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Abstract: A nonlinear observer that estimates well flow rates and downhole pressure based on
topside measurements only has been presented in the literature. As demonstrated in laboratory
experiments the observer is suitable for a coupling with conventional PI control for stabilization
of slug flow. The design of the observer is based on a nonlinear model with a linear inflow relation,
and demands knowledge of several uncertain well parameters, including the reservoir pressure
and production index. In this paper we present an adaptive extension to the nonlinear observer
that eliminates one uncertain parameter by estimating the reservoir pressure. The extended
observer is shown to be globally uniformly asymptotically stable and retain the properties of
the original observer.
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1. INTRODUCTION

The papers collected in [2] describe a dynamic, non-linear
two-phase model of an oil producing well with gas lift. The
model captures the oscillatory flow behaviour (slugging)
that can occur in gas-lifted wells. This type of instability,
often termed casing-heading instability, leads to severe
slugging. Referring to the sketch in Fig. 1, the phenomena
can be described as follows:

(1) Gas from the annulus starts to flow through the
injection valve and into the tubing. As gas enters the
tubing the pressure in the tubing falls, accelerating
the inflow of lift-gas.

(2) The gas pushes the major part of the liquid out of
the tubing, while the pressure in the annulus falls
significantly.

(3) The annulus is practically emptied, and the gas flow
into the tubing is blocked by liquid accumulating in
the tubing. Due to the blockage, the tubing is filled
with liquid and the annulus with gas.

(4) Eventually, the pressure in the annulus becomes high
enough for gas to penetrate into the tubing, and a
new cycle starts.

Various configurations of PI-controllers have been shown
to stabilize slugging in gas lifted wells. A theoretically
appealing approach is to control the production choke
opening using a downhole pressure measurement. In prac-
tice, downhole pressure sensors operate in a harsh environ-
ment and have a shorter life expectancy and lower signal-
to-noise ratio than surface installed sensors. Because of
this they are considered unsuitable for closed-loop control.
Adding to the argument is the fact that many wells do not

Fig. 1. Production well with gas lift.

have downhole sensors installed. Thus, a realistic control
strategy should rely on topside measurements.

The previous argument motivated the design and analysis
of the observer in [1]. The observer uses topside measure-
ments to estimate the mass of oil and gas in the system.
The downhole pressure can easily be extracted from these
states and used in a control scheme. A drawback of the
observer is that it demands knowledge of the reservoir
pressure and production index (inflow performance). In
this paper we aim to eliminate the need of knowing the
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reservoir pressure by extending the original observer with
an adaptation law.

2. MATHEMATICAL MODEL

We follow the notation in [1] and summarize the analytical
model of the two-phase production well with gas lift.

The well is modeled using three states: x1 is the mass of
gas in the annulus; x2 is the mass of gas in the tubing; x3
is the mass of oil in the tubing. These are defined by the
flow of mass in the annulus and tubing (control volumes).
The state equations are:

ẋ1 = wgc − wiv, (1)

ẋ2 = wiv − wpg, (2)

ẋ3 = wr − wpo, (3)

where wgc is a constant mass flow rate of lift gas into
the annulus, wiv is the mass flow rate of lift gas from the
annulus into the tubing, wpg is the mass flow rate of gas
through the production choke, wr is the oil mass flow rate
from the reservoir into the tubing, and wpo is the mass
flow rate of produced oil through the production choke.
The flows are modeled by

wgc = constant flow rate of lift gas, (4)

wiv = Civ

√
ρa,imax{0, pa,i − pt,i}, (5)

wpc = Cpc
√
ρmmax{0, pt − ps}u, (6)

wpg =
x2

x2 + x3
wpc, (7)

wpo =
x3

x2 + x3
wpc, (8)

wr = Cr(pr − pt,b). (9)

Civ, Cpc, and Cr are constants, u is the production choke
opening (u(t) ∈ [0, 1]), ρa,i is the density of gas in the
annulus at the injection point, ρm is the density of the
oil/gas mixture at the top of the tubing. The densities are
modeled as follows (using the ideal gas law):

ρa,i =
M

RTa
pa,i, (10)

ρm =
x2 + x3 − ρoLrAr

LtAt
. (11)

Furthermore, the pressures are described by

pa,i =

(
RTa
VaM

+
gLa
Va

)
x1, (12)

pt =
RTt
M

x2
LtAt + LrAr − νox3

, (13)

pt,i = pt +
g

At
(x2 + x3 − ρoLrAr), (14)

pt,b = pt,i + ρogLr. (15)

The separator pressure ps is assumed to be held constant
by a control system. In summary, the model covers the
following case:

• Two-phase flow in the tubing, treating oil and water
as a single phase;
• No flashing effects;
• Low gas-to-oil ratio (GOR), reflected in the fact that

the flow from the reservoir is modeled as pure oil, and;

• Slowly varying components of gas and oil.

Fig. 2 displays a simulation of the well with gas lift and a
fully open production choke (u = 1). The severe slugging
is evident from the spikes in oil production.
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Fig. 2. Well production with fully open production choke
and a lift-gas injection rate of wgc = 0.2 (kg/s).

3. STATE ESTIMATION

In [1] a reduced order nonlinear observer was derived
to estimate x2 and x3. The observer was designed by
assuming that only topside measurements were available,
i.e.

y1(t) = x1(t), y2(t) = pt(t)

y3(t) = wpc(t), or y3(t) = ρm(t)
(16)

The observer in this paper is derived using the same
measurements and similar assumptions as [1]. The slightly
modified assumptions are listed below.

Assumption 1. The production choke is not allowed to
close completely. That is,

u ≥ δu > 0, ∀t ≥ 0. (17)

Assumption 2. The states are bounded away from zero,
and the part of the tubing below the gas injection point is
filled with oil. More precisely,

x1 ≥ δ1 > 0, x2 ≥ δ2 > 0, and

x3 ≥ ρoLrAr + δ3 > ρoLrAr, ∀t ≥ 0. (18)

Assumption 3. The gas in the tubing has lower density
than the oil. More precisely,

LtAt + LrAr − νo(x3 + x2) ≥ δg > 0, ∀t ≥ 0. (19)

Assumption 4. (modified) The pressure drop over the
production choke is strictly positive, i.e.

pt − ps ≥ δp > 0, ∀t ≥ 0. (20)

Assumption 5. The reservoir pressure is slowly varying
and can be regarded a constant, that is pr(t) = pr =
constant.

The authors of [1] argue that Assumptions 1-4 are not
restrictive and do not limit the application of the observer.
Note that in [1] δp was assumed to be non-negative (δp ≥
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0), while we assume it to be strictly positive (δp > 0).
This modification is reasonable for production wells as it
just implies a positive production at all times (coinciding
with Assumption 1 since non-producing wells usually are
closed). Negative flow through the production choke is not
feasible as seen from (6). Using Assumptions 1, 2, and 4
we have that

wpc = Cpc
√
ρm max{0, pt − ps}u > 0, ∀t ≥ 0, (21)

since max{0, pt − ps} = max{δp, pt − ps} ≥ δp > 0 under
Assumption 4, u > 0 under Assumption 1, and ρm > 0
under Assumption 2. As explained later, the modification
of Assumption 4 helps us select an parameter update law,
and it can be interpreted as a persistent excitation (PE)
requirement. That is, we would not be able to adapt using
measurements from a closed well. Assumption 5, that the
reservoir is slowly varying, is reasonable for oil reservoirs.

Lemma 1. Solutions of system (1)-(3) are bounded in the
sense that there exist a constant B, depending on the
initial state, such that

xi ≤ B(x(t0)), i = 1, 2, 3, ∀t ≥ t0. (22)

In particular,

x3 ≤ ρo(LtAt + LrAr), ∀t ≥ t0. (23)

The bounds in Lemma 1 follow from the derivative of the
Lyapunov function candidate V = 2x1+x2+x3 > 0, which
is strictly negative for sufficiently large V .

With Lemma 1 and Assumption 2 we have established
upper and lower bounds on the states. Thus, we expect
the model outputs y1, y2, and y3, given by Eqs. (16), (13),
and (6), respectively, to be upper and lower bounded. That
is,

0 ≤ yi(t) ≤ By(B(x(t0))), i = 1, 2, 3 (24)

In practice, we assume the measurements to be non-
negative and upper bounded.

The following theorem states the extended nonlinear ob-
server with adaptation of reservoir pressure, when y3(t) =
wpc(t).

Theorem 2. Solutions x̂(t) = (x̂2(t), x̂3(t), p̂r(t)) of the
observer

˙̂z1 = wgc −
ẑ1 − y1
ẑ2 − y1

y3 + k1(ẑ1, ẑ2, y1, y2), (25)

˙̂z2 = wgc

+ Cr

(
p̂r − ρogLr +

Ar
At
ρogLr +

g

At
y1 − y2 −

g

At
ẑ2

)
− y3 + k2(ẑ2, u, y1, y2, y3), (26)

˙̂pr = k3Cr

(
LtAt

max{δp, y2 − ps}

(
y3
Cpcu

)2

− ẑ2 + y1 + ρoLrAr

)
, (27)

ẑ1 ≥ δ2 + y1, and ẑ2 ≥ ρoLrAr + δ3 + ẑ1 (28)

x̂2 = ẑ1 − y1 (29)

x̂3 = ẑ2 − ẑ1 (30)

where k3 > 0 is the adaptation gain, and the output
injections, k1(·) and k2(·), are given by

k1(ẑ1, ẑ2, y1, y2) =

c1

(
M

RTt
(LtAt + LrAr − νo(ẑ2 − ẑ1))y2 − (ẑ1 − y1)

)
,

(31)

k2(ẑ2, u, y1, y2, y3) =

c2

((
y3
Cpcu

)2

− ẑ2 − y1 − ρoLrAr
LtAt

max{δp, y2 − ps}

)
,

(32)

converge to the actual state x(t) = (x2(t), x3(t), pr(t)), and
the dynamics of e(t) = x(t) − x̂(t) is globally uniformly
asymptotically stable with Assumptions 1-5.

Proof. Define z2 = x1+x2+x3, which is the total amount
of mass in the system. From (1)-(3), its time derivative is

ż2 = wgc

+ Cr

(
pr − ρogLr +

Ar
At
ρogLr +

g

At
y1 − y2 −

g

At
z2

)
− y3 (33)

We estimate z2 by ẑ2, which is governed by

˙̂z2 = wgc

+ Cr

(
p̂r − ρogLr +

Ar
At
ρogLr +

g

At
y1 − y2 −

g

At
ẑ2

)
− y3 + k2(·), (34)

where p̂r is an estimate of the reservoir pressure pr, and
k2(·) is an output injection term to be determined. The

observer error, e2 , z2 − ẑ2, is governed by

ė2 = −Crg
At

e2 + Crp̃r − k2(·), (35)

where we have defined the parameter error p̃r , pr − p̂r.
Take the Lyapunov function candidate V2 = 1

2e
2
2. Its time

derivative along solutions of (35) is

V̇2 = e2

(
−Crg
At

e2 + Crp̃r − k2(·)
)
. (36)

Utilizing (6) and the fact that y3(t) = wpc(t) we get that

e2
max{δp, y2 − ps}

LtAt

=

(
y3
Cpcu

)2

− ẑ2 − y1 − ρoLrAr
LtAt

max{δp, y2 − ps}. (37)

Selecting

k2(ẑ2, u, y1, y2, y3)

= c2

((
y3
Cpcu

)2

− ẑ2 − y1 − ρoLrAr
LtAt

max{δp, y2 − ps}

)
,

(38)

where c2 > 0, and inserting (38) into (36), we get

V̇2 = −
(
Crg

At
+ c2

max{δp, y2 − ps
LtAt

)
e22 + Crp̃re2. (39)
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Due to the last term, and the fact that p̃r is unknown,
we cannot establish negative definiteness. To mend this
problem, we augment the Lyapunov function candidate
with p̃r, i.e V3 = V2 + 1

2k3
p̃2r. The time derivative is

V̇3 = V̇2 +
1

k3
p̃r ˙̃pr

= −
(
Crg

At
+ c2

max{δp, y2 − ps}
LtAt

)
e22

+ p̃r(Cre2 +
1

k3
˙̃pr). (40)

Due to Assumption 5, we now have the freedom to cancel
the unknown error p̃r by selecting the update law ˙̃pr =
− ˙̂pr = −k3Cre2. We reuse the above trick of expressing
e2 in terms of known variables and measurements and end
up with the parameter error update law

˙̂pr = k3Cre2

= k3Cr

(
LtAt

max {δp, y2 − ps}

(
y3
Cpcu

)2

− ẑ2 + y1 + ρoLrAr

)
. (41)

Note that we have expressed e2, which is unknown, in
terms of known measurements. We could not have done
this without the modification of Assumption 4, letting us
divide by the max function. Inserting (41) into (40) gives

V̇3 = −
(
Crg

At
+ c2

max{δp, y2 − ps}
LtAt

)
e22, (42)

which is negative semi-definite. Applying [4, Theorem 8.4],
we get that for any initial state, e2 and p̃r are bounded,
and limt→∞ e2(t) = 0. The theorem is inconclusive on
convergence of the parameter error p̃r, which is a desired
property of the observer.

We pursue convergence of p̃r by observing that the error
dynamics for e2 and p̃r, with the selected update law and
output injection term, can be expressed as a linear, time-
varying system (since the states are bounded)[

ė2
˙̃pr

]
=

[
−a(t) Cr
−k3Cr 0

]
︸ ︷︷ ︸

A(t)

[
e2
p̃r

]
, (43)

where we have assigned a(t) =
(
Crg
At

+ c2
max{δp,y2(t)−ps}

LtAt

)
.

Note that ||A(t)|| <∞, ∀t, due to the upper bound By on
y2. Also, the system has a single equilibrium point in the
origin. Global exponential stability of (43) follows from [4,
Theorem 8.5] if we can show that

V3(t+ δ, φ(t+ δ; t, x))− V3(t, x) ≤ −λV3(t, x), (44)

where 0 ≤ λ ≤ 1, x = [e2 p̃r]
T, and φ(τ ; t, x) = Φ(τ, t)x is

the solution of (43) starting at (t, x).

We define C(t) = [
√
a(t) 0] so that V̇3 = −xTCT(t)C(t)x.

The left hand side of (44) can then be written as

V3(t+ δ, φ(t+ δ; t, x))− V3(t, x) = −xTW (t, t+ δ)x, (45)

where W (t, t+ δ) is the observability Gramian of the pair
(A(t), C(t)), i.e.

W (t, t+ δ) =

∫ t+δ

t

ΦT(τ, t)CT(τ)C(τ)Φ(τ, t)dτ. (46)

The requirement xTW (t, t + δ)x ≥ λV3(t, x) from (44)
is implied by uniform observability of (A(t), C(t)) (see
[4]). Uniform observability of (A(t), C(t)) is equivalent to
uniform observability of (A(t) − K(t)C(t), C(t)), for any
piecewise continuous, bounded matrix K(t) (see [3]). By

selecting K(t) = [−
√
a(t) − k3Cr/

√
a(t)]T the pair

simplifies to

A(t)−K(t)C(t) =

[
0 Cr
0 0

]
, C(t) = [

√
a(t) 0]. (47)

The observability Gramian of the above pair can be shown
to be

W (t, t+ δ) =

∫ t+δ

t

[
a(τ) a(τ)Cr(τ − t)

a(τ)Cr(τ − t) a(τ)C2
r (τ − t)2

]
dτ.

To verify uniform observability we need to show that the
Gramian W is nonsingular 1 . From detW we get that W
is singular when∫ t+δ

t

a(τ)dτ

∫ t+δ

t

a(τ)τ2dτ =

(∫ t+δ

t

a(τ)τdτ

)2

. (48)

Using Hölder’s inequality we have that∫ t+δ

t

√
a(τ)︸ ︷︷ ︸
f

√
a(τ)τ︸ ︷︷ ︸
g

dτ


2

(49)

≤
∫ t+δ

t

a(τ)dτ

∫ t+δ

t

a(τ)τ2dτ, (50)

with equality iff |f | = α|g|, for a constant α. Since

|f | =
√
a(t) and |g| =

√
a(t)τ we have a strict inequality

in (50), and by contradiction W is not singular. Thus, the
pair (A(t) − K(t)C(t), C(t)) is uniformly observable and
the error dynamics of (e2, p̃r), described by (43), is globally
exponentially stable. 2

Next, we define z1 = x1 + x2, which is the total mass of
gas in the system. From (1) and (2), its time derivative is

ż1 = wgc −
z1 − y1
z2 − y1

y3. (51)

We estimate z1 by ẑ1, which is governed by

ż1 = wgc −
ẑ1 − y1
ẑ2 − y1

y3 + k1(·). (52)

where k1(·) is an output injection term to be determined.
The observer error, e1 = z1 − ẑ1, is governed by

ė1 = −z1 − y1
z2 − y1

y3 +
ẑ1 − y1
ẑ2 − y1

y3 − k1(·). (53)

Notice that the observer error dynamics is in cascade form,
where the dynamics of (e2, p̃r) is independent of e1. Thus,
we aim to show that the dynamics of e1 is input-to-state
stable with e2 as input. Then, we can apply [4, Lemma 4.7]
to prove global uniform asymptotic stability of the cascade
system.
1 In the simple case when y2(t) is a constant signal we can easily
confirm that the pair (A,C) is observable, and y2 is persistently
exciting. Thus, we are able to identify a single parameter with a
constant signal, as expected.
2 The requirements ||A(t)|| < ∞ and limt→∞ e2(t) = 0 are similar
to what we would expect from an output injection lemma or integral
lemma (see [6]), or a lemma based on limiting functions [5].
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We investigate the e1-subsystem using the Lyapunov func-
tion candidate V1 = 1

2e
2
1. Its time derivative along the

solutions of (53) is

V̇1 = − y3
z2 − y1

e21 + y3
ẑ1 − y1

(z2 − y1)(ẑ2 − y1)
e1e2

− e1k(·). (54)

As in [1], we select

k1(ẑ1, ẑ2, y1, y2) =

c1

(
Mg

RTt
(LtAt + LrAr − νo(ẑ2 − ẑ1))y2 − ẑ1 + y1

)
,

(55)

where c1 > 0, and obtain

V̇1 = −
(

y3
z2 − y1

+ c1
LtAt + LrAr − νo(z2 − y1)

LtAt + LrAr − νo(z2 − z1)

)
e21

+

(
y3

ẑ1 − y1
(z2 − y1)(ẑ2 − y1)

− c1
νo(z1 − y1)

LtAt + LrAr − νo(z2 − z1)

)
e1e2 (56)

Using Lemma 1, Assumptions 2 and 3, and noticing that
(ẑ1 − y1)/(ẑ2 − y1) < 1, we obtain

V̇1 ≤ −

 y3
2B

+ c1
δg

LtAt + LrAr︸ ︷︷ ︸
d1>0

 e21

+

(
y3

δ2 + δ3
+ c1

Bνo
δg

)
||e1|| · ||e2|| (57)

Remembering that y3(t) = wpc(t) > 0, we get

V̇1 ≤ −d1e21 + d2||e1|| · ||e2||, (58)

where we have defined the constants

d1 = c1
Bνo
δg

and d2 =

(
By

δ2 + δ3
+ c1

Bνo
δg

)
. (59)

We use the term −d1e21 to dominate d2||e1|| · ||e2|| for large
||e1|| by writing

V̇1 ≤ −d1(1− θ)e21 − θe21 + d2||e1|| · ||e2||, (60)

where 0 < θ < 1, and finally arrive at the desired result

V̇1 ≤ −d1(1− θ)e21, ||e1|| ≥
d2||e2||
d1θ

. (61)

From (61) we have that the subsystem (53) is ISS with
γ(r) = (d2/d1θ)r when e2 is regarded as input. We now
satisfy all requirements of [4, Lemma 4.7], and we can con-
clude the proof by stating that the error dynamics of the
observer in Theorem 2 is globally uniformly asymptotically
stable under the given assumptions.

If y3 measures density, i.e. y3(t) = ρm(t), we can simply
replace y3 with

Cpc

√
y3 max{δp, y2 − ps} (62)

in (25), (26), (27), and (32). 2

4. SIMULATIONS

The well model is simulated using parameters from an
offshore oil well in the Petrobras operated Marlim field.
Two cases are considered: Case A where all measurements
are noise-free; and Case B, where y3 is noisy.
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Fig. 3. Case A. Convergence of estimated states with
observer gains c1 = 0.1, c2 = 0.0001, and c3 = 1×108.
Note the different time-scale in the last plot.

In both cases the reservoir pressure is pr = 250 bar = 2.5×
107 Pa, while the initial guess on the reservoir pressure is
p̂r(t) = 240 bar = 2.4× 107 Pa. The observer gains are set
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to c1 = 0.1, c2 = 0.0001, and c3 = 1× 108. The high value
on c3 is due to poor scaling (Cr ≈ 10−6 in (27)).

A common approach to avoid initial kicks in the parameter
estimation (due to large initial errors in the estimated
states) is to start the adaptation after the estimated states
have converged. In both cases the adaptation is started
after 5 minutes.

Case A. We can see from Fig. 3 that the states x̂2 and x̂3
converge before the 5 minute mark, before the adaptation
starts. This tells us that the estimated states are robust
against error in the reservoir pressure. At 5 minutes the
adaptation starts and the reservoir pressure estimate tends
towards the correct reservoir pressure without affecting the
state estimation.

Case B. White noise with a signal-to-noise ratio of 20 is
added to the measurement y3 = wpc. This is a high, but
reasonable noise signal for a topside flow meter. From Fig.
4, we see that the estimated states are fairly unaffected
by the noise. On the other hand, we observe that the
parameter estimation converges, albeit deteriorated by
noise. This is expected from (27), where y3 is squared. The
only way to decrease sensitivity to noise is to lower c3 and
accept a slower convergence rate. The unrealistic reservoir
pressure step change in Fig. 4 is included to illuminate the
adaptation performance.

5. CONCLUSIONS

The nonlinear observer in [1] has been extended with an
adaptation law for the reservoir pressure. Without any
strict assumptions or extra measurements, the adaptation
law eliminates the need of knowing the reservoir pressure.
The design of the extended observer is similar to that of the
original, and exploits the same structure of the model with
respect to internal flows between the annulus and tubing.
The extension does however come at the cost of reduced
robustness properties as the stability is proved asymptotic,
whereas the original observer converged in an exponential
manner. As demonstrated with simulations, the observer is
able to estimate the model states when measurement noise
is present. However, the parameter estimate of the slowly
varying reservoir pressure is sensitive to noise. Given that
the model accurately describes the well the observer will
successfully indicate the unknown reservoir pressure.
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