); interstitial fluid and tissue buffering, and metabolism (E); and chemoreflex respiratory control (F).

on the variation of FIO2, and has been used to describe changes 

in gas exchange in numerous clinical situations (Karbing et al., 

2007; Karbing et al., 2011). Figure 1B illustrates the structure 

of the model of oxygenation and blood acid-base status. This 

model has been shown to accurately describe the addition or 

removal of O2, CO2 or strong acid to blood and also to describe 

the mixing of different blood samples (Rees et al., 2010).  

Figure 1C describes Duffin’s model of cerebrospinal fluid 

(CSF) acid-base with the model constants listed in table 1. This 

model incorporates Stewart's and Watson's mass-action 

equations describing water, phosphate and albumin 

dissociation (1-3), formation of bicarbonate and carbonate (4-

5), and electrical neutrality (6) (Duffin, 2005). In addition, the 

partial pressure of CO2 in CSF (PcsfCO2) is set equivalent to 

that in arterial blood (PaCO2) plus an increase due to the brain 

production of CO2 (V̇bCO2) (7) (Anslie and Duffin, 2009). 

Equation (8) is an addition to Duffin’s model which permits 

CSF bicarbonate ([HCO3,csf0
-]) to be identifiable from steady 

state mixed venous bicarbonate ([HCO3,0
-]), and therefore, 

consider conditions where blood bicarbonate, and base excess 

(BE) are altered; such as metabolic acidosis where blood 

bicarbonate and BE are reduced, or metabolic alkalosis where 

bicarbonate and BE are increased. [HCO3,csf0
-] is calibrated to 

[HCO3,0
-] with a correction factor (Δ[HCO3

-]) being added to 

ensure that at normal conditions [HCO3,csf0
-] is consistent with 

the normal value of SIDcsf (31 mmol l-1) reported by Duffin 

(2005). Determining [HCO3,csf0
-] considering individual 

patient conditions, e.g. metabolic acidosis or metabolic 

alkalosis, is important to estimate the CSF strong ion 

difference (SIDcsf) by solving simultaneously (1-7). The 

estimated SIDcsf is then assumed to be constant until blood 

reaches a different steady state due to the blood-brain barrier 

ability to constrain ion exchange. 

The model illustrated in Figure 1 includes compartments 

representing CO2 transport and storage including the arterial 

and venous compartments, and circulation represented as 

cardiac output (Q̇) (Figure 1D). Figure 1E shows the model of 

interstitial fluid and tissue buffering, and metabolism included 

in the system (Andreassen and Rees, 2005). This model 

includes the bicarbonate and non-bicarbonate buffers in these 

relatively large volumes, V̇O2 and V̇CO2. Figure 1F illustrates 

the model of respiratory control (9-12), with small adaptations 

and calibrations necessary for integration with the other 

models described as follows. The peripheral drive (Dp) is a 

linear function of the difference between the arterial hydrogen 

ion concentration ([H+a]) and the peripheral threshold (Tp) (9). 

The slope of this function is the sensitivity of the peripheral 

chemoreceptors (Sp), which is modulated by PaO2 as 

described by (10). Dp is allowed to have negative values up to 

-1 l min-1. In this way, the model includes an offset to allow 

disfacilitation of peripheral drive when [H+a] falls below Tp, 

as suggested previously (Mohan and Duffin, 1997; Ursino et 

al., 2001; Day and Wilson, 2008). The central drive (Dc) is a 

linear function of the difference between the CSF hydrogen 
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ion concentration ([H+csf]) and the central threshold (Tc) (10). 

The slope of this function is the sensitivity of central 

chemoreceptors (Sc). Similarly, the function is allowed to have 

negative values up to -1 l min-1 to allow disfacilitation of Dc. 

The model of respiratory control includes two constants, with 

values previously specified by Duffin (2005) to be A=2.373  

l kPa (min nM l-1)-1 and P0=4 kPa to describe O2 modulation 

of Sp. This model includes five parameters, two 

chemoreceptor sensitivities (Sp, Sc), two chemoreceptor 

thresholds (Tc, Tp), and wakefulness drive (Dw). 

Equation (12) describes the alveolar ventilation (V̇A) as the 

sum of the two chemoreflex drives and wakefulness drive 

(Dw). Dw is the behavioral component of ventilation, and is 

considered independent of the chemoreflex respiratory 

control, but dependent on state of conscious. Dw=0 l min-1 

represents unconscious breathing, and Dw=2 l min-1 is 

assumed to represent normal conditions during relaxed 

mechanical ventilation and conscious breathing. This value of 

Dw is lower than that reported by Duffin (2005), implying that 

Dw is not the major drive of spontaneous ventilation in 

mechanically ventilated patients. A value of Dw=2 l min-1, in 

combination with disfacilitation of -1 l min-1 from both central 

and peripheral drives also allows the simulation of apnea. 

Equation (13) describes the minute ventilation (V̇min) as V̇A 

plus ventilation of the serial dead space (VD) that is equal to 

the product of tidal volume (VT) and fR. 

The model components B, D and E in Figure 1, plus a single 

ventilated compartmental model of the lung have been 

previously coupled and implemented to simulate both dynamic 

and steady state conditions (Andreassen and Rees, 2005). The 

steady state model was modified adding extra state variables 

to account for alveolar concentration of O2 and CO2 in each of 

the ventilated compartments in Figure 1 (FETO2(c1), FETO2(c2), 

FETCO2(c1), FETCO2(c2)). The inclusion of CSF and respiratory 

control components (Figures 1C and 1F) did not require the 

addition of any extra state variables as CO2 changes in the CSF 

are assumed instantaneous, and SIDcsf is estimated with 

[HCO3,0
-] at the start of simulations. 

The integrated model, illustrated in Figure 1, is used to 

simulate steady state V̇A by specifying values for end tidal gas 

fractions (FETO2, FETCO2), arterial blood acid-base and 

oxygenation status (pHa, PaCO2, and PaO2), and model 

constants and parameters from table 1. Then, assuming steady 

state conditions, all other values can be calculated via the 

steady state model (Rees and Andreassen, 2005). 

Normal values of peripheral and central thresholds (Tp and Tc) 

can be calibrated to several conditions. Here it is chosen to 

calibrate the model so as to produce normal V̇A and normal 

values of blood acid-base status for Dw=0 l min-1, i.e. 

unconscious breathing. The value of Sc was taken from Duffin 

(2005), and the value of Sp was obtained from (10) assuming 

normal PaO2 of 12.15 kPa. 

Normal values of Tp and Tc were calculated in several steps. 

First, normal steady state values of arterial blood (pHa=7.4, 

BEa=0 mmol l-1, PaCO2=5.35 kPa and PaO2= 12.15 kPa) were 

used along with the CSF acid-base model (1-7) to calculate 

Table 1. Parameters and constants of the 

integrated model components 

  

[H+csf]. Second, values of [H+a], [H+csf] and normal V̇A=4.2 

l min-1 were then inserted into (9, 11 and 12) with these 

equations being solved simultaneously to calculate Tc and Tp. 

This situation represents calculation of 4 unknowns (Dp, Dc, 

Tp, Tc) from 3 equations and it was therefore necessary to 

make an assumption. Third, we assumed that under normal 

conditions the difference between [H+] and threshold values 

would be the same for both blood and CSF, i.e.  

([H+a]-Tp) = ([H+csf] –Tc). The calculated normal values 

were Tp= 37.75 nmol l-1 and Tc=45.24 nmol l-1. 

2.2  Simulating patient specific response to changes in 

ventilator support 

For the integrated model to be clinically useful it should be 

able to be tuned to reflect the individual patient’s response to 

changes in ventilator support. Model tuning should be possible 

CSF acid-base model constants 

Symbol Name Values 

Kw Ion product for water 2.39 x10-14 

Kc Combined CO2 equilibrium and solubility  2.45 x10-11 
K3 Carbonate dissociation 1.16 x10-10 

K2 Phosphoric acid dissociation constant 2.19 x 10-7 

KH Histidine dissociation constant 1.77 x10-7 
KCO2 CO2 Dissociation constant (ml (ml kPa)-1) 0.0375 

[Alb-
Fix] Albumin fixed negative charge concentration 

(mM l-1) 

3.95 

[Alb-
H,tot] Albumin concentration of histidine residues 

(mM l-1) 

3.01 

[Pitot] Phospahte concentration (mM l-1) 0.61 

V̇bCO2  Brain production of CO2 (ml (min 100gr)-1) 3 

Qḃ  Brain blood flow (ml (min 100g)-1) 55 

Δ[HCO-
3] 

 
CSF bicarbonate calibration factor ( mmol l-1) 0.12 

Respiratory control model parameters 

Symbol Name Normal 

values 

Sc Central sensitivity ( l min-1 (nmol l-1)-1) 1.78 
Sp Peripheral sensitivity ( l min-1 (nmol l-1)-1) 0.29 

Tc Central threshold ( nmol l-1) 45.24 

Tp Peripheral threshold ( nmol l-1) 37.75 
Dw Wakefulness drive (l min-1) 2 

   

Blood acid-base, interstitial fluid and tissue buffering models 

constants 

Symbol Name Normal 

values 

Hb Hemoglobin concentration (mmol l-1) 9.3 
tNBB Total non-bicarbonate buffer base 

concentration (mmol l-1) 

23.5 

Q̇  Cardiac output (l min-1) 5 

V̇CO2  CO2 production (mmol min-1) 9.23 

V̇O2  O2 consumption (mmol min-1) 10.5 

Vblood Blood volume (l) 4.5 

Vint Interstitial fluid volume (l) 9.5 

Vtiss Tissue volume (l) 14 
   

Pulmonary gas exchange model parameters 

Symbol Name Normal 

values 

s Pulmonary shunt (%) 5 

f2 Fraction of non-shunted perfusion to 

compartment 2 

0.9 

fA2 Fraction of alveolar ventilation to 

compartment 2 

0.9 

Vd Serial dead space (l) 0.15 
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Fig. 2. Sensitivity analysis of respiratory response to changes 

in measured factors. Plots of simulated fR response to changes 

in ventilator support (VT) for different acid-base conditions 

and V̇CO2 levels. (A) Simulated fR for three acid-base 

conditions and normal V̇CO2. (B) Simulated fR for three acid-

base conditions and increased V̇CO2. 

 

from routinely available clinical data collected under the 

relevant clinical scenario, i.e. reducing pressure or volume 

support.  

Reduction in ventilatory support (e.g. reduction in VT) will 

typically result in an increase in fR and hence a constant V̇A 

so as to maintain pHa within normal range. This pattern of 

reducing ventilatory support and increasing fR will depend for 

the individual patient upon two sets of factors, those which are 

directly measured such as acid-base status and metabolism 

(BEa and V̇CO2), and those which are not, i.e. the individual 

patient’s pulmonary gas exchange parameters (s, fA2 and f2) 

and chemoreflex response parameters (Sp, Sc, Tp, Tc). 

Therefore, two sensitivity analyses are performed here: 1) 

evaluation of model simulations to changes in measured 

factors (BEa and V̇CO2); and 2) evaluation of model 

simulations to changes in chemoreflex response parameters 

(Sp, Sc, Tp, Tc). All sensitivity analysis simulations were 

performed assuming normal values for pulmonary gas 

exchange parameters. The details of these analyses are given 

below. 

2.2.1 Evaluation of model simulations to changes in 

measured factors (BEa and V̇CO2) 

The integrated model was used to simulate changes in 

ventilator support at different acid-base and metabolism in 

normal chemoreflex conditions. To explore the integrated 

model’s behavior to different values of acid-base and V̇CO2, 

changes in fR were simulated on modifying VT in the range 

200 to 1200 ml. Steady state values of fR were simulated for 

three acid-base conditions of blood: normal BEa (BEa=0.1 

mmol l-1), metabolic acidosis (BEa=-4.2 mmol l-1) and 

metabolic alkalosis (BEa=5.3 mmol l-1); at two V̇CO2 levels 

(9.2 and 27.7 mmol min-1). 

2.2.2 Evaluation of model simulations to changes in 

chemoreflex response parameters (Sc, Sp, Tc and Tp) 

To explore the integrated model’s behavior to different values 

of chemoreflex model parameters, changes in fR were 

simulated on modifying VT in the range 200 to 1200 ml. 

Steady state values of fR were simulated for different values 

of model parameters Sc, Tc, Sp and Tp. These simulations 

were performed in three conditions: 1) normal values of BEa 

and V̇CO2 (BEa=0.1 mmol l-1 and 𝑉̇CO2
=9.2 mmol l-1); 2) 

normal BEa but increased V̇CO2 (BEa=0.1 mmol l-1 and 

V̇CO2=27.7 mmol l-1); and 3) decreased BEa (metabolic 

acidosis) and increased V̇CO2 (BEa=-4.2 mmol l-1 and 

V̇CO2=9.2 mmol l-1). With the last two representing conditions 

that augment the respiratory drive. In this way, the effect of the 

individual parameters could be shown as well as their 

interaction with the measured factors. To perform these 

simulations, model parameters were modified one at a time 

and keeping the remaining with normal values. Sensitivities 

(Sc and Sp) were varied by multiplying normal values by zero 

and two. Thresholds (Tc and Tp) were varied by adding or 

subtracting 5 nmol l-1 to normal values. 

3.  RESULTS 

3.1 Evaluation of model simulations to changes in measured 

factors (BEa and V̇CO2) 

Figure 2 illustrates simulations of the respiratory response to 

changes in VT for different values of measured factors BEa 

and V̇CO2. Figure 2A illustrates the effects of high and low 

BEa at normal V̇CO2, showing that metabolic alkalosis (high 

BEa) suppresses and metabolic acidosis (low BEa) augments 

respiratory drive. Figure 2B illustrates the effects of high and 

low BEa, at a high value of V̇CO2, showing that these effects 

act in combination such that for high V̇CO2 all curves are 

shifted and respiratory drive augmented. 

3.2 Evaluation of model simulations to changes in 

chemoreflex response parameters (Sc, Sp, Tc, and Tp) 

Figure 3 illustrates simulations of the respiratory response to 

changes in VT for different values of non-measured factors, 

i.e. chemoreflex model parameters, at 3 conditions: normal 

BEa and normal V̇CO2; normal BEa and increased V̇CO2; and 

metabolic acidosis and increased V̇CO2. Plots are arranged in 

3 columns and 2 rows; each column corresponding to the first, 

second and third conditions, and each row corresponding to 

changes in chemoreflex parameters Sc and Tc respectively. 

Solid lines represent simulations with normal parameter values 

with these lines systematically shifted for increased V̇CO2 or 

for the combination of increased V̇CO2 and decreased BEa, as 

also shown in Figure 2. 

The first row of Figure 3 presents simulations of the 

respiratory response to changes in VT for different values of 

Sc. Figures 3A, 3B and 3C show that decreasing Sc suppresses 

and increasing Sc augments the respiratory drive, with a 

greater sensitivity to reducing Sc. The sensitivity of the 

respiratory response to changes in Sc is greater for increased 

V̇CO2 and the combination of increased V̇CO2 and decreased 

BEa. 

The second row of Figure 3 presents simulations of the 

respiratory response to changes in VT for different values of 

Tc. Figures 3D, 3E and 3F show that decreasing Tc augments 

and increasing Tc suppress the respiratory drive. The 

sensitivity of the respiratory response to changes in Tc is 

greater for increased V̇CO2 and the combination of increased 
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Fig. 3. Sensitivity analysis of respiratory response to changes in chemoreflex model parameters. Plots of simulated fR response 

to changes in ventilation support (VT) for 3 different sets of measured factors: normal BEa and normal V̇CO2, (A, D); normal 

BEa and increased V̇CO2 (B, E); and decreased BEa and increased V̇CO2 (C, F). Solid lines represent simulated fR response 

using normal chemoreflex model parameter values. Dotted and dashed lines represent simulated fR response with variation of 

parameter Sc (A, B, C) and Tc (D, E, F). 

V̇CO2 and decreased BEa. The normal respiratory response is 

unaffected due to changes in values of Sp and Tp respectively 

in the situation of normal oxygenation (not shown). 

4. DISCUSSION 

This paper describes the integration of a mathematical model 

of chemoreflex respiratory control with models describing 

ventilation and pulmonary gas exchange, oxygenation and 

acid-base of blood, circulation, interstitial fluid and tissue 

buffering, and metabolism. The purpose of this integrated 

model is to be part of a DSS, providing advice on appropriate 

mechanical ventilation in support ventilation modes. In these 

ventilation modes pressure or volume support is determined by 

the clinician and set on the ventilator, with the patient 

responding in terms of fR dependent upon their individual 

physiological status. For mathematical models to be useful in 

aiding this decision they need to be complex enough to 

describe this individual response, and simple enough to be 

parameterized or tuned to the individual patient from routinely 

available clinical data. 

The integrated model in Figure 1 includes a representation of 

the CSF acid-base and a chemoreflex model of respiratory 

control, which enable the simulation of the respiratory drive 

for alterations in the underlying steady state BEa and V̇CO2. 

To do so, Duffin’s model was modified to allow simulations 

of: respiratory response due to metabolic acidosis or alkalosis 

via the SIDcsf; and disfacilitation of Dc and Dp. Disturbances 

in the SIDcsf alter the central chemoreceptor signaling [H+csf] 

and hence, the respiratory drive (Lahiri and Forster, 2003). 

The balance between model simplicity and complexity 

necessitates a number of model assumptions in relation to the 

chemoreflex component. The CSF acid-base status is 

estimated using the model in figure 1C (Duffin, 2005), 

assuming that O2 and CO2 molecules cross freely across the 

blood brain barrier. It is also assumed that there is no (short 

term) electrolyte exchange between blood and CSF such that 

when SIDcsf is calibrated to initial venous blood bicarbonate 

values ([HCO-
3,0]), then SIDcsf remains fixed when simulating 

respiratory changes.  

To our knowledge, this is the first time that a chemoreflex 

model has been integrated with models describing ventilation 

and pulmonary gas exchange, oxygenation and acid-base 

status of blood, circulation, interstitial fluid and tissue 

buffering, and metabolism for simulating the respiratory 

response to changes in mechanical ventilation for severely ill 

patients. Several other models have simulated respiratory 

control (for example: Ursino et al., 2001; Aittokallio et al., 

2006, Duffin, 2010), however, these models have focused 

upon breathing pattern, and response to hypercapnia and 

hypoxia. In the context of mechanical ventilation, model 

complexity may be constrained to simulating steady state 

response to changes in ventilator support. 

Inclusion of the previous models of INVENT are also 

important. The model of ventilation and pulmonary gas 

exchange is identifiable for the individual patient, allowing 

identification of pulmonary shunt, low V̇/Q̇ and high V̇/Q̇ 

(Karbing et al., 2011). The blood acid-base model has been 

shown to simulate blood mixing accurately and includes 

consideration of the Bohr-Haldane effect, which is important 

in patients where pHa may be far from normal. In addition, the 

incorporation of an explicit compartment for interstitial fluid 

and tissue buffering, enables simulation of bicarbonate 

distribution between blood and interstitial fluid which is 

critical to correct simulation of in-vivo arterial CO2 levels 

(Andreassen and Rees, 2005).  

The integrated model assumes constant cardiac output (Q̇) and 

constant cerebral blood flow (CBF). In principle, Q̇ and CBF 

increase as a function of PaCO2. Increased CBF washes out 

CO2 from the CSF compartment (Mohan and Duffin, 1997; 
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Ainslie and Duffin, 2009; Duffin, 2010). Although CBF 

increases during hypercapnia, the CBF effects on ventilation 

sensitivity to CO2 are negligible (Ursino et al., 2001), and not 

fully understood (Pandit et al., 2007). Separation of the effects 

of CBF cannot be identified from the data describing changes 

in ventilator volume support, meaning that this level of 

complexity would not be helpful. 

In conclusion, this paper has described the integration of 

Duffin’s chemoreflex model into a set of physiological 

models. In doing so, it has been shown that the integrated 

model is sensitive to measured factors (BEa and V̇CO2), and 

non-measured factors describing the central chemoreflex drive 

under conditions of normal pulmonary gas exchange and 

oxygenation. Central chemoreflex parameters SIDcsf, Tc and 

Sc may be identifiable from BEa, V̇CO2, and measured 

respiratory response to changes in ventilation support. 

Therefore identifying patient-specific chemoreflex drive, 

potentially enables the simulation of respiratory response to 

changes in ventilation support. Further evaluation of the 

integrated model with patient data including pulmonary gas 

exchange, acid-base status and metabolic abnormalities is 

required. 
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