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Abstract: In this paper we present the Model Predictive Control (MPC) with dynamic
constraints for generating dynamic walking for the compliant humanoid COMAN. The dynamics
of the robot are modeled using the cart-table model which allows the generation of a dynamically
balanced gait given a planned walking pattern based on the Zero Moment Point (ZMP). Our
simulation study of the MPC’s implementation on bipedal walking finds out that a large receding
and control horizons are needed to track a predefined walking pattern, leading to numerical
instability. Therefore, the Extended Prediction Self-Adaptive Control (EPSAC) approach for
MPC has been used and a method based on the analysis of the Singular Value Decomposition
(SVD) is presented as new contribution to guarantee feasibility, robustness and stability of
the MPC formulation. Study on an inverted pendulum and the COMAN humanoid prove that
the proposed strategy improves the robustness and stability of the original EPSAC controller,
in both well or ill conditioned systems. The simulation results finally demonstrate that the
proposed methodology is well suited to smoothly track a dynamic walking pattern.

1. INTRODUCTION

Biped locomotion has been widely studied in recent
decades. The capability of bipedal robots to walk in the
environment designed for humans is particularly notewor-
thy. To realize this, the walking gait should be adapted
to the terrain and continuously regulated according to the
robot’s real state. Thus control techniques are demanded
to generate reactive response to the unpredicted terrain,
obstacles, and transitions during the gait trajectory. A pos-
sible approach to solve this problem is to apply predictive
techniques to generate a proper adaptive gait.

A common control approach to generate the dynamically
stable walking pattern is based on the Zero Moment Point
(ZMP). The ZMP can be interpreted as the point on the
ground where all the inertial and gravity forces have no
component along the horizontal axes (Vukpbratovic and
Boravac [2004]). While the ZMP remains inside the sup-
port polygon, the robot will not tip around the stance foot
(Vanderborght [2010]). This technique has been studied
in different works (Vukobratovic and Juricic [1969],Kajita
et al. [2003]), nonetheless, the problem of physical con-
straints was avoided by place the ZMP always in the center
of support polygon.

The preview controller, which is presented in e.g. (Kajita
et al. [2003]) has been widely used. In that work the
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generation of the COM trajectories based on the tracking
of ZMP reference is shown. In that work the authors
described the ZMP concept as well as the implementation
of the preview controller to track a desire trajectory. That
strategy applied a fix pattern generator.

In order to achieve the biped locomotion and include con-
straints in the desired gait, the Model Predictive Control
(MPC) is of particular interest, as it has an inherent dead-
time compensation, includes feedforward action and deals
with constrained systems. In particular, the Extended
Prediction Self-Adaptive Control (EPSAC) proposed in
(De Keyser [2003]) has been chosen in our work due to
its flexibility to model the disturbances. In addition, this
technique permits the implementation of input, input-
rate and output constraints, which represent the physi-
cal constraints in dynamic walking. The long prediction
and control horizons particularly required by the bipedal
walking has an instability issue due to the inversion of
large matrices, hence, it is necessary to include conditions
to guarantee the feasibility.

The work in (Parsa and Farrokhi [2010]), presents a Non-
linear predictive control that uses a complex dynamic
model for the single and double support phases, addi-
tionally a disturbance observer is included in the loop to
compensate for external disturbances. Stability or robust
analysis of the used method are not included. A linear
implementation of the MPC is presented in (Bagheri and
Miripour-Fard [2011]), where the authors applied the MPC
to control the biped locomotion. Feasibility is guaranteed
by imposing fixed input and output constraints, and long
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prediction and control horizons. No further analysis on
stability and robustness of the method was presented.

The previous gait control developed for COMAN in (Li
et al. [2013]) utilized the COM state for online generating
walking gait rather than relying on ZMP, however, gait
control was not optimal. We further extend the use of
COM state feedback for updating the step length and
thus the ZMP reference during walking, and apply MPC
to smoothly produce a reactive and dynamically

Our work provides a robust extension of constrained linear
Model Predictive Control (EPSAC) (De Keyser [2003])
generating a walking pattern of a humanoid robot based-
on the ZMP (Vukpbratovic and Boravac [2004]). The im-
plementation of the MPC controller for this issue leads
to the conclusion that large prediction and control hori-
zons are required, resulting in numerical instability in
the control (De Keyser [2003]). Inspired by (Rojas et al.
[2004]), a method based on the Singular Value Decompo-
sition (SVD) is proposed to improve the robustness and
stable characteristics of the EPSAC controller for both
well- and ill-conditioned systems. An inverted pendulum
and the bipedal walking cases are studied to demonstrate
the effectiveness of the proposed control algorithms. The
method uses the impulse response to provide a well-defined
matrix for the EPSAC controller when large control and
prediction horizons are required, providing robustness to
the whole system.

2. EPSAC ALGORITHM

MPC is a general designation for controllers that make
an explicit use of a model of the plant to obtain the
control signal by minimizing an objective function over
a time horizon. In this contribution, EPSAC proposed
by (De Keyser [2003]) has been chosen due to its easy
implementation of constraints. The EPSAC methodology
is described as follows: Having a system

y(t) = f(yt−1, yt−2, . . . , ut−1, ut−2, . . .)

with input u(t) and process output y(t). The EPSAC uses
the modeled output

x(t) = f(xt−1, xt−2, . . . , ut−1, ut−2, . . .) .

The generic model of the EPSAC is (1)

y(t) = x(t) + n(t) , (1)

where y(t) is the measured output of the process, x(t)
the model output and n(t) a process disturbance, all at
discrete-time index t. The disturbance n(t) can be modeled
as colored noise through a filter with the transfer function

n(t) =
C(q−1)

D(q−1)
e(t) (2)

with e(t) uncorrelated (white) noise with zero-mean and
C, D monic polynomials in the backward shift operator
q−1. The disturbance model allows to achieve robustness of
the control loop. A ‘default’ choice to remove steady-state
control offsets is n(t) = 1

1−q−1 e(t) (Maciejowski [2002]).

However, a higher performance is achieved by using an
‘intelligent’ disturbance model (De Keyser and Ionescu
[2003]), making it to suit the type of disturbance.

Using the generic process model (1), the predicted values
of the output are

y(t+ k|t) = x(t+ k|t) + n(t+ k|t)
for k = N1, N1 + 1, . . . , N2|N1, N2 ∈ <, where N1 and N2

are the minimum and the maximum prediction horizons.
The prediction of the process output is based on the
measurements available at the sampling time instant t,
{x(t−1), x(t−2), . . . , u(t−1), u(t−2), . . .} and future (pos-
tulated) values of the input signal {u(t|t), u(t + 1|t), . . .}.
The future response can then be expressed as

y(t+ k|t) = ybase(t+ k|t) + yopt(t+ k|t) , (3)

where each of the contribution terms is understood as:

• ybase(t + k|t) is the effect of the past inputs u(t −
1), u(t−2) . . ., a future base control sequence ubase(t+
k|t) that can be the last used input and the predicted
disturbance n(t+ k|t).

• yopt(t + k|t) is the effect of the optimizing control
actions δu(t|t), . . . , δu(t+Nu−1|t) with δu(t+k|t) =
u(t+ k|t)− ubase(t+ k|t), in a control horizon Nu.

The optimized output yopt(k)∀ k = [1, 2, . . . , N2] can be
expressed as the discrete time convolution of the unit
impulse response coefficients h1, . . . , hN2

and unit step
response coefficients g1, . . . , gN2

of the system.

yopt(t+ k|t) = hkδu(t|t) + hk−1δu(t+ 1|t) + . . .

+gk−Nu+1δu(t+Nu − 1|t) (4)

Using (3) and (4), the key EPSAC formulation becomes

Y = Y + GU (5)

where

Y = [y(t+N1|t) . . . y(t+N2|t)]T

Y = [ybase(t+N1|t) . . . ybase(t+N2|t)]T

U = [δu(t|t) . . . δu(t+Nu − 1|t)]T

G =

 hN1
hN1−1 . . . gN1−Nu+1

hN1+1 hN1
. . . . . .

. . . . . . . . . . . .
hN2

hN2−1 . . . gN2−Nu+1

 (6)

Then, the control signal U is optimized by minimizing the
cost function:

N2∑
k=N1

[r(t+ k|t)− y(t+ k|t)]2 (7)

Note that the controller cost function (7) can be easily
extended to many alternative cost functions as described
in (De Keyser [2003]). The horizons N1, N2 and Nu are
design parameters and

r(t+ k|t) = αr(t+ k − 1|t) + (1− α)w(t+ k|t)
is the desired reference trajectory, where a 1st-order tra-
jectory was chosen for k = 1, . . . , N2 with initialization
r(t|t) = y(t).The signal w(t) represents the setpoint and
alpha (α) is a design parameter to tune the MPC perfor-
mance (Sánchez and Rodellar [1996]).

The cost function (7) can be represented in its compact
matrix notation as follows:

(R−Y)T(R−Y) = [(R−Y)−GU]T[(R−Y)−GU]

where R = [r(t+N1|t) . . . r(t+N2|t)]T ∈ <N2 . The

previous expression can be easily transformed into the
standard quadratic cost index:

J(U) = UTHU + 2fU + c. (8)
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with,

H = GTG f = −GT(R−Y)

c = (R−Y)T(R−Y)
(9)

where [GTG] ∈ <Nu×Nu . In practice, all processes are sub-
ject to constraints. For the case of limits in the actuators
range (input constraints), two approaches are available:

Clipping is the simplest approach as the control is calcu-
lated assuming the actuator has unlimited range, for which
an analytical solution is available:

U∗ = [GTG]−1[GT(R−Y)] (10)

Once the action U∗ is calculated, it is then hard-limited
into a minimum and maximum allowed value.

Constrained control, constraints are taken into account
a priori, thus leading to the best solution that is possible
within the specified limits. In MPC, the calculation of
these constraints is the so called quadratic programming
optimization problem.

Finally, the feedback characteristic of MPC is given by the
first optimal control input u∗(t) = ubase(t|t) + δu(t|t) =
ubase(t|t)+U∗(1) is applied to the plant and then the whole
procedure is repeated at the next sampling time t+ 1.

3. ROBUST EXTENSION FOR THE EPSAC BASED
ON SVD

As cited in (Rojas and Goodwin [2004],Rojas et al. [2004]),
the stability information of the system can be extracted
from the Singular Value Decomposition (SVD). In the EP-
SAC methodology, the computation of the optimal control
input δu(t) implies the inversion of the G, consequently,
numerical stability strongly depends on whether or not this
matrix is well-defined. G is composed of (Nu) singular val-
ues arranged in a decreasing continuous function. Herein,
we present a method based on the impulse response in
order to provide a well-defined matrix G for large control
and prediction horizons Nu and N2 based on the SVD,
providing robustness to the whole system.

Given (6), with N1 = 1 and knowing that hk = 0 , gk =
0 ∀k < 0 |k ∈ Z then, G is a bottom triangular matrix.
The SVD representation of G is

G = TΣV T (11)

where T = [T1, T2, . . . , TN2
] ∈ <N2×Nu represents the left

singular vectors, V = [v1, v2, . . . , vN2
] ∈ <Nu×N2 the right

singular vectors, and Σ = diag[σ1, σ2, . . . , σNu ] ∈ <Nu×Nu

the singular values of G. From a geometrical point of
view, the SVD creates a rotated hypersphere ∈ <N

u that
belongs to the space <N2 and the corresponding σi i ∈
[1, 2, . . . , Nu] value, defines the length of each direction.

It is desired not to reduce the solution space; then, a
modification of the hyperspace is proposed. The method
changes only the magnitude of the singular values σi ∀i ∈
K |K ≤ Nu, while the singular vectors remain constant.
So, a bigger hypersphere containing the nominal solution
space is generated. The proposed method allows a softer
transition and higher correlation between the Nu spaces.
Taking into account the response of the system through
the time and adapting the singular values to increase
the correlation of the input in the control horizon Nu,
we obtain a response that is robust against uncertainties

in the model. The proposed method allows to consider
the complete control horizon Nu during the optimization
phase since the singular values σ are disperse according to
the impulse response of the system. For this aim, a close
relation between the value σj |j ∈ Z ≤ Nu and the response
of the system at time t+ j is defined.

3.1 Hypersphere construction

Consider a system with parameters L = [l1 + δ1, l2 +
δ2, . . . , lm + δm] and impulse response HL, where δi is the
variation of the ith parameter, and let G be as in (6),
then a SVD representation of the system is obtained with
ΣL = [σ1

Lδ1
, σ2

Lδ2
, . . . , σNu

Lδm
, ]. Since ΣL is affected

by the parametrization of the model, each SVD σi
Lδi

is

affected as well. This representation maps the effect of the
parameter li + δi into the SVD of the system providing
a solution space to be controlled. In order to build a
robust representation of matrix G based on its SVD, it
is possible to take the maximum σi

Lδi
for each row in ΣL.

Nevertheless, we propose a fitting function based on the
impulse response of the nominal system that provides a
soft transition though the hyper spaces of ΣL, increasing
the relation of the optimal input Ut, to be applied to
the system, with respect to the control horizon inputs
U = [Ut, Ut+1, . . . , Ut+Nu ].

To generate the hypersphere, note that the ith row of G
contains the impulse response for 1 ≤ j ≤ Nu − 1, where
G(i, j) = 0 ∀ j > i. Then, the percentage magnitudes
of the contribution Cp(k) of hN1 applied at future time
Kf = [1, 2, . . . , Nu] are;

Cp(k) =
|hN1100%|
k∑

j=1

|G(k, j)|

, ∀k ≤ Nu , (12)

The matrix ΣC is based on Σ, ΣC1
= σ1, and ΣCNu

= σNu .
Then, Cp(1) = 100% is referred to ΣC1

. The remaining
Cp values correspond to the other values of the diagonal
matrix ΣC keeping the proportion provided by the impulse
responses relation.

3.2 Robust Analysis

In order to understand the effect of Σ in G, first consider
G ∈ <N2×Nu which implies that the expected optimiza-
tion that provides the control effort at present time t is
obtained by a minimization process affected by the future
inputs up to time t + Nu. From the SVD, we have that
the effect of the input at time t + Ni ,∀ 0 < Ni ≤ Nu

is directly related with the corresponding value σNi in
Σ. In order to guarantee a robust response of the system
given the uncertainties δ, the hyperspace described by ΣC

must contain the complete space solution of the system
L. The proposed method constructs the hyper space using
the maximum σ value at the first row of ΣLδ and using
(12), the new SVD is presented containing the hyper space
solution. The approximation provides a wider hyper sphere
that contains the original space solution using the impulse
response contributions in G. Because of the sparse modifi-
cation on G while the prediction model remains constant,
the constraints may not be completely respected. So, soft
constraints should be implemented to guarantee a solution
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in the optimization. Other solution to this problem is
given in (Wang [2010]), where the cost function is modified
using weights on the control horizon to reduce the effect
introduced by long prediction horizon.

For well defined problems, the method slightly affects the
original SVD representation as shown in Section 3.3, since
the new SVD representation is close to the original one
and the right and left singular vectors are not changed.
I.e. the original space and the approximated solution are
equivalent. To better illustrate this concept, the inverted
pendulum is used as an example.

3.3 Validation on an inverted pendulum

The inverted pendulum is a nonlinear and unstable system
which has non-minimum phase behavior. In this example,
we consider a two-dimensional inverted pendulum with
the cart constrained to move in the horizontal plane, as
depicted in Fig. 1. The control input is the horizontal
force F , and the outputs are the angular position of the
pendulum θ and the horizontal position of the cart x. The
system nonlinear differential equations are:

(M +m)ẍ+ bẋ+mlθ̈ cos θ −mlθ̇2 sin θ = F

(I +ml2)θ̈ +mgl sin θ = −mlẍ cos θ
(13)

The system (13) is linearized at θ = π with the parameters
listed on table 1. The inverted pendulum is a well-

Fig. 1. Schematic representation of the Inverted Pendulum.

Table 1. Parameters for the inverted pendulum

Symbol Definition value

M Mass of the car 0.5 Kg
m mass of the pendulum 0.2 Kg
b coefficient of friction for cart 0.1 N/m/sec
l length to pendulum center of mass 0.3 m
I moment of inertia of the pendulum 0.006 kg.m2

F force applied to the cart N
x cart position coordinate m
θ pendulum angle from vertical (down) rad

conditioned problem for which a good closed performance
can be achieved with a prediction horizon N2 = 10 and
control horizon Nu = 1 as depicted in Fig. 2. During
the simulations, the EPSAC controller is subject to input
and slew-rate constraints defined as: −20 N ≤ u(t +
k|t) ≤ 20 N and −0.5 N/ms ≤ ∆u(t+ k|t) ≤ 0.5 N/ms,
respectively and a sample time Ts = 10 ms.

Assume that a faster response is required, then, two
options are available: to decrease the prediction horizon
N2 or to increase the control horizon Nu. The latter is less
desired since it decreases the robustness and stability of
the control loop. To illustrate this behavior, the EPSAC

controller was tuned for a larger control horizon Nu = 5,
leading to a faster response of the system, generating an
undesired oscillation in the control effort. An improvement
on the performance of the controller in terms of robustness
and stability is achieved by implementing the proposed
Robust EPSAC strategy as shown in Fig. 2. The singular
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Fig. 2. Comparison of Robust EPSAC for the inverted
pendulum system for large control horizon Nu.

values for the solutions with control horizon Nu = 5 are
shown in Fig. 3. The singular values for the Robust EPSAC
are close to the original SVD, but far from the singularity
compared to the original EPSAC, leading to a smoother
and numerically more stable computation of the optimal
control action. Furthermore, a robustness test is performed
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Fig. 3. SVD for the Inverted Pendulum N2 = 10, Nu = 5.

by changing the masses M = 0.9 Kg and m = 0.6 Kg, and
the length of the pendulum l = 0.4 m on the nonlinear
model, while the linear model used for prediction remains
as listed on table 1. As observed in Fig. 4 the proposed
method is more robust compared to the original EPSAC,
producing less oscillations and therefore a faster response.
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Fig. 4. Robustness Test for the inverted pendulum.

4. DYNAMIC WALKING OF COMAN HUMANOID

The car-table model proposed by (Kajita et al. [2003]) was
chosen for representing the dynamics of bipedal walking.
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Fig. 5. Cart table model step response. zc = 0.41m.

The humanoid walking robot was simplified as a cart on
top of a mass-less table. The cart represents the center of
mass of the robot while the table represents the supporting
foot. Given the cart’s acceleration, the ZMP position can
be computed by

xZMP = x−
zcẍ

g
, (14)

where g is the gravity constant and zc is constant the
height of the Center of Mass (COM). The output of the
system is the ZMP and the control input is the Jerk,
defined as the rate of change of acceleration.

The walking characteristics is briefly described to clar-
ify the generation of the ZMP trajectory and the cor-
responding motion of the COM. The gait is divided as
(Edmond Ayyappa [1997]), by the Double Support (DS)
and Single Support (SS) phases. The DS phase is the
portion of the gait cycle when both feet are in contact
with the floor and occupies 25% of the gait cycle, while
the SS phase occupies 75% of the cycle. During the SS
phase, the COM changes while the ZMP remains in the
support foot. During the DS phase the ZMP evolves from
one foot to the other.

Consider a given ZMP trajectory represented by WZ

WZ = [w1, w2, . . . , wN2] ∀k = 1, . . . , t

and a biped robot with COM at a given height zc,

xCOM ∈
{
Br[w1], C2

}
where Br[•] is the closed ball centered in • with diameter
SPt, which is the support polygon size at time k
subject to

xZMP = xCOM −
zcẍCOM

g
.

In order to implement the EPSAC control in the cart
table model, first using zc = 0.41 m and the state state
representation,

Ẋ = A ·X +B · U ZMP = C ·X +D

A =

[
0 1 0
0 0 1
0 0 0

]
B =

[
0
0
1

]
C =

[
1 0 −zc/g

]
D = [0] , (15)

then

TF =
−0.041794(s− 4.892)(s+ 4.892)

s3

is the transfer function of the system used to get the
model prediction. The step response is shown in Fig 5.
It is observed that the non-minimum phase duration is
0.475 s. The COM height of zc = 0.41m is used to avoid
knee singularity during walking. The sampling time used
in the simulations is Ts = 5 ms.
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Fig. 6. Control effort for a fix trajectory zc = 0.41 m
Nu = 10.

4.1 ZMP Robustness Analysis

A comparison study was done based on the same walking
pattern to evaluate the performance of the system using
the original EPSAC controller and the Robust EPSAC
respectively. The control horizon was Nu = 10 and the
prediction horizon was N2 = 400 with a sampling time
Ts = 5 ms, resulting in a prediction of two seconds which
is more than a single step for a biped gait. To generate
a feasible gait, the required ZMP must be restricted
within the support polygon through physical contacts.
Therefore, to address the undershooting problem from
instantaneously updating the ZMP reference inside the
receding horizon, the acceleration constraints must be
considered.

Since the real ZMP response should track the ZMP ref-
erence within the support polygon, a constrained zmp x̄p
should match a saturation such that

xfoot −∆−
x < x̄p < xfoot + ∆+

x ,

is respected, where ∆+
x ,∆

−
x is defined according to the size

of the support polygon. The operator (̄·) indicates the sat-
urated state of the variable. These ZMP constraints, due
to the support polygon, can be rewritten as acceleration
constraints

¯̈x =

{
ẍmin =

x−(xfoot+∆+
x )

zc
g,

ẍmax =
x−(xfoot−∆−

x )

zc
g,

. (16)

The control responses for the constrained and uncon-
strained cases are shown in Fig. 6. In both cases, the
control effort of the robust EPSAC is smooth and more
continuous compared to the original EPSAC, reducing the
high frequency components and the peaks of the input.
In Fig. 7 the ZMP responses are presented. The figure
shows that the original EPSAC has better tracking. On
the other hand, our method generates a softer response
but in the unconstrained case it does not follow the desired
trajectory. However, once the constraints are imposed, the
response tracks the trajectory with a behavior similar to
the ideal case, allowing the implementation of the method.
Fig. 8 shows the tracking error w.r.t the desired gait.
According to the error analysis, the response of the original
model remains inside the desired bound in all cases; the
robust EPSAC violates the bound in the constrained case
for a short period. This behavior is due to the difference
between the optimization matrix G once the method is
applied and the nominal model used for the prediction.
However, if a soft constraint is implemented, our imple-
mentation is feasible for specific applications. It is impor-
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Fig. 8. ZMP response for a fixed trajectory Nu = 10.
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Fig. 9. SVD for the cart-table model Nu = 10.

tant to remark that in this example, only the dynamically
adjusted input constraint is used (16).

In order to test the robustness of the proposed method,
a second set of simulations was carried out. The COM
height of the model was set to zc = 0.41 m and the desired
gait trajectories were generated with an-online generator.
The parameter zc in the simulated system was set to
zc = 0.38 m, to analyze the behavior of the controller
and its robustness, because in practice zc changes during
a stable walk, (Murray et al. [1964]). In Fig. 9, the singular
values for the original and robust EPSAC are compared.
As it is shown, the dimensional space contains the solution
of the original system. First, the original dynamics diverges
without constraints even when the change on the COM
height is less than 1 cm. However, once the constraints are
introduced, the performance of the system is not feasible
since it oscillates around the desired trajectory as shown in
Fig. 10. From a physical point of view, the response shows
that the robot modifies the force distribution in the foot
at a high frequency to track the trajectory, which causes
vibrations and consequently the fall over. On the other
hand, once we applied the robust EPSAC technique, the
response was stable in both constrained and unconstrained

cases as depicted in Fig. 11. In the first case, the system
is able to track the trajectory properly according to
the desired reference. In Fig. 12, the errors from the
constrained and unconstrained cases are presented. The
constrained response almost remains inside the desired
bounds throughout the motion. The input dynamic has
a soft constraint of ±0.03 m, since it must be within the
size of the robot’s feet.

4.2 Simulation results

The COmpliant HuMANoid Platform COMAN was mod-
eled in the physics based simulation Open Dynamics En-
gine (ODE). The purpose of this simulation is to test the
performance of the reactive gait generator before a future
implementation on the real robot.

The COMAN robot is a whole body humanoid with
25 Degrees Of Freedom (DOF): 13 in the upper body,
including neck, elbow, shoulders and waist and 6 DOF
in each leg. The weight distribution and dimensions for
COMAN can be found in (Tsagarakis et al. [2013]).

In the simulation, the real COM state feedback used to
generate an online updated ZMP reference. The feet tra-
jectories are consistently re-planned according to the ZMP
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Fig. 10. ZMP responses when zc = 0.38 m.
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Fig. 11. ZMP responses when zc = 0.38 m.
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Fig. 13. Simulated response of COMAN humanoid.

reference as well. All these are done at every sampling
time. The Robust EPSAC controller tracks the re-planned
ZMP reference considering the acceleration constraints
and generates an adaptive COM motion. The COM and
feet trajectories are given to the inverse kinematics to ob-
tain the joint trajectories for the joint position controllers.
The feet were kept parallel to the ground. The selected gait
for the presented example is: step length SL = 0.25 m,
step cycle Ts = 0.6 s, constant COM height zc = 0.38 m,
sampling time Ts = 5 ms.

The disturbance response is shown in Fig.13. The distur-
bance was created by a flying object that hit the back
of the robot with a horizontal speed of 11 m/s and a
mass of 0.5 kg. As it is shown, the step length is adjusted
in order to counterbalance the disturbance and maintain
a stable gait. Once the disturbance is compensated, the
robot recovers to the periodic gait.

5. CONCLUSIONS

In this contribution, a Robust Model Predictive Control
has been proposed based on the analysis of the singu-
lar value decomposition in the Extended Prediction Self
Adaptive Control approach to MPC. The method is essen-
tially required for the case of long control horizons where
numerical instability downgrades the control performance.
First, the proposed method is tested in a well-conditioned
but challenging system, an inverted pendulum, showing
that the methodology improves the stability and robust-
ness of the original EPSAC controller. Second, the ro-
bust constrained EPSAC controller is demonstrated to
smoothly track a biped walking pattern using for a biped
robot. It is shown that in this application a control horizon
larger than one sample is required to achieve the desired
performance, which is necessary to guarantee a feasible,
stable and robust implementation of MPC. Finally, it is
concluded that the proposed methodology based on SVD is
well suited for the systems that require of a control horizon
larger than one sample in the control Horizon Nu.
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