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Abstract: Model-based optimization (MBO) has been widely applied for quality control of
batch processes, however, it is not easy to obtain globally effective and accurate quality model
with affordable effort. Instead of building a quality model, model-free optimization (MFO) uses
process data directly, which is more efficient and economic for quality control of batch process.
Considering the complex nonlinearity and dynamics in batch process, a quality control scheme
using natural gradient based dynamic optimization is proposed in this paper. Optimization
algorithm is developed from the aspect of manifold in non-Euclidean space. An approximation
method is derived for the calculation of the natural gradient, and a multivariate iterative
sensitivity matrix based on Riemannian geodesic distance is proposed to obtain a novel adaptive
stepping strategy. The proposed quality control scheme has been verified in injection molding
process. A set of comparison tests are presented to demonstrate the feasibility and effectiveness
of the proposed method.
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1. INTRODUCTION

Product quality control of batch processes is a chal-
lenging topic due to the high nonlinearity, the complex
batch- and/or time-dependent dynamics, and the evolv-
ing relationship between high-dimensional process vari-
ables and various end-product qualities. In many existing
quality control schemes of batch processes (Lu and Gao
[2005],Chen and Turng [2005]), accurate quality model is
preliminarily required, based on which, quality controller
searches for the optimal process settings to meet the end-
product quality requirements. The quality models can be
data-driven models (Wan et al [2012]),or first-principle
models (Lucyshyn et al [2012]). However, it is not easy to
obtain globally effective and accurate quality model with
affordable effort, especially for the batch processes that
involve frequent process changeovers or serious process
uncertainties. Compared with the traditional quality con-
trol via model-based optimization (MBO), quality control
via model-free optimization (MFO) is arousing attentions
recently.

MFO based quality control uses experimental measure-
ments rather than a quality model to search for the optimal
process settings. MFO can not only cope with process
uncertainty(Gattu and Zafiriou [1999]), but also be con-
ducted for quality control of batch process in an efficient
and economic way. As an implicit batch-to-batch optimiza-
tion, MFO requires a suitable data-driven approach to
⋆ The work was supported by NSFC (61374141, 61073059,
61374116), Jiangsu Province NSF (BK2010409) and the Fundamen-
tal Research Funds for the Central Universities (NS2012039).

search for the optimal direction. The search algorithms can
be generally categorized into two types: gradient-free and
gradient-based. Gradient-free algorithms are usually called
direct search. They can be performed without calculating
the gradients, which therefore reduces the number of addi-
tional experiments in the MFO. Gradient-free algorithms
are simple and effective, but they are suitable only for
low-dimensional problems, and they often suffer from the
slow convergence speed. Gradient-based algorithms use
gradient to provide search direction, which can assure
faster convergence than the gradient-free algorithms. But
the calculation (or approximation) of the gradient is a
difficult task. Considering that fast convergence of quality
attributes is very important as it concerns the production
cost and profit, gradient-based optimization is studied.

Concerning different implementations of gradient approx-
imation, gradient-based MFO approaches can be further
divided into two types: deterministic gradient based and
stochastic gradient based. Deterministic gradient algo-
rithms (Sun and Yuan [2006]) can compute gradient ex-
actly using the derivative of the cost function. However,
since these algorithms are based on the quadratic approx-
imation, they work well only in a small neighborhood
for the optimal point (Park et al [2000]). In addition,
the insufficient understanding of process mechanism and
uncertainty limit their applications to large-scale prob-
lems. On the other hand, stochastic gradient algorithms
are conducted by stochastic approximation of the deriva-
tive. Variable perturbation (Stevenson [1981]) and finite
difference (Randall [2005]) are the regular tools to obtain
the gradient approximation. Two-point gradient algorithm
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(Dai et al [2002]) and simultaneous perturbation stochastic
approximation (SPSA) (Spall [1992]) are the most widely
used. They have in common that the next operating profile
is deduced from the current one and the previous ones,
so they have super linear convergence speed(Chen et al
[2010]). This makes them quite attractive for MFO based
quality control of batch processes. However, stochastic gra-
dient based methods have to endure high optimization cost
as they need a lot of perturbation experiments for gradient
approximation. In order to reduce the optimization cost,
natural gradient (Amari [1998]) was then proposed and has
become an attractive concept in the domain of stochastic
search.

Natural gradient is based on the Riemannian geometry
rather than the conventional geometry in the Euclidean
space, and it employs the knowledge of Riemannian struc-
ture of the parameter space to adjust the gradient search
direction. Using natural gradient is likely to obtain more
reasonable directions of steepest ascent than the using of
deterministic gradient or stochastic gradient. Furthermore,
natural gradient algorithm does not require that the cost
function is locally quadratic (Zhang et al [2013]).Natural
gradient has been widely used in motion segmentation
(Subbarao and Meer [2009]), medical imaging (Fletcher
[2007]), etc. The application of natural gradient to in-
dustrial process optimization is, however, not reported
yet. Considering the inherent complex nonlinearity and
dynamics of batch processes, better quality control per-
formance can be expected by using the natural gradient
based dynamic optimization.

This paper attempts to analyze batch process data from
the aspect of manifold in non-Euclidean space. A natural
gradient based model-free optimization algorithm is used
to solve the quality control problem for batch process. An
approximation method is derived for the calculation of the
natural gradient, and a multivariate iterative sensitivity
matrix based on Riemannian geodesic distance is proposed
to realize a novel adaptive stepping strategy, which can
improve the convergence speed in MFO and therefore
reduce the cost of MFO-based quality control scheme for
batch process.

2. A NOVEL QUALITY CONTROL SCHEME FOR
BATCH PROCESSES

2.1 Dynamic Optimization Based Quality Control

The objective of quality control for batch process is to
search for the optimal process settings batch-to-batch by
solving the following dynamic optimization problem (Kong
et al [2011];Srinivasan et al [2002]):

Min
x

J = |f(x) + e(x)−Qtg|

s.t. xL
i ≤ xi ≤ xH

i , i = 1, ...p;

x = (x1, ...xp)
T

(1)

where x is a p-dimensional vector of operating variables;
Qtg is the target product quality; f(·) is a function for
describing the relationship (usually unknown) between
operating variables and end product quality; e(·) is the
total effect of the uncertainty (caused by model mismatch,
disturbances, etc.); xL

i and xH
i define the feasible operating

window.

In a gradient descent based batch optimization problem,
the iterative optimization strategy(Schlegel [2011])is often
adopted to determine the optimal process settings for the
next batch as follows,

xk+1 = xk − µk∇J(xk), k = 1, 2, ... (2)

where k is the index of iteration; ∇J(xk) is the gradient
(i.e., the optimization direction), and µk is the step size
along the optimization direction. The computations of
∇J(xk) and µk are two important issues which determine
the optimization performance.

Considering that batch processes usually have strong non-
linearity and complex dynamics, the variable space should
not be viewed simply as the Euclidean space. For an
optimization problem in non-Euclidean space, differential
geometry based gradient calculation method is more suit-
able for batch processes. Natural gradient (NG)(Amari
[1998]) is a good choice, which was developed from a
perspective of Riemannian geometry, aiming to obtain
more accurate search directions than those conventional
gradient methods. Using the natural gradient, the iterative
optimization in Eq.(2) can be modified as,

xk+1 = xk − µk∇̃J(xk), k = 1, 2, ... (3)

where ∇̃J(xk) is the natural gradient, defined by,

∇̃J(xk) = G−1(xk)∇J(xk) (4)

The natural gradient at the point xk is the product of the
inverse of Riemannian metric G(xk) and the conventional
gradient ∇J(xk). G is a positive definite matrix, reflecting
the local data structure on a Riemannian manifold. In
order to realize Eq.(3), the Riemannian metric, G, should
be obtained firstly for the calculation of the natural
gradient, ∇̃J(xk); and then, the step size, µk, need to be
determined from the perspective of Riemannian manifold.

2.2 Calculation of Natural Gradient

2.2.1 Riemannian metric

Assuming that xk−1 and xk are two adjacent iteration
points in the operating space of batch process, they can
be viewed as two points lying on a Riemannian manifold
M , as shown in Fig.1.
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Fig. 1. Illustration of the Exponential and Logarithmic
mapping between xk−1 and xk

Txk−1
M is the tangent plane at point xk−1. The relation-

ship between the two points xk−1 and xk and the tangent
∆ at point xk−1 can be described by the exponential map
and the logarithmic map (Subbarao and Meer [2009]),

expxk−1
(∆) = xk (5)
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logxk−1
(xk) = ∆ (6)

Then, the Riemannian gradient (Castano-Moraga et al
[2007]) at point xk can be obtained by,

∇JRg(xk) = −logxk−1
(xk) (7)

logxk−1
(xk) = xk−1log(x

−1

k−1
xk) (8)

where

log(x−1

k−1
xk) =

∞
∑

i=0

(−1)i−1

i
(x−1

k−1
xk − I )i (9)

and x
−1

k−1
is the Pseudo inverse of xk−1, I is a p-

dimensional identical matrix.

With the Riemannian gradient∇JRg(x k), the Riemannian
metric G(xk) can be estimated by (Yang and Laaksonen
[2008]),

G(xk) = ∇JRg(xk)(∇JRg(xk))
T (10)

2.2.2 Calculation of the conventional gradient

The recursive procedure (Eq.(2) or Eq.(3)) is in the general
stochastic approximation (SA) frame. Two-point gradient
method (a variation of SPSA)(Pennec et al [2006]) is used
to compute the conventional gradient. All elements of
xk are randomly perturbed to obtain two measurements,
Q(xk + ck∆k) and Q(xk − ck∆k). Then, the gradient can
be obtained approximately by,

∇J(xk) ≈
Q(xk + ck∆k)−Q(xk − ck∆k)

2ck∆k

(11)

where ∆k is a perturbation vector at the kth iteration, ck
is the corresponding gain, xk+ck∆k and xk−ck∆k are two
adjacent perturbation operating points. For convenience’s
sake, considering two adjacent iteration operating setting
points

xk+xk−1

2
and

xk−xk−1

2
, it is easy to get

Q(xk)−Q(xk−1) = Q(
xk + xk−1

2
+

xk − xk−1

2
)

−Q(
xk + xk−1

2
−

xk − xk−1

2
)

(12)

Then, the gradient at (xk+1 + xk)/2 is

∇J(
xk + xk−1

2
) =

Q(xk)−Q(xk−1)

2 · xk−xk−1

2

=
Q(xk)−Q(xk−1)

xk − xk−1

(13)
If the two points are very close, the gradient at xk can be
calculated approximately by

∇J(xk) ≈ ∇J(
xk + xk−1

2
) =

Qk −Qk−1

xk − xk−1

(14)

With Eq.(10) and Eq.(14), it is easy to approximate the
natural gradient at the kth iteration using Eq.(4).

2.3 Determination of Step Size

Different step size rules lead to different optimization
convergence performances. With respect to whether or
not the step size is deterministic, step size rules can
be classified into two branches: Regular step size(Sun
and Yuan [2006]), such as Constant value, Given design
formula, One-dimension search and Newton-type method;
and Adaptive step size (Kalivas [1992];Ozen et al [2010]),
such as Simulated annealing, Fuzzy control, etc.

For dynamic optimization problems, regular step size can
not satisfy both convergence speed and tracking perfor-
mance; while adaptive step size can accelerate the con-
vergence generally. Thus, adaptive step size is focused in
this paper, because batch processes usually have complex
dynamics, and at the same time, have high requirement
on the convergence speed. An adaptive step size algorithm
based on Riemannian geodesic distance and iterative sen-
sitivity matrix is proposed to determine the parameter µk

in Eq.(3).

2.3.1 Riemannian geodesic distance

Let M be a Riemannian manifold. The tangent space at
x ∈ M to the manifold is denoted by Tx. Denote the metric
of Riemannian manifold by 〈·, ·〉x : Tx × Tx → R. For a
tangent vector v ∈ Tx at the point x ∈ M ,

〈v, v〉x = tr((x−1v)2) (15)

Based on this metric, Simone [2010] has derived the
geodesic curve function,

α(t) = xexp(tx−1v) (16)

Then, the geodesic distance between two points x1 and x2

on the manifold is given by

d2(x1, x2) =

∫ 1

0

tr(((α(t))−1α̇(t))2)dt (17)

In the problem of dynamic optimization based quality
control of batch process, the Riemannian geodesic distance
between two adjacent iterative operating points xk−1 and
xk can be obtained by

dk = d(xk−1, xk) =
√

tr(log2(x−1

k−1
xk)) (18)

2.3.2 Iterative sensitivity matrix

From Eq.(18), the Riemannian geodesic distance dk is a
scalar. If multiplying the scalar distance by the obtained
natural gradient ∇̃J(xk), each variable in xk will get the
same stepping speed. It is unreasonable because different
variables may have different effects on the objective. In or-
der to solve this problem, the following iterative sensitivity
matrix is developed for determining the step size.

Multi-variable sensitivity can be computed by

sk = (Qk −Qk−1) ∗ (xk − xk−1)
−1 = [s1k, s

2
k, ..., s

p
k]

T (19)

where (xk − xk−1)
−1 is calculated by the pseudo inverse

operation. In order to obtain the accumulative effect of
each variable, it is necessary to calculate the sensitivity
iteratively. The iterative sensitivity of the ith variable is

Si =
∑

k

|sik|
∑

p

|sk|
(20)

The iterative sensitivity matrix for all process variables is
given as

Sk =













S1 0 · · · 0

0 S2 · · ·
...

...
...

. . . 0
0 · · · 0 Sp













(21)

With Eq.(18) and Eq.(21), the proposed variable step
size method, named Geodesic stepping matrix, can be
computed by
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Mk = dk ·
Sk

tr(Sk)
(22)

which extends the step size from scalar to matrix, so that
the variable with high sensitivity can obtain a relatively
large stepping size to contribute more during process
optimization.

Based on the above, Eq.(3) can be re-written as

xk+1 = xk −Mk∇̃(xk), k = 1, 2, ... (23)

2.4 Several practical aspects of Implementation

• Data normalization

All variables’ measurements will be normalized into the
range [0,1] to ensure a unified scale for different process
variables. At the end of each iteration, the obtained operat-
ing settings need to be transformed back into their physical
settings (i.e., the de-normalization) for manipulating the
machine. The physical settings must be within the feasible
region. If any of the operating settings exceeds the region,
its nearest boundary value should be used to replace the
calculated one.

• Start-up of the iterative optimization

Assume that the tolerance of quality deviation is ε, which
is chosen according to production manager or customer’s
requirements. The quality control procedure is triggered
when the measured quality exceeds the tolerance. By this
time, the iteration index k is set to 1. Since the iterative
optimization needs at least two initial points, the second
point should be determined at the same time, which can
be obtained by simultaneous perturbation method,

x2 = x1 + c∆ (24)

where ∆ is a random perturbation vector, the elements in
∆ are randomly assigned to be ±1 with equal probability,
c is a small positive scalar.

• Termination of the iterative optimization

Because of the uncertainty in both the processing and
sensoring, it is better to feedback the average quality mea-
surements in each iteration. Assume that the experiments
conducted under the operating condition xk are repeated
N times, the feedbacked quality will be

Q̄k =
1

N

N
∑

i=1

Qk,i (25)

The iterative optimization process is repeated until the
average quality measurements Q̄k under the operating
settings xk in the kth process adjustment satisfies the
terminal criterion,

∥

∥Q̄k −Qtg

∥

∥ ≤ ε (26)

The operating setting xk is considered as the optimal
setting, and the optimization process is terminated.

The major steps of implementation are listed as below.

(1) Compare the current product quality with the target
value in real time.

(2) The quality control procedure is triggered when
the observed quality measurement goes beyond the
threshold. By this time, the iteration index k is set

1, the current operating condition and quality mea-
surement are denoted as the first data pair (x1, Q1).
Then, search the second iteration point (x2, Q2) using
simultaneous perturbation method (i.e., Eq.(24)).

(3) Calculate the Natural gradient ∇̃J(xk)(k ≥ 3) us-
ing Eqs.(4), (10) and (14); meanwhile, calculate the
stepping matrix Mk using Eqs.(19)∼(22); finally, the
new iterative operation point xk+1 is yielded using
Eq.(23).

(4) Conduct verification experiments under the operat-
ing condition xk+1, resulting in the average product
quality Q̄k+1.

(5) If Q̄k+1 satisfies the termination criterion, terminate
the quality control procedure; otherwise, repeat steps
(3) and (4) iteratively.

3. CASE STUDY

Injection molding is an ideal batch process for the ver-
ification and application of the proposed quality control
scheme.

3.1 Experimental Setup

The verification experiments are conducted using Mold-
flow Plastic Insight (MPI) , which is a commercial sim-
ulation software of injection molding process. The mold
is a simple curving assembly part. Part weight is selected
as quality variable, and its value can be obtained in the
log file of each batch. The tolerance level of part weight
variation is chosen less than 0.1%, Experimental material
is High-density polyethylene (HDPE). Other parameters
of injection molding machine and process controllers are
set by default.

According to prior knowledge, part weight is manipulated
by optimizing the set-points of mold temperature (x1),
melt temperature (x2), injection time (x3), packing time
(x4) and packing pressure (x5). The descriptions and the
feasible regions of operating variables are shown in Tab.1.
Other experimental conditions are set by default.

Table 1. Operating variables for part weight
control

Variable no. description bound unit

x1 mold temperature [20-60] ◦C
x2 melt temperature [120-255] ◦C
x3 injection time [0.2-1] s
x4 packing time [3-10] s
x5 packing pressure [75-90] Mpa

The machine disturbances are intentionally introduced
to cause quality variation, which is realized by changing
the grid length of the part mold in the MPI software.
Because in Moldflow, different grid length corresponds to
different match ratio, resulting in different part weights
(Jay [2006]). In this paper, three kinds of grid length are
used under the same condition, x = [50, 185, 0.4, 5, 85]T ,
and the corresponding match ratios and part weights are
listed in Tab.2.

In the simulation, the first grid length in Table 2 is viewed
as a baseline, so that the quality tolerance level is 0.02g
because the weight variation is specified to be 0.1% (that
is, ε = 0.02 in Eq(25)).
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3.2 Results and Discussion

Three groups of testing experiments are arranged as fol-
lowing: optimization speed test, tracking performance test,
and anti-disturbance test. In addition, the proposed nat-
ural gradient based MFO method (denoted as Method A)
is compared with a SPSA based MFO method (Kong et al
[2011])(denoted as Method B). The results and discussions
are shown below.

Case I: Optimization speed test

In dynamic optimization of batch process, optimization
cost is proportional to the number of batches needed
during optimization. It can also be considered as the
convergence speed in general optimization problems. Fig.2
shows the comparison results of optimization speed test for
method A and Method B. The target value of part weight
Qtg is set to 19.32g, and the initial point Q1 is 19.74g with
grid length 2.99mm. The iteration process consists of a
sequence of experimental runs, which contain the iteration
runs and perturbation runs. For method A, there are no
perturbation runs except the second iteration point (See
Eq.(24)). But for Method B, there are 10 perturbation
runs between the 6 iteration runs. From Fig.2, the two
quality control trajectories start from the same initial
point and converge into the same target value. However,
the optimization costs are different. Method A reaches the
target quality within 11 runs, whereas Method B needs
16 runs in total. For Method B, high optimization cost
is caused by the perturbation runs (used for the gradient
approximation of SPSA).
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Fig. 2. Comparison results of optimization speed test

Case II: Tracking performance test

Batch processes are usually flexible for producing various
products, thus the process is often operated over a range of
conditions. Process engineers should find the new optimal
operating condition to meet the new quality requirements
for new process configuration as soon as possible. It

Table 2. Grid lengths and weights

No. grid length/mm match ratio/% weight/g

1 2.66 88.2 19.79
2 2.99 88.6 19.74
3 3.39 87.3 19.66

is necessary to study the tracking performance of the
proposed method.

In this test, the initial point Q1 is changed to 19.66g, which
corresponds to No.3 in Tab.2. The initial quality target
value is set to 19.79g and the tracking target is 19.39g. The
comparison results of tracking performance test are plotted
in Fig.3. The two methods can achieve similar performance
when tracking the first target. After changing the target
from 19.79g to 19.39g, Method A reaches the new quality
target within 12 runs, whereas Method B needs 22 runs.
The proposed method has quicker tracking speed.
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Fig. 3. Comparison results of tracking performance test

Case III: Anti-disturbance test

The product quality under the given optimal settings may
vary due to process disturbances or uncertainties. In this
anti-disturbance test, process disturbance is introduced by
changing the mold grid length in Moldflow software, so
that the products have fluctuating weights even under the
same operating condition. The purpose of this test is to
verify the robustness of the proposed method.

In this test, the initial point Q1 is set to 19.74g, and the
target quality is 19.5g. As shown in Fig.4, in the beginning,
Method A needs 5 iteration runs to reach the target,
while Method B needs 4 iteration runs and 6 additional
perturbation runs. Then, the grid length of the mold is
intentionally changed from 2.99mm to 3.39mm. By doing
so, product weight is changed from 19.51g to 19.40g for
Method A and from 19.51g to 19.39g for Method B. Weight
fluctuations lead to a second optimization task. From the
results, Method A has faster tracking speed than Method
B, which also means the optimization cost of Method A is
lower than Method B too.

In summary, the above experimental results show that the
proposed quality control scheme can find the new optimal
operating settings with faster optimization speed and less
optimization cost.

4. CONCLUSIONS

A novel natural gradient based MFO has been presented
for quality control of batch process from the aspect of Rie-
mannian manifold and stochastic gradient optimization.
The measurements rather than a quality model are directly
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Fig. 4. Comparison results of anti-disturbance test

used to search for the optimal process setting. This iter-
ative optimization method involves the determination of
Natural gradient and adaptive step size. An approximation
method for the calculation of the natural gradient has been
derived in non-Euclidean space. A multivariate iterative
sensitivity matrix based on Riemannian geodesic distance
has been proposed to obtain a novel adaptive stepping
strategy. The proposed method can improve the conver-
gence speed in the MFO process and therefore reduce
the cost of MFO-based quality control scheme for batch
process. The proposed quality control scheme has been
verified for product weight control in injection molding
process using Moldflow software. The experimental results
can illustrate the advantages of the proposed method.
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