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Abstract: For intelligent vehicles, trajectory prediction for their surrounding traffic participants
is the basis of their ego trajectory planning. Since there exist various uncertain factors
that influence the driving processes, the participants’ future trajectories are uncertain either.
Unique deterministic prediction results provided by traditional methods do not involve the
probability information of different trajectories, and thus are insufficient. To solve this problem,
a probabilistic trajectory prediction model is proposed here, and uncertain future trajectories
are designed to be described with position probability distributions at discrete moments. In the
proposed model, the predicted participant’s motion is decomposed into lateral and longitudinal
motions which are independent with each other. Probabilistic trajectories are calculated in
these two directions respectively and then are combined into complete ones. Furthermore, the
model considers two driving modes(Free driving and Vehicle-following modes) in the longitudinal
motion, and thus computes trajectories in different ways. Besides, we also modeled the features of
different types of participants and the interaction between their trajectories. Model parameters
are identified off-line based on historical trajectory data, therefore only iterative computations
are needed when the model is applied on-line. The experimental results show that the proposed
method has higher prediction accuracy than the traditional ones, and can meet the demands of
real-time applications.

Keywords: Trajectory prediction, Intelligent vehicles, Markov chains, Off-line identification,
Trajectory planning, Driving decision-making

1. INTRODUCTION

Intelligent vehicles have become a worldwide research fo-
cus, because of their benefits to transportation and our
daily lives. On busy urban roads, the driving environment
is changing all the time. Before planning their ego trajecto-
ries, intelligent vehicles need to estimate their surrounding
traffic participants’ future motion and find the feasible
moving region firstly. Therefore, trajectory prediction for
participants constitutes the basis of trajectory planning,
which is critical to achieving intelligent driving. Along
with the development of intelligent vehicles in the past 30
years, trajectory prediction also attracts attentions from
researchers all over the world.

⋆ This work was supported in part by the National Natural Science
Foundation of China under the Grants 61203071.

Essentially, for intelligent vehicles, the goal of trajectory
prediction is to recognize the future trends of the relative
motion between their surrounding obstacles and them-
selves. Some researchers directly choose to compute some
predefined safety evaluation indicators, such as TTC(Time
To Collision, Labayrade et al. (2005)) and TTB(Time To
Brake, Keller et al. (2011)), to estimate the collision pos-
sibility. Instead of computing concrete trajectories, they
simply assume that all concerned objects will move at
constant velocities. Without considering the complexity of
the real world, these methods are computationally simple,
but may result in collision risks and low traffic efficiency.
Some other methods(Jula et al. (2000); Ferguson et al.
(2008)) apply simplified kinematic models combined with
road geometry to forecast the concerned participants’ be-
haviors. These methods assume that the objects’ velocities
are invariant and their motion is independent of each
other. As a result, their autonomy and uncertainties are
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ignored, and the prediction error can accumulate quickly
over time. Therefore, the application of these methods in
multiple-vehicle situations is restricted. Some researchers
apply filter techniques(e.g. Kalman Filter) to estimate
vehicles’ future motion states. Although the measurement
and process noises are considered, the possibilities of differ-
ent trajectory executions are still not involved, because the
prediction results are deterministic. Since the future accel-
eration is unknown, either short-term prediction(Kammel
et al. (2008)) with frequent updates of sensor measure-
ments, or long-term prediction(Glaser et al. (2010)) with
constant acceleration assumptions were done. As tradi-
tional methods only compute single trajectories, Monte
Carlo experiments(Broadhurst et al. (2005); Danielsson
et al. (2007)) are introduced into prediction. These new
methods sample stochastically in the state space and input
space, and combine variable initial conditions with various
driving behaviors to simulate multiple future trajectories.
However, this consumes a large amount of computing
resources and may neglect critical dangerous situations.
Probability distributions(PDs) 1 of motion states are firstly
introduced by Althoff et al. (2009) to describe the possi-
bilities of performing different trajectories. The stochastic
reachable sets decide all possible states that the trajec-
tories can evolve into, thus are applied to compute the
transition probabilities between motion states. Then the
predicted objects’ motion state PDs become computable.
However, though their prediction results are given, the
prediction error of their method is not discussed.

In this paper, based on the idea of probabilistic trajectories
proposed in Althoff et al. (2009), a novel probabilistic
trajectory prediction method is proposed. Not only the
uncertainties in driving decisions are modeled, but also
driving habits and behavioral characteristics of different
types of objects are considered. Besides, the interaction
between traffic participants is included in the proposed
model as well. With the acceleration PDs generated off-
line, probabilistic trajectories can be calculated. The rest
of this paper is organized as follows. In section 2, the
challenges encountered in trajectory prediction problems
are illustrated, and the basic prediction idea is introduced.
Section 3 presents the flowchart, model structure, and
computing method of probabilistic trajectory prediction.
Section 4 introduces the prediction of longitudinal tra-
jectories in two driving modes. In section 5, a numerical
example is used to illustrate the prediction result. Then
the performance of our proposed model is demonstrated
by comparing with a traditional model. Finally, in section
6, the paper is concluded and future work is discussed.

2. PROBLEM STATEMENT

The traffic participants discussed in this paper refer to
those common vehicles driving on urban roads. Since the
information about other drivers’ decisions is usually un-
available, it is not easy to predict their vehicle trajectories.
Besides, drivers’ control on vehicles can be influenced by
multiple human factors, which results in uncertain tra-
jectories and makes the prediction even harder. Firstly,
because of the limitation of driving abilities, there must

1 In the rest of this paper, “probability distribution” is all abbrevi-
ated as PD.

exist some error between the actually executed trajectories
and the expected ones. For instance, it is impractical for
vehicles to drive along the centerlines of lanes absolute-
ly precisely. Secondly, drivers’ decisions can be affected
by various physical and mental factors(e.g. age, fatigue,
emotion, etc). This may cause uncertainties in vehicle
trajectories. Lastly, drivers of different types of vehicles
have different driving habits, which determines that their
vehicle trajectories show corresponding features. If the
difference is not considered, unnegligible deviations may be
caused in trajectory prediction. However, even so, vehicle
trajectories are not irregular stochastic motion. Since the
driving decisions are made based on human’s common dai-
ly experience, driving behaviors should statistically obey
specific distributions. For example, if a vehicle’s space
headway decreases to the danger threshold, it is more likely
to decelerate rather than accelerate.

Traditional prediction methods simply assume that vehicle
velocities are constant, thus can only provide single pos-
sible trajectories. These methods do not utilize the prob-
ability information of driving decisions, therefore can not
compute the possibilities of different trajectories. However,
for an intelligent vehicle, its surrounding traffic partici-
pants are all dynamic obstacles. In order to acquire an
accurate evaluation of its driving scenario, it is essential to
consider the possibilities of obstacles’ different trajectories.
Note that, vehicle positions are the integral of their accel-
erations, thus we can make use of the acceleration PDs
to quantify and compute uncertain trajectories. In this
paper, acceleration PDs are identified based on historical
trajectory data and combined with kinematic equations to
compute probabilistic trajectories. To facilitate the estima-
tion of vehicles’ relative motion, probabilistic trajectories
are designed to be the predicted objects’ position PDs at
different time points.(The velocity information has been
included in position PDs at adjacent time points.) To
simplify the prediction, here vehicle motion is decomposed
into lateral and longitudinal motions, which represent the
motions perpendicular to and along the lane centerline,
respectively. Through computing one-dimensional position
PDs in these two directions, the original two-dimensional
PDs can be acquired.

The proposed prediction model hypothesize that:

Hypothesis 1. The concerned vehicles do not change lanes.
The predicted objects keep driving in single lanes and lane
changing behaviors are not considered here.

Hypothesis 2. The position PDs in lateral and longitu-
dinal directions are independent of each other. In the
lateral direction, the vehicle is controlled for tracking
centerlines as precisely as possible. But the control of
the longitudinal motion focuses on the vehicle’s velocity,
which mainly depends on its absolute and relative motion
states. Therefore, driving processes in these two directions
are distinctively different. Through assuming the inde-
pendence between their position PDs, the calculation of
a two-dimensional position PD can be simplified as the
calculation of two one-dimensional PDs.

Hypothesis 3. Those vehicles whose preceding vehicle in-
formation is unavailable, are assumed to move at con-
stant speeds. For the objects that are located next to
the front boundary of the prediction space range, their
preceding vehicles’ motion states are unmeasurable. Then
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their future trajectories cannot be predicted. Therefore,
these vehicles’ velocities(measured when the prediction
starts) are considered as unchanged. Since their impacts
on intelligent vehicles are limited, the above simplification
is acceptable.

3. PREDICTION MODEL

This section introduces the implementation of probabilis-
tic trajectory prediction. Section 3.1 presents its flowchart
and model structure, while in section 3.2, the representa-
tion and calculation of probabilistic trajectories are dis-
cussed.

3.1 Model Framework

In the proposed model, the predicted traffic participants
include all the vehicles that are located in a certain space
range of the ego vehicle. Probabilistic trajectory prediction
is a process of rolling computation, as is shown in Fig. 1. In
the beginning of every working cycle Tdrive, initial motion
states of the concerned vehicles are acquired. Then their
future trajectories in prediction time horizon (0, Tpre) are
calculated. When the prediction is finished, the model will
wait until the current working cycle is over. After that,
the next cycle starts and the above steps are repeated.
For safety, Tpre is chosen larger than Tdrive to ensure that
prediction results cover all time.

Start


Acquire initial motion

states of vehicles


Compute probabilistic

trajectories in (0,
T
pre
)


Is the current

cycle over?


yes


no


Fig. 1. The flowchart of probabilistic trajectory prediction
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Fig. 2. The combination of lateral and longitudinal posi-
tion PDs

The vehicles’ probabilistic trajectories are represented by
two-dimensional discrete PDs of their positions in the
road plane at discrete time points, i.e. h(w, s, t) where w
and s are the lateral and longitudinal positions, t(0 ≤
t ≤ Tpre) represents time. According to Hypothesis 2,
h(w, s, t) can be calculated by multiplying the lateral

position PD f(w, t) and longitudinal position PD g(s, t).
Fig. 2 shows the combination of f(w, t) and g(s, t). The
two-dimensional PD h(w, s, t) is expressed as a series of
squares with different gray values. A darker square means
a higher discrete probability in h(w, s, t).

The model parameters used for computing trajectories are
identified based on a data set of historical trajectories.
Since they are all discrete PDs of different variables, here
we name them as PD parameters. Note that the vehicles
can be classified into 3 categories: motorcycles, automo-
biles, and trucks. Obviously, their sizes and masses vary
greatly between categories, and their drivers have distinct
driving habits and behavioral features. Consequently, 3
types of vehicles use 3 groups of PD parameters. The PD
parameters used in the lateral motion model are vehicles’
lateral position PDs, which are identified by computing
corresponding histograms off-line. The PD parameters
used in the longitudinal motion model are, vehicles’ ac-
celeration conditional PDs given different driving modes
and motion states. Similarly, these PD parameters are
identified by computing acceleration histograms under the
same conditions.

Prediction Model


...


Vehicle 1

Vehicle 2
Longitudinal motion model


Vehicle-following mode


Free driving mode
Lateral

motion

model


Vehicle N


Probabilistic trajectory

of Vehicle 1


Probabilistic trajectories

of Vehicle 2, 3,..., N


Trajectory data set


PD  parameters
 Correction  parameter


lateral position

PDs


longitudinal position

PDs


Fig. 3. The structure of probabilistic trajectory prediction
model

In the model structure shown in Fig. 3, each predicted ve-
hicle’s probabilistic trajectory is determined by its lateral
and longitudinal position PDs. The lateral PDs are given
by the lateral motion model parameters. The longitudinal
motion switches between two driving modes(Free driving
and Vehicle-following modes), and thus the longitudinal
PDs are computed with the mode-relied model parame-
ters.

In this model, vehicles’ continuous longitudinal motion is
discretized into transitions between their discrete motion
states. Inevitably, state discretization will introduce calcu-
lation error. As a result, position PDs are shifted. There-
fore, θ is introduced as the correction parameter to adjust
original results. Through translating biased position PDs,
errors can be minimized. Fig. 4 illustrates the correction
process of the longitudinal position PD g(s, t). Given the
start position of longitudinal motion as s0 and the discrete
position with the largest probability in g(s, t) as sm, the
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translating quantity is calculated by multiplying θ with
the driving distance corresponding to sm. The corrected
PD g′(s, t) can be written as

g′(s, t) = g(s− θ · (sm − s0), t). (1)
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.
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Fig. 4. The correction of the longitudinal position PD

In order to evaluate the prediction accuracy of the pro-
posed model, we define elat and elon as the largest error
of a single lateral and longitudinal position predictions,
repectively. elat(elon) is calculated as the maximum of
the errors between expectations of lateral(longitudinal)
PDs and actual values at all time points. Additionally,
the average value of elat and elon is defined as the aver-
age prediction error of multiple lateral and longitudinal
predictions, respectively, i.e. ERRlat and ERRlon. Then
the optimal correction parameter θopt should be chosen to
minimize ERRlon of the corrected PDs, i.e.

θopt = argmin
θ

ERRlon. (2)

3.2 Prediction of Probabilistic Trajectories

In this paper, the predicted vehicles are all treated as
mass points when we compute their future trajectories.
The prediction time horizon Tpre is divided into R time
periods with length T = Tpre/R. Vehicles are thought
to move at constant accelerations in each period. Since
the vehicle trajectories are decomposed into lateral and
longitudinal motions, the road is accordingly discretized
into intervals of equal sizes along these two directions(see
Fig. 2), i.e.

Wl , (wl −∆w,wl) , wl = w0 + l ·∆w,

Si , (si −∆s, si) , si = s0 + i ·∆s,
l ∈ {1, 2, ..., L}, i ∈ {1, 2, ..., I} ,

(3)

where Wl(Si) represents the lth lateral(ith longitudinal)
interval, w0(s0) is the lateral(longitudinal) start position,
∆w(∆s) is the length of lateral(longitudinal) intervals,
wl(si) is the discrete position corresponding to Wl(Si).

The discrete PD F
(r)
αlat(F

(r)
αlon) of a vehicle α’s later-

al(longitudinal) position w
(r)
α (s

(r)
α ) at t = rT (r ∈

{1, 2, ..., R}) is defined as

F
(r)
αlat , {p

(r)
αl , l ∈ {1, 2, ..., L}}, p

(r)
αl = P (w

(r)
α ∈ Wl),

F
(r)
αlon , {p

(r)
αi , i ∈ {1, 2, ..., I}}, p

(r)
αi = P (s

(r)
α ∈ Si).

(4)

With the independence between F
(r)
αlat and F

(r)
αlon, the

probability f
(r)
αli that α is located in the rectangle region

Wl ∩ Si can be calculated as f
(r)
αli = p

(r)
αl · p

(r)
αi . Then,

the two-dimensional discrete PD of α’s position in the

road plane at t = rT can be described as F
(r)
α =

{f
(r)
αli , l ∈ {1, 2, ..., L}, i ∈ {1, 2, ..., I}}. In this way, the

calculation of α’s probabilistic trajectory is transformed
into the calculation of its lateral and longitudinal position

PDs at different time points, i.e. F
(r)
αlat and F

(r)
αlon( r ∈

{1, 2, ..., R}). The rest of this section will illustrate the

computation of F
(r)
αlat and F

(r)
αlon.

Lateral Motion Model A vehicle’s lateral motion repre-
sents its decomposed trajectory perpendicular to the road

centerline. In (4), p
(r)
αl denotes the probability that α’s

lateral position at t = rT is in the interval Wl, then we
can define α’s lateral probability vector pαlat(rT ) as

pαlat(rT ) ,
[
p
(r)
α1 , . . . , p

(r)
αl , . . . , p

(r)
αL

]T
. (5)

With pαlat((r−1)T ), the prediction equation of the lateral
motion model can be expressed as

pαlat(rT ) = Φαlat · pαlat((r − 1)T ), (6)

where Φαlat is α’s lateral transition probability matrix.

From the perspective of a driver, his vehicle’s lateral
trajectory can be seen as a process where the lateral
position keeps tracking an expected value. Therefore, the

vehicle α’s lateral position w
(r)
α can be equivalent to a

sum of its expected position wexp and tracking error ε, i.e.

w
(r)
α = wexp + ε. Since the predicted vehicles are assumed

to keep driving in single lanes(see Hypothesis 1), wexp is a
constant corresponding to the lane centerline, and ε can be
seen as a random variable that obeys a time-independent
PD. As a result, pαlat(rT ) does not change with time, and
Φαlat is the identity matrix.
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Fig. 5. Lateral position PDs of different types of vehicles

Consequently, with the historical trajectory data, his-
tograms of vehicles’ lateral positions can be computed as
the estimation of pαlat(rT ), i.e. the PD parameters of the
lateral motion model. Fig. 5 presents the lateral position
PDs of different types of vehicles. The horizontal axis rep-
resents the vehicle’s lateral position(the lane whose stan-
dard width is 3.66m(12feet) is divided into 12 intervals).
The vertical axis represents the probabilities correspond-
ing to different intervals. Usually, the motorcycles are
small and narrow in size, and their driver seats are located
on the centerlines of the vehicle bodies, so that it is easier
for their drivers to track the expected lateral positions(see
Fig. 5(a), the probability corresponding to the interval
(1.52m,1.83m)((5feet,6feet)) is obviously higher than the
rest). However, for automobiles and trucks in America,
their sizes and widths are significantly larger, and the
driver seats are transferred to the left. Note that, drivers
are psychologically more sensitive to the closer obstacles.
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Thus these larger vehicles may be unconsciously controlled
in the near right of the lane centerline, to keep away from
the obstacles in the left neighbor lane(see Fig. 5(b),5(c)).
This effect is more apparent with larger vehicles, as is
shown by the difference between Fig. 5(b) and Fig. 5(c).

According to the discussion above, lateral position PDs in
Fig. 5 consist with our daily driving experiences. We use
them to predict lateral trajectories. Since the vehicle α’s
lateral probability vector pαlat(rT ) is constant, the lateral

position PD F
(r)
αlat in (4) can be rewritten as

Fαlat = {pαl, l ∈ {1, 2, ..., L}} . (7)

Longitudinal Motion Model A vehicle’s longitudinal mo-
tion can be seen as one-dimensional motion that aims
at speed control. According to our driving experiences,
a driver’s operations(i.e. throttle and braking) mainly
depend on his vehicle’s motion state in the current mo-
ment, but are not much related to previous moments.
Therefore, Markov chains are widely applied in the mod-
eling of vehicle motion(Krumm (2008); Pentland and Liu
(1999)). In this work, each predicted vehicle’s longitudi-
nal motion is also abstracted as an independent discrete
Markov chain, whose system state X is consisted of the
vehicle position S and velocity V . The vehicle’s continuous
motion state space is also discretized into rectangular
cells of equal sizes. Each cell represents a discrete state
Xm(m ∈ {1, 2, ...,M},M = I · J), which corresponds to
the combination of a position interval Si(i ∈ {1, 2, ..., I})
and a velocity interval Vj(j ∈ {1, 2, ..., J}), i.e.

Xm , (Si, Vj),m = J(i− 1) + j,

Si , (si −∆s, si) , si = s0 + i ·∆s,
Vj , (vj −∆v, vj) , vj = v0 + j ·∆v,

(8)

where Si,s0,∆s,si are the same as defined in (3), Vj

represents the jth velocity interval, v0 is the minimum
velocity considered in this model, ∆v is the length of
velocity intervals, vj is the discrete velocity corresponding
to Vj .

Given the vehicle α’s longitudinal position and velocity at

t = rT as s
(r)
α and v

(r)
α , the probability p

(r)
αm that α is in

the state Xm can be described as

p
(r)
αm = P (s

(r)
α ∈ Si, v

(r)
α ∈ Vj). (9)

Then, we can define α’s longitudinal probability vector
pαlon(rT ) as

pαlon(rT ) ,
[
p
(r)
α1 , . . . , p

(r)
αm, . . . , p

(r)
αM

]T
. (10)

Similar to (6), the prediction equation of the longitudinal
motion model can be expressed as

pαlon(rT ) = Φαlon · pαlon((r − 1)T ), (11)

where Φαlon = [φnm]M×M is α’s longitudinal transition
probability matrix, φnm is the element located in the nth
row and mth column of Φαlon.

Obviously, Φαlon depends on α’s acceleration PD at the
same time point. Since the longitudinal motion model
considers two different driving modes(Free driving mode

and Vehicle-following mode), α’s constant acceleration a
(r)
α

in the time interval ((r − 1)T, rT ) should obey a discrete

conditional PD F
(r)
αa given its driving mode and motion

state at the start of ((r− 1)T, rT ). If K possible accelera-

tion values{a1, a2, ..., aK} are considered here, F
(r)
αa can be

defined as

F
(r)
αa ,

{
q
(r)
αk , k ∈ {1, 2, ...,K}

}
,

q
(r)
αk = P (a

(r)
α = ak|DM(r−1)

α ,MS(r−1)
α ),

(12)

where DM(r−1)
α and MS(r−1)

α are α’s driving mode and mo-

tion state at t = (r− 1)T . DM(r−1)
α can be Free driving or

Vehicle-following, and MS(r−1)
α represents different motion

state variables in different driving modes.

According to the memoryless property of Markov chains,
the next state depends only on the current state and not
on preceding states. If the vehicle α is currently in the
state Xm with the longitudinal position si and velocity
vj , then after the acceleration ak takes effect for time T ,
its position send(m, k) and velocity vend(m, k) in the next
moment can be calculated as

send(m, k) = si + vjT + akT
2/2 ,

vend(m, k) = vj + akT.
(13)

Given that send(m, k) ∈ S̃
i
and vend(m, k) ∈ Ṽ

j
, with

(12)(13), φnm in Φαlon is given by

φnm =
∑
k

r(m, k, n) · q
(r)
αk , (14)

where

r(m, k, n) =
{
1 if n = J (̃i− 1) + j̃
0 else

. (15)

Furthermore, through computing with (11)(14) repeatedly,
α’s longitudinal probability vector at all discrete time
points pαlon(T ),pαlon(2T ), ...,pαlon(RT ) can be acquired.

Consequently, α’s longitudinal position PDs F
(r)
αlon(r ∈

1, 2, ..., R) in (4) can be calculated as

F
(r)
αlon = {p

(r)
αi , i ∈ 1, 2, ..., I},

p
(r)
αi =

∑
j

P (s
(r)
α ∈ Si, v

(r)
α ∈ Vj).

(16)

Since the acceleration PDs given different conditions deter-
mine the value of Φαlon, they are chosen as the PD param-
eters of the longitudinal motion model. Similarly, through
computing acceleration histograms under different condi-
tions, we can obtain a series of empirical distributions as
the approximation of conditional PDs. In section 4, the

acquisition of acceleration PDs F
(r)
αa in two driving modes

will be presented.

4. DRIVING MODES IN LONGITUDINAL MOTION
MODEL

In the proposed longitudinal motion model, F
(r)
αa is the

vehicle α’s acceleration conditional PD given DM(r−1)
α

and MS(r−1)
α , which determines the transition probabilities

between α’s motion states. Section 4.1 and 4.2 will discuss
the meaning and calculation of F

(r)
αa in Free driving mode

and Vehicle-following mode, respectively.
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4.1 Free Driving Mode

Free driving mode is one of the two modes considered
in vehicles’ longitudinal motion. When a vehicle keeps
driving in a single lane, it is believed to be in Free
driving mode if its space headway exceeds a threshold
d(d=36.58m(120feet) from experience). In this mode, the
driver usually hopes to control his vehicle speed on an
expected value. The vehicle acceleration is supposed to
satisfy

a(t+ τ) = λ(v∗(t)− v(t)) + ξ, (17)

where τ is the driver’s reaction time, v∗(t) and v(t) are
the expected and actual velocities, λ is the sensitivity
coefficient that reflects the driver’s characteristics, ξ is a
random number that is normally distributed.

Obviously, the vehicle’s expected velocity v∗(t) is restrict-
ed by traffic rules and road conditions. Moreover, it al-
so depends on human’s common driving experience. For
example, the driver may choose a most comfortable ve-
locity as v∗(t) to reduce unnecessary driving operations
and minimize driving burdens. Therefore, for the same
road segment, the expected velocities of the same type
of vehicles can be seen as the same, then the accelera-
tion a(t + τ) is closely related to v(t). As a result, in

(12), when DM(r−1)
α is Free driving, the vehicle’s veloc-

ity v(t) is chosen to represent MS(r−1)
α . Through ana-

lyzing Free driving trajectories extracted from the data
set, the acceleration histograms under different driving
velocities can be obtained. Fig. 6 shows the acceleration
conditional PDs of automobiles in Free driving mode.
The horizontal axis represents possible acceleration values

{−3.66,−3.05, ..., 3.66}m/s
2
({−12,−10, ..., 12}feet/s

2
),

while the vertical axis represents the corresponding prob-
abilities.
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Fig. 6. Automobiles’ acceleration conditional PDs given
different diving velocities

From the above PDs, we can see that the probability
of the acceleration a = 0 is far higher than the ones
of a taking other values. The reason is that the vehicle
acceleration usually does not change distinctly unless the
drivers take concrete actions(i.e. throttle or braking).
As a result, for most of the time, the drivers tend to
maintain their current velocities. But as the velocities
increase, the probabilities of a = 0 gradually decrease and
the acceleration PD tends to be uniform. It is because
that the driving decision-making processes become more

complicated, and the uncertainties in trajectories become
stronger.

In Free driving mode, (12) can be rewritten as

F
(r)
αa ,

{
q
(r)
αk , k ∈ {1, 2, ...,K}

}
,

q
(r)
αk = P (a

(r)
α = ak|DM(r−1)

α = Free driving,

MS(r−1)
α = v

(r−1)
α ),

(18)

where v
(r−1)
α is α’s velocity at t = (r − 1)T . With F

(r)
αa

in (18), α’s longitudinal probabilistic trajectory in Free
driving mode can be computed with (11)(14).

4.2 Vehicle-Following Mode

Compared with Free driving mode, Vehicle-following mode
is more common in urban traffic. A vehicle is thought to be
in Vehicle-following mode if its space headway is less than
d. Here the major factors that can influence a vehicle’s
acceleration are its space headway and relative velocity.
According to the classical model in Gazis et al. (1959),
the vehicle acceleration should satisfy

a(t+ τ) = λ∆v(t)/∆s(t) , (19)

where ∆v(t) and ∆s(t)(∆s(t) > 0) are the relative velocity
and space headway of the predicted vehicle, τ is the
driver’s reaction time, λ is the sensitivity coefficient.
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Fig. 7. Automobiles’ acceleration conditional PDs given
different ITTCs

Obviously, according to (19), the acceleration in Vehicle-
following mode is closely related to ∆v(t)/∆s(t). Giv-
en that ITTC = ∆v(t)/∆s(t), then TTC(the inverse of
ITTC, TTC = ∆s(t)/∆v(t)) denotes the remaining time
before the collision happens if both vehicles keep driving
at their current velocities. As a result, the acceleration is

closely related to ITTC. Thus in (12), when DM(r−1)
α is

Vehicle-following, ITTC is chosen to represent MS(r−1)
α .

Through analyzing Vehicle-following trajectories extract-
ed from the data set, the acceleration histograms under
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different ITTCs can be obtained. Fig. 7 shows the acceler-
ation conditional PDs of automobiles. The meaning of its
coordinate axis is the same as defined in Fig. 6.

From the above PDs, when ITTC ≤ 0, the following
vehicle is driving at a slower speed than the preceding one,
so that it is more possible to accelerate, i.e. the probability
of a > 0 is larger than the one of a < 0(see the top half of
Fig. 7). Conversely, when ITTC ≥ 0, the vehicle is more
possible to decelerate(see the bottom half of Fig. 7). In
addition, it is noted that the probability of a = 0 decreases
with the increase of ITTC. The reason is that the reaction
time for taking actions to avoid collisions reduces with
a higher ITTC. The drivers have to adjust their vehicle
velocities more frequently to ensure safety.

When computing the motion state in the next moment,
we need to know the acceleration conditional PD in the
current moment. Different from Free driving mode, here

MS(r−1)
α (i.e. ITTC(r−1)

α ) needs to be computed with the
space headway and relative velocity:

ITTC(r−1)
α =

v(r−1)
α −E(v

(r−1)

β
)

E(s
(r−1)

β
)−s

(r−1)
α

, (20)

where E(s
(r−1)
β ) and E(v

(r−1)
β ) are the expectations of the

preceding vehicle β’s longitudinal position and velocity
at t = (r − 1)T . In Vehicle-following mode, (12) can be
rewritten as

F
(r)
αa ,

{
q
(r)
αk , k ∈ {1, 2, ...,K}

}
,

q
(r)
αk = P (a

(r)
α = ak|DM(r−1)

α = Vehicle-following,

MS(r−1)
α = ITTC(r−1)

α ).

(21)

With F
(r)
αa in (21), α’s longitudinal probabilistic trajectory

in Vehicle-following mode can be computed with (11)(14).

5. SIMULATION RESULTS

In this section, the proposed prediction model is demon-
strated with numerical examples. The adopted data set
is from The US 101 Data Set provided by the program
NGSIM, which records vehicles’ realtime trajectory data
on a 2100-foot, six-lane highway segment. The recorded
vehicle motion states include the relative(absolute) longi-
tudinal and lateral positions, velocities, acceleration, space
headway, time headway, etc. Trajectory data of three types
of vehicles whose total length is 7500s, is extracted from
the data set as model training data to identify model pa-
rameters. The PD parameters in the lateral motion model
are lateral position PDs of different types of vehicles(see
Fig. 5). The PD parameters in the longitudinal motion
model are acceleration PDs in Free driving and Vehicle-
following modes(the PDs of automobiles in two driving
modes are shown in Fig. 6 and Fig. 7, respectively). The
correction parameter is finally chosen as θopt = 0.07. 53
automobiles’ trajectory data(whose total length is 2000s)
is applied to test and compare the performances of the pro-
posed model and traditional model. All the simulations are
executed in Visual Studio 2010 using a Intel(R) Core(TM)
i5 CPU M 480@2.67GHz with RAM 2.0Gb. The algorithm
parameters are shown in table 1.

Trajectory prediction is executed for 3 vehicles who drive
on a two-lane road segment. The initial values of their

motion parameters are shown in table 2. Fig. 8 demon-
strates their position PDs at discrete moments. Pixel-
s with different gray values are used to describe two-
dimensional PDs, where the gray value is proportional
to the possibility that there exist vehicle bodies(not the
mass points that represent vehicles) in the corresponding
region. Fig. 8(a),8(b),8(c) demonstrate the predicted po-
sition PDs of 3 vehicels at t = 0s, t = 3s and t = 6s, while
Fig. 8(d) demonstrates the PDs at t = 6s if the interaction
between vehicle trajectories is not considered. As is shown
in Fig. 8(c), the prediction result reflects the trend that β
decelerates because it is too close to γ. If the interaction
between vehicle trajectories is not modeled, β will collide
with γ with a high probability(see Fig. 8(d), β’s position
PD obviously overlaps with γ’s).

Table 1. The values of algorithm parameters

∆w(feet) L ∆s(feet) I sI(feet)

1 12 0.5 800 400

T (s) Tpre(s) ∆v(feet/s) J vJ (feet/s)

0.1 6 0.2 375 75

Table 2. The initial values of motion parame-
ters

Vehicle Driving Velocity Longitudinal Driving
type lane (feet/s2) position(feet) mode

α Motor A 30 20 Free driving
β Auto B 20 20 Vehicle-following
γ Truck B 15 90 Free driving
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Fig. 8. Probabilistic trajectories in a multi-vehicle traffic
scenario

Fig. 9 and Fig. 10 demonstrate the test results of mod-
el performance. The adopted variables are illustrated in
table 3. Fig. 9 compares the influence of different algorith-
m parameters on the proposed Probabilistic Trajectory
Model(PTM). Fig. 9(a) analyzes two PTMs with ∆s =
0.15m(0.5feet) and ∆s = 0.30m(1feet), and shows the
relation between Tcal and Tpre,∆s: Tcal ∝ T 2

pre/∆s. The
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reason is that, on one hand, the number of outer iterations
for trajectory prediction Iout satisfies Iout ∝ Tpre. On the
other hand, when we compute the motion state PD in the
next moment, we need to traverse all discrete states in
the present moment. Consequently, the number of inner
iterations Iin is proportional to the number of discrete
states Nstate. Furthermore, Nstate = I · J(I and J are
the number of longitudinal position and velocity states),
and I is usually chosen as I = vJ · Tpre/∆s(vJ is the
largest possible velocity), so that Iin ∝ Tpre/∆s. Taken
together, if we ignore other constant computation cost,
Tpre ∝ Iout · Iin, so Tcal ∝ T 2

pre/∆s. In order to meet
the real-time requirement, PTM should ensure trajectory
prediction for multiple vehicles are finished in Tpre. If we
consider the ego vehicle’s preceding and following vehicles,
and 6 ones in the left and right neighbor lanes, we get 8
predicted objects. Tcal should satisfy

Tpre/Tcal > 8. (22)

In Fig. 9(a), a group of algorithm parameters that make
(Tpre, Tcal) falls below the dashed line can ensure that (22)
works. Then PTM’s real-time capability is guaranteed.

Fig. 9(b) analyzes PTM with Tpre = 5s and demonstrates
the relative curves between ∆s and its Tcal,ERRlon. From
the discussion above, Tcal ∝ 1/∆s, which is shown by the
star line in Fig. 9(b). The dotted line shows how ERRlon

changes over ∆s. Note that, when ∆s < 0.15m(0.5feet),
with the decreasing of ∆s, Tcal increases rapidly but
ERRlon goes down slowly. Therefore, ∆s is a critical al-
gorithm parameter that need to be designed based on the
prediction accuracy requirement and application environ-
ment. A balance between prediction error and computing
time is required.

Table 3. The illustration of variables used in
model performance tests

∆s
The length of longitudinal

position intervals

Tpre Trajectory prediction time horizon

Tcal
The time consumed for calculating a

probabilistic trajectory

ERRlat
Average largest prediction
error of lateral positions

ERRlon
Average largest prediction

error of longitudinal positions
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Fig. 9. The influence of algorithm parameters on PTM
performance

Fig. 10 analyzes two PTMs with ∆s = 0.15m(0.5feet) and
∆s = 0.30m(1feet), and compares the prediction error

of PTMs with Constant Velocity Model(CVM). CVM is
usually applied in traditional methods to make predic-
tion, which simply assumes that vehicles keep driving at
constant speeds along the lane centerlines. As is shown in
Fig. 10, there is no remarkable distinction between ERRlat

of PTM and CVM. Also, their ERRlon both go up with
the increasing of Tpre. But when Tpre ≥ 2s, the ERRlon of
PTM(∆s=0.5feet) is less than the one of CVM, and PTM
performs better with a higher Tpre. It is because that the
changes of vehicle velocities are not obvious in a short time,
so the assumption of constant velocities is acceptable. But
as time goes on, the effect of driving decisions will accumu-
late, which may result in a significant increase of CVM’s
prediction error. For PTMs, since they consider the update
of acceleration PDs with the changing environment, more
accurate prediction results can be acquired.
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Fig. 10. The prediction error comparison of PTM with
CVM

According to the above analysis, PTM can provide a
better prediction than CVM and can meet the real-time
requirement. When applying PTM in intelligent driving,
for convenience, we can directly use the expectations
of vehicle position PDs as the deterministic prediction
results. Furthermore, in order to make fully use of the
probability information, we can define the influence of α’s
future trajectory on the ego vehicle as

Jα ,
∑
l,i,r

p
(r)
αl p

(r)
αi · I(l, i, r), (23)

where I(l, i, r) is the evaluation of α’s influence on the ego
vehicle at t = rT if α is in the rectangular region Wl ∩ Si.

6. CONCLUSION

Without considering the uncertainties in vehicle driving,
traditional trajectory prediction methods can only provide
unique deterministic results. They do not consider the
complexity of real driving behaviors. To solve this problem,
based on the work in Althoff et al. (2009), we propose a
novel probabilistic method to make prediction for single
lane driving trajectories. In our model, the possibilities of
different trajectory executions(i.e. probabilistic trajecto-
ries) are described as vehicles’ position PDs at different
time points. In order to simulate driving behaviors more
realistically, this model also considers the characteristics
of different types of vehicles, and the interaction between
vehicle trajectories. Model parameters are identified off-
line based on historical trajectory data, thus on-line com-
putation burden is greatly reduced. The simulation results
show that, the proposed model can be applied in real-
time and its prediction error is less than the traditional
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model. This method is suitable for driving assistance sys-
tems and autonomous vehicles, which can be applied in
driving decision-making, trajectory planning, and collision
warning.

Lane changing is a more complex driving behavior on
urban roads. Their driving decision-making processes are
more complicated than single lane driving, thus the un-
certainty of their trajectories is more serious. Based on
the proposed model here, the prediction of lane changing
trajectories will be researched in future work.
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