
State dependent parametrizations for
nonlinear MPC

Gregor Goebel, Frank Allgöwer
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Abstract: This paper aims at reducing the computational load caused by the online optimiza-
tion in nonlinear model predictive control (MPC) by introducing a new type of parametrizations
for the predicted input trajectory. In order to determine offline the state dependent parametriza-
tions, a tailored data mining algorithm is introduced. Refinements to achieve feasibility of
the parametrized constrained optimization problem are presented. Theoretical guarantees on
constraint satisfaction and feasibility employing the parametrizations are provided for Lipschitz
continuous systems. In a numerical example the benefits of the new method are illustrated.

1. INTRODUCTION

Model predictive control (MPC) is a modern optimization
based control strategy. It consists of online repeatedly com-
puting an optimal predicted input trajectory over a finite
horizon and applying the first part of it to the plant to be
controlled. Its two most important advantages are the pos-
sibility to take constraints on states and controlled inputs
directly into account and that control goals can be incorpo-
rated in form of a performance criterion. On the downside
of MPC is the high computational load caused by the opti-
mization that has to be carried out repeatedly online. This
is even more significant if the system to be controlled is
nonlinear. One way of reducing this computational load is
to reduce the number of optimization variables. As stated
by Qin and Badgwell [2003], so called move blocking is
common in practical applications of MPC. Move blocking
follows the strategy to reduce the number of free variables
by introducing a simple parametrization for the predicted
input trajectory keeping it constant over some time steps.
Yet, this way generally only suboptimal solutions can be
obtained on a shrinked feasible set. A different strategy to
reduce the online compuational load is to move some of the
computational effort offline. State dependent solutions of
the optimization problem are determined offline globally
and approximations thereof are made available online. For
example, Schulze Darup and Mönnigmann [2012] present a
method to partition the state space into a number of poly-
topes such that for each of the polytopes the optimal pre-
dicted input trajectory can be appxroximated by an affine
function. Online only the polytope containing the current
system state has to be identified and the corresponding
affine function has to be evaluated but no optimization is
necessary. This method is called explicit nonlinear MPC.
It requires to store and process large amounts of data.

In this paper a result combining ideas from both paradigms
is presented. Piecewise affine state dependent parametriza-
tions of the predicted input trajectory are determined of-
fline such that they can be used online in an MPC scheme.
In comparison to explicit MPC, this way the storage re-
quirements are reduced. On the other hand, in comparison
to move blocking MPC, conservatism is reduced and the
feasible region is enlarged. This is made possible by storing

and exploiting some state dependent knowledge on the
optimal solutions via the parametrizations. The type of
parametrizations to be used has been introduced in our
previous papers for the linear case, Goebel and Allgöwer
[2013, 2014]. Here the results are extended to nonlinear
systems. As the suggested MPC scheme combines charac-
teristics of explicit MPC and conventional online optimiza-
tion based MPC, we call it semi-explicit nonlinear MPC.

In order to determine the parametrizations, first, opti-
mal input trajectories for an appropriately chosen set of
system states are computed. These trajectories are then
fed into a tailored data mining algorithm which returns
preliminary parametrizations. In an iterative procedure,
the parametrizations can be refined to satisfy the con-
straints of the MPC setup. Included in this paper are
theoretic guarantees in terms of constraint satisfaction
and feasibility applying the parametrizations for Lipschitz
continuous systems and a numerical example to illustrate
the virtue of the results.

The remainder of this paper is organized as follows. First,
the MPC scheme considered and the parametrizations
to be used are introduced and a problem formulation is
derived in Section 2. Section 3 addresses the parametriza-
tions including determination via a data mining algorithm,
refinements for feasibility and theoretical guarantees. On-
line application of the parametrizations is briefly discussed
in Section 4. Finally, a numerical example is considered in
Section 5 and conclusions are given in Section 6.

2. PRELIMINARIES AND PROBLEM
FORMULATION

In this section, first the considered MPC scheme and
the corresponding optimization problem are introduced.
Then the proposed parametrizations are presented and a
problem formulation for this paper is derived.

2.1 The considered MPC scheme

Throughout this paper, a nonlinear, time-invariant, dis-
crete-time system with constrained state xk ∈ X ⊂ Rn
and constrained input uk ∈ U ⊂ Rm, given by the equation
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xk+1 = f(xk, uk), k = 0, 1, 2 . . . (1)

is considered. Without loss of generality, let f(0, 0) = 0,
i.e., the origin is a steady state of system (1). The problem
of driving the system state from an initial condition x0 in a
set Xf ⊆ X to the origin subject to a certain performance
criterion is addressed. For this purpose an asymptotically
stabilizing MPC scheme is to be used. At the core of the
considered MPC scheme is the optimization problem

P1(x0) : min
U=(uT

0 ,...,u
T
N−1

)T
J(x0, U)

with

J(x0, U) =

N−1∑
k=0

l(xk, uk) + F (xN ),

s.t. xk+1 = f(xk, uk), (2a)

xk ∈ X , uk ∈ U ∀k = 1, ..., N − 1, (2b)

u0 ∈ U , xN ∈ XN . (2c)

Therein, xk, k = 1, . . . , N are predicted states, uk, k =
0, . . . , N − 1 are predicted inputs and N is the prediction
horizon. l(·, ·) is a positive definite function with l(0, 0) = 0
which makes up the stage cost. F (·) is called terminal
cost and it accounts for the cost-to-go from the terminal
state xN on. The terminal state is restricted to lie in
the terminal set XN . As is well known, a typical MPC
algorithm consists of solving P1(x0) for the current state
x0, applying the first part u0 of the optimal predicted
input trajectory U∗ to the system and then repeating the
procedure for the new state over a shifted horizon.

Throughout this paper, the following assumption is used.

Assumption 1. (1) XN ⊂ X , XN is closed, 0 ∈ XN .
(2) There is a terminal control law κ(x) defined on XN

such that κ(x) ∈ U for x ∈ XN and
(3) f(x, κ(x)) ∈ XN for all x ∈ XN .
(4) F (f(x, κ(x)))− F (x) + l(x, κ(x)) ≤ 0 for all x ∈ XN .

These assumptions are typically used to guarantee asymp-
totic stability of the MPC scheme, see the paper by Mayne
et al. [2000]. A specific choice of the parameters has been
suggested by Chen and Allgöwer [1998] for example.

2.2 Parametrizations of the input trajectory

The computational load of the described MPC scheme
is mainly caused by solving the nonlinear optimization
problem P1 at each time step. On the one hand, the
complexity of this optimization is determined by its struc-
ture imposed by fixed quantities like the cost function, the
system dynamics and the constraints. On the other hand,
the computational demand increases with the number of
optimization variables. Optimization problem P1 contains
mN optimization variables. This paper aims at reducing
the computational load of the optimization by reducing
the number of optimization variables. To this end, the pre-
dicted input trajectory U in P1(x0) is to be parametrized
using a lower number q < mN of parameters and opti-
mization is to be carried out over these parameters.

We suggest to use for each system state one out of a
predefined number K of different parametrizations. Each
of the parametrizations consists of a linear map of the
parameters and the system state to the input trajectories.
In more detail, the parametrizations are given by

p(x, Ũ) = MiŨ +Kix, for x ∈ Si, i ∈ {1, ...,K}. (3)

Therein, we call Mi ∈ RmN×q the parametrization matrix
and Ki ∈ RmN×n the feedback matrix as it creates a
feedback of the state to the predicted input trajectory.
Si ⊂ Rn, i = 1, . . . ,K are segments in the state space
determining which one of the matrices Mi,Ki to apply.
Ũ will be used as new optimization variable. Using these
parametrizations, the following simplified optimization
problem can be formulated and used in the MPC scheme

P2(x0) : min
Ũ

J
(
x0, p(x0, Ũ)

)
s.t. (2).

2.3 Problem formulation

By applying parametrizations in the optimization P2,
input trajectories can be searched for only in a subset
of RmN which is available for the original optimization
P1. Given a desired feasible set Xf ⊂ X , P1 feasible on
Xf , the subset of available input trajectories has to be
chosen such that also P2 is feasible on Xf . Beyond that
it should be chosen such that the optimum attained by
P2 is close to the one attained by P1. As the optimizers
of P1 are state dependent, it makes sense to establish a
relation of the sets Si and the parameters Mi and Ki.
Hence, ideally, these parameters are determined within
one step depending on each other. Yet, this is generally
a challenging task. Summarizing, the remainder of this
paper addresses the following goals:

• State an algorithm to determine a segmentation
Si, i = 1, . . . ,K of Xf and preliminaryMi, Ki jointly.
• The parameters should result in low suboptimality of
P2 w.r.t. P1.
• Refinements of the parametrizations to improve feasi-

bility of P2 on a given set Xf ⊂ X are to be presented.
• For given P1 and parametrization p(·, ·), state results

on maximal constraint violation and guarantees on
constraint satisfaction of P2.

3. OBTAINING THE PARAMETRIZATIONS

In order to find the parametrizations offline, a tailored
data mining algorithm is applied to a set of pairs of states
and corresponding optimal predicted input trajectories. In
this section, first the data mining algorithm to be applied is
presented. Secondly, application of the algorithm to obtain
preliminary parametrizations is explained and refinements
of the parametrizations are introduced. Finally, guarantees
on feasibility and constraint satisfaction are given.

3.1 Clustering Algorithm

In this section an algorithm is presented extending the
K-q-flats clustering regression procedure introduced by
Goebel and Allgöwer [2014]. The latter procedure takes
a set of data point pairs (xr, Ur) ∈ Rn × RmN , r =
1, . . . , p and parameters K, q ∈ N as input. The data
points are grouped into K clusters such that the residual
after establishing for each cluster a linear correlation of
the x parts and the U parts lies near a q-dimensional
subspace. In other words, a piecewise linear function
approximation is done and the residual is required to

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1006



lie close to a q-dimensional subspace for each piece. The
current algorithm, in addition, allows to influence the
shape of the clusters in x space, i.e., compact clusters in
x space can be favored. The benefits of this feature will
be shown in the sequel of this paper. Summarizing, the
clustering procedure aims at finding an approximation of
the solution of the following optimization problem:

min
Mi,Ki,Ũr,µr

i

V (Mi,Ki, Ũr, µri )

s.t. µri ∈ {0, 1} and

K∑
i=1

µri = 1,
(4)

V (Mi,Ki, Ũr, ci, µri ) =
K∑
i=1

p∑
r=1

µri

(
γ||Ur −MiŨr −Kixr||2 + (1− γ)||xr − ci||2

)
.

Therein, µri determines cluster membership of the data.
The matrices Ki ∈ RmN×n establish the linear correlation
of the x and the U parts and the matrices Mi ∈ RmN×q
determine the subspaces the residuals lie close to. ci ∈ Rn
is the center of the ith cluster in x space. γ ∈ [0, 1]
weights approximation accuracy for the U values against
compactness of the clusters in x space. Ũr ∈ Rq is
only needed for compact problem formulation. Note that
for the case γ = 0 this algorithm reduces to the well
known K-means clustering algorithm applied to the x
parts whereas for γ = 1 the K-q-flats clustering regression
algorithm applied to the U parts is obtained. Due to its
complexity and non-convexity, obtaining a good solution
of (4) directly is impossible. Hence, following the spirit of
the K-means algorithm, the current algorithm applies the
strategy to iterate in between updating the clusters in one
step and updating cluster membership in the second step.
Both subproblems are simple and can be solved efficiently.

Cluster update step In the cluster update step, new
matrices Mi, Ki, i = 1, . . . ,K are determined via solving

min
Mi,Ki,Ũr

∑
r

µri ||Ur −MiŨr −Kixr||2 (5)

for given cluster membership µri . As this optimization has
an explicit solution it can be solved efficiently numerically,
see the paper by Gabriel [1978]. New centers ci, i =
1, . . . ,K for the clusters in x space are determined via

ci =
1

#{r|µri = 1}
∑

{r|µr
i
=1}

xr. (6)

Assignment step In the assignment step, cluster mem-
bership µri is to be optimized based on fixed cluster specific
Mi, Ki, ci. Each data point is assigned to the cluster which
provides the best approximation. Hence, µri is taken as
the argument of the solution of the following optimization
problem

min
µr
i
,Ũr

K∑
i=1

p∑
r=1

µri

(
γ||Ur −MiŨr −Kixr||2

+ (1− γ)||xr − ci||2
)

s.t. µri ∈ {0, 1} and

K∑
i=1

µri = 1,

(7)

The whole clustering technique is summarized as follows.

Algorithm 1. (Compactifying K-q-flats clustering regres-
sion)

Input: Pairs (xr, Ur) ∈ Rn×RmN , r = 1, . . . , p, parameters
K, q ∈ N, γ ∈ [0, 1].

(1) Initialize cluster membership randomly, i.e., choose
µri , i = 1, . . . ,K, r = 1, . . . , p randomly subject to
the constraints in (4).

(2) Update Mi, Ki, i = 1, . . . ,K according to (5) and
ci, i = 1, . . . ,K according to (6).

(3) Determine new assignment µri , i = 1, . . . ,K, r =
1, . . . , p via (7). If the assignment µri has changed
w.r.t. previous iteration and it results in lower cost
V than previous one, go back to step 2). Else: done.

Output: Mi,Ki, ci, i = 1, . . . ,K and cluster memberships
µri , i = 1, . . . ,K, r = 1, . . . , p.

The presented algorithm aims at finding a simple approx-
imation of the U values as far as possible exploiting struc-
ture of the data. Yet, revealing structure of the data is not
the main goal as it is, for example, in typical applications
of K-means clustering. Hence, the values K, q, γ are not
determined a priori by the data considered but they are
design parameters: Increasing K and q, the approximation
gets more accurate but, at the same time, the approxima-
tion gets more complex consisting of more segments and
higher dimensional subspaces. γ in addition can be used to
enforce clusters of compact shape in x space. The following
convergence result for the algorithm can be stated.

Theorem 1. (Convergence of clustering). Algorithm 1 con-
verges within a finite number of iterations. The solution
obtained can not be improved by changing cluster mem-
bership alone nor by changing any of the clusters alone.

The proof of this result follows exactly the same lines as
in the K-q-flats clustering regression case given by Goebel
and Allgöwer [2014], and, hence, is omitted for brevity. In
the sequel of this paper, the algorithm will be applied and
also the effect of different γ values will be considered.

3.2 Obtaining preliminary parametrizations

The strategy in order to obtain preliminary parametriza-
tions is as follows. Take suitable sample points xr, r =
1, . . . , p from the desired feasible region Xf of the state
space and compute the corresponding optimal predicted
input trajectories Ur = U(xr), r = 1, . . . , p based on P1.
Feed these samples into the above clustering algorithm and
take its output Ki and Mi for the preliminary parametriza-
tions. The segments Si can then be determined based on
cluster membership of the sample points in state space.
The following algorithm summarizes this procedure.

Algorithm 2. (Preliminary parametrizations).
Input: Optimization problem P1, parameters K, q ∈ N,
γ ∈ [0, 1], sample points xr ∈ Xf , r = 1, . . . , p.

(1) Using P1, compute optimal predicted input trajecto-
ries Ur = U(xr), r = 1, . . . , p.

(2) Run Algorithm 1 using (xr, Ur), r = 1, . . . , p and
K, q, γ as input.

(3) Take the outputs Mi as preliminary parametrization

matrices M̂i, the outputs Ki as preliminary feedback
matrices K̂i and use cluster membership µri .

Output: Preliminary parametrization matrices M̂i, prelim-
inary feedback matrices K̂i, clustering µri of points xr.
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Let g : Xf → {xr|r = 1, . . . , p} be a function which maps
each point in Xf to the closest grid point, choosing the
one with the lowest cluster index in non-unique cases. The
segments Si of the state space are then defined by

Si := {x ∈ Xf |cluster(g(x)) = i}. (8)

Loosely speaking, each point is assigned to the same clus-
ter as the closest grid point and Si consists of all points
assigned to cluster i. By this definition, Si∩Sj = ∅, i 6= j
and ∪Ki=1Si = Xf is guaranteed which is necessary for
the parametrizations to be well defined. In the latter
algorithm, in principle any collection of points xr taken
from Xf could be used. Noting that knowledge about
optimal input trajectories is sampled at these points, it
is reasonable to use points from an equally spaced grid
over Xf . By virtue of optimization (4), the preliminary
parametrizations approximate the optimal predicted input
trajectories optimally w.r.t. the 2-norm. Thus, subopti-
mality of the parametrized optimization can be expected
to be small with respect to the unparametrized version.
Nevertheless, so far the constraints (2) of P1 have not been
taken directly into account. To address this, corresponding
refinements of the parametrizations are discussed next.

3.3 Refinement of the parametrizations

In this subsection, a parametrization refinement proce-
dure improving feasibility of P2 for fixed segments Si
is presented. Refinement of the parametrization used on
one exemplary Si will be described and the procedure
applies for all segments Si, i = 1, . . . ,K likewise. We
follow the strategy to consider a number of test points
xir ∈ Si, r = 1, . . . , N i

t and change Ki and Mi such that
feasibility of P2 for these points is achieved. More in detail,
the procedure weights the test points against each other
such that an update of Ki and Mi using the weighted
test points renders P2 feasible for all of them. For the
refinement procedure, an extended form of the cluster
update step (5) is needed including weights of the single
data point pairs. Let (xr, Ur), r = 1 . . . N i

t be test points
with their corresponding input trajectory determined via
P1 and let wr > 0, r = 1 . . . N i

t be corresponding weights.
The weighted cluster update step is then given by

min
Mi,Ki,Ũr

∑
r

wr||Ur −MiŨr −Kixr||2. (9)

The following algorithm describes the procedure in detail:

Algorithm 3. (Refinements).
Input: Test points (xr, Ur), r = 1 . . . N i

t , maximum num-
ber of iterations Imax, optimization problem P1.

(1) Initialize state weights wr = 1, r = 1 . . . N i
t and

iteration index I = 0.
(2) Determine Ki,Mi as arguments of the solution of (9).
(3) Set I+ = I + 1.
(4) For each r, check feasibility of P2(xr). If P2(xr)

infeasible, update (wir)
+ = 5(wir).

(5) If any wir has changed in (4) and I < Imax, go to (2).
Else: done.

Output: Parameters Ki,Mi.

A main advantage of the procedure is its numerical sim-
plicity even for large problems. Feasibility is checked only
for one state at a time and the updating step (9) consider-
ing all points at once is numerically uncritical. Note that

the weight boosting factor in step (4) is a design parameter
which can be set to any number larger than 1.

The procedure improves approximation of optimal input
trajectories for infeasible states by increasing the weight
of these states. As the optimal input trajectory is feasible,
approximating it sufficiently well renders P2 feasible for
the corresponding state. This way the procedure generally
improves feasibility in the test points. Nevertheless, it
is not guaranteed to achieve feasibility even for the test
points. Intuitively, one could say that the algorithm helps
to distribute the degrees of freedom provided by Ki,Mi

such that feasibility is achieved for all points. Yet, the
total degrees of freedom of the parameters might not be
sufficient to achieve feasibility for all points. Thus, increas-
ing either of the values K, q will increase the available
degrees of freedom and thereby improve feasibility of the
refinement step. As q is the number of online opimiza-
tion variables and K the number different parts of the
parametrization to be stored, the online computational ef-
fort and the storage requirements can be traded off against
each other via q andK. q = mN is a theoretic upper bound
guaranteeing feasibility of the parametrizations.

3.4 Guarantees on constraint satisfaction and feasibility

In order to state guarantees on constraint satisfaction
and feasibility applying the parametrizations, Lipschitz
continuity of the system is assumed.

Assumption 2. Assume that the system dynamic function
f(·, ·) is Lipschitz continuous on X × U with Lipschitz
constant L, i.e., ||f(x1, u1)− f(x2, u2)|| ≤ L(||x1 − x2||+
||u1 − u2||) for all x1, x2 ∈ X and u1, u2 ∈ U .

Furthermore, an assumption on boundedness of the feed-
back matrix of the parametrizations is needed.

Assumption 3. Defining ((K1
i )
T . . . (KNi )T ) := KTi , Kji ∈

Rm×n, assume that ||Kji ||F ≤ α, i = 1, . . . ,K, j =
1, . . . , N .

The following result on maximum constraint violation
using parametrizations which are feasible for a number of
test points can be stated.

Theorem 2. (Maximal constraint violation). Let Assump-
tions 2 and 3 hold and let optimization P2(x) be feasible
for a number of test points xr, r = 1, . . . , Nt. Let

β ≥ max
i

max
x∈Si

min
{xr∈Si|r=1,...,Ni

t}
||xr − x||

be an upper bound on the distance of any point in Xf
to the closest test point in the same segment Si. Then,
relaxing the constraints X and XN in (2) of P2 by

τ := β max
j∈{1,...,N}

(
Lj + α

(
j∑
l=1

Ll

))
, (10)

and relaxing U by αβ renders P2(x) feasible for all x ∈ Xf .

Proof. Consider a state x in Si ⊂ Xf and its closest test

point xt. By assumption, parameters Ũ t exist such that the
predicted states xt1, . . . , x

t
N in P2 originating from xt fulfill

the original constraints. Let x1, . . . , xN be the predicted
states applying Ũ t for initial condition x. We show the
following relation which implies the theorem

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1008



||xj − xtj || ≤ β

(
Lj + α

(
j∑
l=1

Ll

))
, j = 1, . . . , N. (11)

Let utj and uj , j = 0, . . . , N − 1 be the predicted inputs

using p(xt, Ũ t) and p(x, Ũ t), respectively. We have ||utj −
uj || = ||K(j+1)

i (xt − x)|| ≤ αβ. Inequality (11) can now be
shown for j = 1:

||xt1 − x1|| = ||f(xt, ut0)− f(x, u0)||
≤ L||xt − x||+ L||ut0 − u0|| ≤ Lβ + Lαβ.

Using induction, (11) can be shown for j = 2, . . . , N com-
pletely analogously. For brevity this is omitted here. 2

The latter result can be utilized to obtain parametrizations
such that optimization P2(x) is feasible for all x ∈ Xf .

Corollary 3. (Guaranteed feasibility). Let the same as-
sumptions as in Theorem 2 hold. Assume in addition that
all test points are feasible using tightened constraint sets

X = {x ∈ Rn|x+ ∆ ∈ X for all ||∆|| < τ},
XN = {x ∈ Rn|x+ ∆ ∈ XN for all ||∆|| < τ},
U = {u ∈ Rm|u+ ∆ ∈ U for all ||∆|| < αβ}

in (2) of P2. Then feasibility of P2(x) is guaranteed for
all x in Xf using the original constraints.

This result follows directly from the latter theorem. It
provides a way of determining parametrizations which are
guaranteed to result in a feasible simplified optimization
problem on a predefined subset Xf of the state space. For
this purpose, the pre-tightening levels τ and αβ of the
constraints can be traded off against the number Nt of test
points used. Using more test points allows to reduce β and
thereby τ which results in less strict tightened constraints.
Vice versa, using less test points will enlarge β and thereby
τ which requires stricter tightening of the constraints.

4. APPLYING THE PARAMETRIZATIONS ONLINE

In this section, online application of the parametrization
is briefly discussed. A main challenge when applying the
suggested type of parametrizations is storing the segments
Si and evaluating membership of the current system state
to one of them. If the segments introduced in (8) are used,
storage requirements are high and identifying the right
segment would cause large computational effort. Hence,
using approximations S̃i of the original segments Si is ad-
visable. For example, the sample points introduced above
could be used to train a multiclass support vector machine
(mSVM), see, e.g., the overview paper by Hsu and Lin
[2002]. A mSVM can approximate the original segments up
to any desired accuracy at relatively low storage require-
ments and it allows to evaluate membership of a point
to the segments efficiently. Note that for approximated
segments S̃i guarantees analogously to Theorem 2 and
Corollary 3 can be established simply by changing β to
a possibly slightly larger value.

On the other hand, stability of the closed loop has to
be taken care of when applying parametrizations. By
Assumption 1, each predicted input trajectory can be
continued appending the input obtained by the terminal
control law. Hence, initial feasibility guarantees that for all
future time steps an admissible predicted input trajectory

is available. In order to guarantee stability, such continued
input trajectory has to be considered in each time step and
a newly optimized trajectory can be used only if it results
in improved performance, i.e., a lower value of J(x0, ·).
Taking the J obtained this way as a Lyapunov function,
asymptotic stability of the closed loop results.

5. EVALUATION VIA A NUMERICAL EXAMPLE

In this section, the presented results are illustrated and
evaluated via numerical studies of an example MPC prob-
lem. For this purpose, all algorithms presented in this
paper were implemented in MATLAB. The general setup
is as follows: A nominal optimization problem P̂1 is taken
as reference for the feasible set and for performance. Al-
gorithms 2 and 3 are then used to determine a simplified
optimization problem P2 which contains a lower number
of optimization variables but approximates the feasible set
and the performance of the nominal optimization problem
P̂1. The system described by the discrete time dynamics

x+1 = x1 + 0.1 (x2 + (0.5 + 0.5x1)u)

x+2 = x2 + 0.1 (x1 + (0.5− 2x2)u)

is considered with state constraints (x1, x2) ∈ X =
[−4, 4]× [−4, 4] and input constraints u ∈ U = [−2, 2]. In
the MPC setup, l(xk, uk) = xTkQxk + ukRuk is used with
the weighting matrices Q = ( 0.05 0

0 0.05 ) and R = 0.1 and
F (xN ) = xTNPxN with P = ( 5.9353 5.2774

5.2774 5.9353 ). For the nomi-

nal optimization problem, a prediction horizon of N̂ = 15
is used. The example and most of the parameters are taken
from the paper of Schulze Darup and Mönnigmann [2012].
The only difference here is that the admissible set of states
is chosen larger which basically means to aim for a larger
feasible set of the optimization problem.

Preparing application of the presented algorithms, a regu-
lar grid of 41×41 points covering X was taken and for each
of them P̂1 was checked for feasibility using the nominal
horizon N̂ . This way, an estimate of the feasible region
Xf of P̂1 was obtained. The resulting 727 feasible points
were taken as sample points xr, r = 1, . . . , p = 727 for
Algorithm 2 and likewise as test points for Algorithm 3.
Applying parametrizations in the optimization problem,
generally the set of feasible states shrinks and performance
deteriorates. To counteract this effect, we started using an
optimization P1 with extended horizon N = 18 > N̂ to
derive the parametrized version P2 from.

Algorithm 2 was run for different parameters K, q and γ.
Therein, in each case the clustering part was initialized
using 20 different random values and the one resulting in
the lowest objective function V was used. Subsequently,
refinements via Algorithm 3 were executed doing at most
Imax = 20 iterations. Whereas only in some cases the
preliminary parametrizations were feasible for all test
points, the refinement procedure turned out to be very
effective in rendering such parametrizations feasible for
all test points. As it is to be expected, choosing higher
values for K and q generally resulted in better feasibility of
the parametrizations. Despite that, feasibility for all test
points could even be achieved for very low numbers of
parameters, i.e., for example q = 2 for large enough K.
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Fig. 1. Clusters in the state space for K = 5, q = 3, γ = 1.
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Fig. 2. Clusters in the state space forK = 5, q = 3, γ = 0.5.

The parameter γ turned out to be very effective in influenc-
ing the shape of the sets Si in state space. For higher values
of γ the sets Si tended to be scattered over X whereas
for lower values of γ the sets had a more compact shape.
Figures 1 and 2 illustrate these findings for parameters
K = 5, q = 3 and γ1 = 1 and γ2 = 0.5, respectively. Thus,
γ can be used to simplify the shape of the sets Si and
thereby simplify online identification of the set the current
state lies in. Furthermore, it turned out that compact sets
generally had better feasibility properties. For example,
for parameters K = 10, q = 2, γ1 = 1, the refinement step
could not render the parametrized optimization problem
feasible for all test points whereas for K = 10, q = 2,
γ2 = 0.5 this was possible.

Finally, for two test cases feasibility and performance was
evaluated on a finer grid of points in the state space. For
this purpose the number of points in the estimated feasible
set was doubled along both coordinate axes yielding a
total of 2752 points. To determine membership of the new
points to one of the sets Si, a multiclass support vector
machine was first trained using the original points and
corresponding set membership and then evaluated for the
new points. Then, for each element of the enlarged set
of grid points optimization problem P2 was considered
and feasibility and performance J was evaluated. This was
done numerically using the MATLAB function fmincon()
applying default settings and 0 as initial condition. The
parameter sets used for this test were K = 5, q =
3, γ = 0.5 and K = 10, q = 2, γ = 0.5, respectively.
In both cases, the parametrized optimization problems
were feasible for almost all of the tested points and
suboptimality w.r.t P̂1 was very low. This means, using
only two or three instead of 15 optimization variables,
almost the full feasible set and the full performance were
recovered. Distinct advantages could also be observed in
comparison to different move blocking schemes which were
tested in the same setting. Table 1 gives an overview of the

Table 1. Comparison of feasibility and subop-
timality with respect to the nominal optimiza-
tion problem for different parametrizations.

Method inf. points avg. subopt.

move blocking, 2 parameters 12.5% 7.39 %

new method, K = 10, q = 2, γ = 0.5 1.3% 2.85 %

move blocking, 3 parameters 1.6% 2.52 %

new method, K = 5, q = 3, γ = 0.5 0.2% 0.52 %

results. For a fixed number of optimization variables, the
best move blocking scheme we could find resulted in at
least 8 times as many infeasible states as the proposed
method and at the same time suboptimality was at least
2.5 times higher for the move blocking scheme. In the trade
off of suboptimality vs. size of the feasible set vs. number
of optimization variables, the proposed method showed to
be significantly superior to move blocking.

6. CONCLUSIONS

A method to obtain parametrizations which allow to
reduce the number of optimization variables in nonlinear
MPC has been presented. For this purpose, a tailored data
mining algorithm has been introduced and applied. The
resulting parametrizations are state-dependent and they
allow to exploit a linear correlation of states and predicted
input trajectories. Guarantees on maximum constraint
violation and feasibility of the parametrized optimization
problem have been presented for Lipschitz continuous
system dynamics. Finally, via a numerical example it was
shown that the proposed method has the potential to
provide low suboptimality and a large feasible set using
a drastically reduced number of optimization variables.
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