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Abstract: A mathematical model of a strip-looper system of a hot strip tandem rolling mill
is developed using Hamilton’s principle and the Galerkin weighted residual method. Several
nonlinearities are considered and the effects of bending and dynamic forces on the accuracy
of the model are studied. Based on the model, an estimator for the strip tension is proposed.
Finally, an impedance controller for the strip tension and the looper position is designed. It can
be used in the whole operating range of the system, which is also demonstrated in a simulation
scenario.
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1. INTRODUCTION

In the metals industry, tandem hot strip rolling mills are
used for rolling out thick semi-finished products, e. g.,
slabs, to thinner flat products. The product, which is
often referred to as strip, is clamped in each mill stand of
the rolling mill train (cf. Fig. 1). As longitudinal tensile
stresses in the strip have a significant influence on the
plastic material flow in the roll gaps, accurate control of
these stresses is important for the quality of the strip,
including its shape and thickness. Well-tried state-of-the-
art solutions for controlling the strip tension are so-called
looper rolls (cf. Choi et al., 2007b; Price, 1973) located
between the mill stands as shown in Fig. 1.

The idea of operating hot-rolling mills without loopers
has been analyzed by Katori et al. (1999); Kim et al.
(2005); and Li and Janabi-Sharifi (2009). However, looper-
less tension control is a delicate task due to the high tensile
stiffness of the strip, the high inertia of the drive trains,
the required high torques, and the required fast response
time of the drive motors. These challenges have yet pre-
vented the advent of looperless operation of conventional
hot rolling mills. We thus consider tandem rolling mills
equipped with loopers in this paper.

Due to their easy setup, PI force controllers are still the
most prevalent controllers for the position of looper rolls
(Choi et al., 2007b). More advanced control systems use
tension meters (Zhao et al., 2008) to measure the current
strip tension. Choi et al. (2007a) advocate the use of lin-
ear model predictive control (MPC) for loopers and strip
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Fig. 1. Tandem rolling mill with five mill stands.

tension as this control approach facilitates a systematic
consideration of constraints and the multiple interactions
between loopers and mill stands. Choi et al. (2007a) ana-
lyzed MPC formulations featuring robustness against dis-
turbances with known stochastic characteristics. Nonlinear
control concepts based on backstepping and sliding mode
control were reported by Hesketh et al. (1998). Decou-
pling concepts for strip tension and looper dynamics were
developed by Zhong and Wang (2011) based on feedback
linearization and by Noh et al. (2012) based on a nonlinear
disturbance observer.

In more advanced multivariable control systems, the in-
teraction between strip thickness, roll speed, roll gap di-
mensions, strip tension, and looper angle is systematically
taken into account. Mathematical models that describe
these interactions are typically derived by linearization
at the respective operating point (Hearns et al., 2009;
Obregón et al., 2010) or along an operating trajectory
(Pittner and Simaan, 2010). Based on such models, the
design of H∞-controllers (Imanari et al., 1997) or linear-
quadratic-regulator-type (LQR) controllers (Miura et al.,
1993; Okada et al., 1998; Pittner and Simaan, 2010) for
strip thickness, strip tension, and looper angle is common
practice. A combined application of an LQR and a Kalman
filter for state estimation was reported by Hearns et al.
(2009). In (Okada et al., 1998), the interaction between
mill stands is formally removed by state transformations.
Jiao et al. (2011) developed a decentralized adaptive con-
troller for strip thickness, strip tension, and looper dynam-
ics based on a nonlinear model.

The main loads of the looper are its own weight, the weight
of the strip, and the forces due to the tension forces and
the bending moment in the strip. Cheng et al. (2006) argue
that, at least for thin strips, the load due to the bending
stiffness of the strip is negligible compared to the other
three effects. Pittner and Simaan (2010) use a model that
takes the bending moment of the strip into account but it
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is not clear how this moment is computed. Apart from the
work of Pittner and Simaan (2010), all above mentioned
controllers are based on models that ignore the bending
stiffness of the strip. It should thus be quantitatively
analyzed for which looper geometries and strip properties
this modeling assumption is tenable.

Some tandem rolling mills operate with an endless strip
(cf. Takano et al., 1997), which implies that the semi-
finished products have to be joined by welding before
rolling and afterwards cut into lengths that can be coiled.
However, it is more common that each product is indi-
vidually rolled without welding. In this case, there is a
threading and an unthreading phase of the strip where
the looper has to be at the pass line level (rest position).
After the threading phase, the looper is quickly raised to
its upper position (working position), where it controls the
strip tension. Many published looper control systems use
force control only for the working position and position
control in any other case. This standard strategy requires
to switch between force and position control, which may
entail a jerky response of the closed loop. Impedance
control is a potential solution to avoid such problems. It
was successfully applied to a looper system by Asano et al.
(2000). They used a linear SISO model of the looper being
in its working position, i. e., the threading and unthreading
phase of the strip were not considered.

In view of the existing solutions for looper control, the
objectives of the current paper are as follows:

(a) Explore whether the bending stiffness, the plastic
deformation, and the dynamic forces of the strip
should be captured by an accurate mathematical
model of the looper. Determine whether the system
exhibits significant nonlinearities.

(b) Design an estimator for the strip tension.
(c) Design a controller that is capable of controlling

the looper in the whole operating range, i. e., in
the working position and also for threading and
unthreading of the strip below the working position.

In Section 2, we develop a distributed parameter model
of the strip-looper system and reduce it to a finite-
dimensional state space representation. The model is then
used in Section 3 to answer the questions raised in ob-
jective (a) and in Section 4 to propose an estimator for
the strip tension. In Section 5, we design an impedance
controller and demonstrate its usefulness by means of
simulations.

2. MATHEMATICAL MODEL

2.1 Application of Hamilton’s Principle

Fig. 2 shows the geometry of the looper, i. e., a rigid
body, and the elastic strip. Many authors in the field
approximate the strip with two straight lines. In essence,
however, the strip has a curved shape because it is subject
to a bending moment. An accurate computation of this
moment requires the solution of a boundary value prob-
lem. We apply Hamilton’s principle (cf. Reddy, 2002) for
deriving this boundary value problem.

As indicated in Fig. 2, w = w(x, t) is the vertical displace-
ment of the strip, v = v(t) is its given longitudinal velocity,
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Fig. 2. Geometry of strip and looper in working position.

which varies just slowly, and ϕ = ϕ(t) is the angular posi-

tion of the looper. In the following, ˙(·) = ∂(·)/∂t denotes
the time derivative and (·)′ = ∂(·)/∂x the derivative with
respect to the spatial coordinate x. Later, we will use the
same symbols for total derivatives. Wherever confusion is
ruled out, the arguments x and t are omitted. The kinetic
energy of the system reads as

K =
1

2
ρ

∫ L

0

(ẇ + vw′)2dx+
1

2
Θϕ̇2,

where ρ is the mass of the strip per unit length, L is the
horizontal distance between two mill stands, and Θ is the
moment of inertia of the looper with respect to its pivot
point. The potential energy follows in the form

V = ρg

∫ L

0

wdx+mgh+ F∆l +
1

2
EA

∫ L

0

ε2dx. (1)

The looper has the massm and its center of gravity has the
vertical position h. The infinitesimal strip element shown
in Fig. 3 has the current length ds =

√

1 + w′2dx ≈ (1 +
w′2/2)dx. The actual strip length thus follows in the form

l = L+∆l with the surplus strip length ∆l =
∫ L

0
w′2dx/2.

ds

dx

w w
0

w+w′dx
w

0
+w′

0
dx

Current position
Reference position

Fig. 3. Infinitesimal element of the strip.

Generally, the tensile force F applied to the strip at the
mill stands is non-conservative. In this work, two special
cases are considered: Either F is constant (for slow and
large changes of looper position, e. g., quasi steady-state
movement from rest position to working position or vice
versa) or ∆l is constant (for fast but small changes of F ,
e. g., looper is in working position). Hence, the third term
in (1) represents the potential energy associated with F .
The two special cases cover the whole dynamic range of
the system because significant long-term changes of F are
prevented by control and significant short-term changes of
∆l are prevented by the high inertia of the rolls and their
drive trains.

The last term in (1) is the strain energy corresponding
to pure longitudinal stretch of the strip. E is the Young’s
modulus, A is the cross sectional area of the strip, and
ε is the local mean longitudinal strain in the strip. The
strain energy due to longitudinal stretch is constant if
F is constant. Consider the following scenario: Some
looper controller ensures that F = F0 is held constant
while the surplus strip length ∆l is gradually increased
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by controlling the differential speed of the adjacent mill
stands. In this way, the looper moves from its rest position
to its working position, where it stops as the mill speeds
are synchronized. A (loaded) steady state is reached and
the resulting shape w0(x) of the strip is used as a reference
for subsequent calculations. Despite the synchronized mill
speeds, the actual strip length l may slowly change over
time due to the stretch of the strip caused by variations of
F . To compute ε and F , consider again the infinitesimal
strip element ds shown in Fig. 3. Its length in the unloaded
state is ds0 ≈ dx/a with the abbreviation

a =
1 + F0

EA

1 +
w′2

0

2

.

Consequently, we obtain the local strain value

ε =
ds

ds0
− 1 = a

(

1 +
w′2

2

)

− 1.

Using the length
∫ L

0
adx of the unloaded strip yields

F = EA

(

l
∫ L

0
a−1dx

− 1

)

. (2)

The strain energy corresponding to bending deformations
is generally non-conservative because of possible plastic de-
formations. The effect of the bending moment is captured
by the first term of the following virtual work expression.

δW = −
∫ L

0

Mδw′′dx+ Fcδlc (3)

The bending moment M can be modeled as

M =

{

Me if Ed
2
|w′′ − κ0| ≤ σY

Mep else
(4a)

with the purely elastic term

Me = E
bd3

12(1− ν2)
(w′′ − κ0) (4b)

and the elasto-plastic term

Mep = σY b
(d2

4
− σ2

Y

3(w′′ − κ0)2E2

) sign(w′′ − κ0)

1− ν2
. (4c)

Here, d is the thickness of the strip, b is its width, κ0

is its curvature in the unloaded state, σY is the uniaxial
tensile yield strength, and ν is the Poisson’s ratio. In (4c),
we assumed ideal plastic behavior (no work hardening),
a negligible influence of F , a uniaxial stress state, and a
bending stiffness that is amplified by the factor 1/(1− ν2)
to capture the effect of inhibited lateral strains. Strictly
speaking, we would need to consider a plane stress state,
a yield criterion, and numeric integration of the plastic
strains according to a flow rule, e. g., the Levy-Mises flow
rule. However, it can be easily verified that (4c) is a tenable
approximation of this more accurate approach. The initial
curvature κ0 can be computed and updated at the end
of each section where the strip is plastically bent, that is
after each roll gap and after the looper roll.

The term Fcδlc in (3) represents the virtual work of the
hydraulic cylinder that lifts the looper. Fc is the effective
force of the cylinder and lc is its current length (cf. Fig. 2).

For simplicity, we assume that the strip touches the
looper roll at its upper vertex, which is at the position
x = X(t). As can be inferred from Fig. 2, the quanti-
ties X(t), w(X, t), h(t), lc(t), and ϕ(t) are coupled by

straightforward geometric relations. Henceforth, we will
use the abbreviation wX = w(X, t) to parameterize the
other variables.

The strip does not have kinks or folds and it is vertically
clamped in the roll gaps. Hence, we have the geometric
boundary conditions

w(0, t) = 0, w′(0, t) = 0, (5a)

w(L, t) = 0, w′(L, t) = 0, (5b)

w(X−, t) = w(X+, t), w′(X−, t) = w′(X+, t), (5c)

where X− identifies the left-hand limit and X+ the right-
hand limit of the respective function at the position X .

According to Hamilton’s principle,
∫ t1

t0

δK − δV + δWdt = 0, (6)

where t0 and t1 are two arbitrary points in time. In-
tegrating (6) by parts, using (5), and considering that
v̇ is negligibly small and that δw can be an arbitrary
kinematically admissible variation, we obtain

ρ(ẅ + 2vẇ′ + v2w′′ + g)−Nw′′ +M ′′ = 0 (7a)

and the additional boundary conditions

−Θ
( d2ϕ

dw2
X

ẇ2
X +

dϕ

dwX

ẅX

) dϕ

dwX

−mg
dh

dwX

+M ′(X−)−M ′(X+) + Fc

dlc
dwX

= 0

(7b)

M(X+)−M(X−) = 0, (7c)

with N = F0 if the looper is below its working position or

N = EA
(

a′(a(w′2+2)−1)
w′

w′′
+a

(

a
(3

2
w′2+1

)

−1
))

(7d)

if the looper is in its working position.

2.2 Application of Galerkin Weighted Residual Method

For spatial discretization of (7a), we use the Galerkin
weighted residual method (Zienkiewicz et al., 2013). The
solution is thus approximated in the form

w(x, t) = wX(t)ŵ(x) (8)

with the base function ŵ(x) = w0(x)/w0(X), where w0(x)
is the steady-state solution of (5) and (7) at the respective
operating point. It is numerically computed from (5) and
(7a)–(7c) with N = F0, v > 0, ẇ = 0, ẅ = 0, and ẇ′ = 0.

Consider that the operator lhs[·] extracts the left-hand side
of an equation. Hence, the Galerkin method yields

∫ L

0

lhs[(7a)]ŵ(x)dx + lhs[(7b)] = 0, (9)

which is evaluated twice for N = F0 and N from (7d).
All boundary conditions that are not included in (9) are
automatically satisfied by the approximation (8).

2.3 Hydraulic Actuation

The effective force Fc applied by the hydraulic cylinder to
the looper can be modeled in the form

Fc = p1A1 − p2A2 − Ff , (10)

where p1 and p2 are the pressures in the bottom chamber
and in the piston rod side chamber, respectively. A1 and
A2 are the cross-sectional areas of these chambers, and

Ff = sign(l̇c)
(

a1+a2e
a3|l̇c|+a4(p1−p2)+a5(p1+p2)

)

(11)
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models the friction forces in the cylinder and the pivot
point of the looper. The parameters ai (i = 1, . . . , 5) have
to be identified based on measurements. The pressures p1
and p2 are modeled by

ṗ1 =
β

V1 +A1lc
(q1 −A1 l̇c) (12a)

ṗ2 =
β

V2 −A2lc
(q2 +A2 l̇c), (12b)

where β is the bulk modulus of the hydraulic oil, V1 and V2

are offset volumes of the two cylinder chambers, and q1 and
q2 are volume flows into these chambers. The volume flows
are controlled by an electro-hydraulic servo valve, which is
modeled based on the classic orifice equation. This yields

q1 = s

{

cs sign(ps − p1)
√
ps − p1 if s > 0

cr sign(p1 − pr)
√
p1 − pr else

(13a)

q2 = s

{

cr sign(p2 − pr)
√
p2 − pr if s > 0

cs sign(ps − p2)
√
ps − p2 else

(13b)

with the supply pressure ps, the pressure pr in the oil
reservoir, the spool displacement s, and the constants cs
and cr.

2.4 Assembled System

Based on (9)–(13), we obtain the dynamical model

ẋ = f(x, u, t) (14)

with the state x = [wX , ẇX , p1, p2]
T and the input u =

s. It is time-variant because different strips are rolled,
the looper changes its operating point, and it moves to
the rest position between the roll passes. The system
is significantly nonlinear (cf. (7) and (10)–(13)). Hence,
it is not recommendable to use a linearized model for
controlling the looper in the whole operating range.

3. ANALYSIS

Based on the developed model, we study the influence of
bending and dynamic forces on the steady-state shape of
the strip. The analysis is done for the hot strip finishing
mill of voestalpine Stahl GmbH, Linz, Austria. We con-
sider two scenarios: a strip with thickness d = 2mm and
another strip with thickness d = 15mm. Both strips have
the width b = 1m, the yield strength σY = 129.2MPa,
the Young’s modulus E = 70 000MPa, and the Poisson’s
ratio ν = 0.3. For better comparison, the rolling velocity
v = 10m/s, the strip tension 10MPa, and the looper
height wX = 244mm are identically used for both strips.
The resulting steady-state shapes of the strips are shown in
Fig. 4. The result confirms that a higher bending stiffness
causes smaller curvatures of the strip near the looper roll.

0 1 2 3 4 5
0

0.1

0.2 d = 15mm

d = 2mmw (m)

x (m)

Fig. 4. Shape of strip in working position.

Table 1. Errors of wX and Fc if bending and
dynamic forces are neglected.

Effect
Max. abs. error of w

X
Relative error of Fc

for strip with thickness for strip with thickness
d = 2mm d = 15mm d = 2mm d = 15mm

No bending
stiffness, M = 0

4.8mm 26.8mm 0.2% −19.4%

No plastic defor-
mation, M = Me

0.2mm 3.3mm 1.3% 3.0%

No dynamic
forces, v = 0

0.7mm 1.2mm 2.3% 5.5%

Triangular
approximation

9.2mm 21.1mm 2.1% −15.7%

The results of the mathematical model with certain effects
being masked out are summarized in Table 1.

To consider a bending stiffness of 0, we use M = 0. To
neglect plastic deformations, we use M = Me instead of
(4a). The influence of dynamic forces (Coriolis and cen-
trifugal forces) is ignored if we use v = 0. The last line of
Table 1 contains results for the triangular approximation
that is used in many looper models (cf. Cheng et al., 2006;
Noh et al., 2012; Price, 1973; Zhong and Wang, 2011).
With this approximation, the strip is represented by two
straight lines, which yields

−Θ
( d2ϕ

dw2
X

ẇ2
X +

dϕ

dwX

ẅX

) dϕ

dwX

−mg
dh

dwX

− 1

2
ρLg

− F
( wX
√

X2 + w2
X

+
wX

√

(L−X)2 + w2
X

)

+ Fc

dlc
dwX

= 0

instead of (7). Table 1 shows that the errors entailed by
the applied approximations are larger for thicker strips.
Especially, neglecting the bending stiffness or using the
triangular approximation can cause significant errors.

4. ESTIMATION OF STRIP TENSION

The tensile stress in the strip is an important production
parameter, which directly influences the material flow in
the roll gap and also the structure of the material. Without
special devices like tension-meters (cf. Zhao et al., 2008),
the tensile stress in the strip cannot be directly measured.
Computing the tensile stress based on (2) is usually also
not feasible because w is not measured and l is thus
unknown. However, the tensile stress can be estimated if
the pressure values p1 and p2 and the length lc of the
hydraulic cylinder are measured. The following describes
how such an online estimation can be realized based on
the model developed in Section 2.

From the measurement of lc, we can compute wX . Conse-
quently, the velocity ẇX and the acceleration ẅX can be
estimated. Together with the measured values for p1 and
p2, these values are inserted into the second row of (14)
(differential equation for ẇX) specialized for the current
operating point. The result is a simple algebraic equation
for F so that the strip tension F/A can be easily computed.
If the estimations of ẇX and ẅX are impaired by noise, it
is often tenable to neglect the associated dynamic forces in
(14), which means that a steady-state scenario is assumed.
Then, there is a static relation between wX , Fc, and F ,
which can be numerically computed and stored in a look-
up table for rapid online evaluation.
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5. IMPEDANCE CONTROL

5.1 Control Structure

Impedance
controller

Force
controller

Strip-looper
system

Estimator

w̃
X
, F̃ /A F̃c

s lc, p1, p2

Fc

w
X
, ẇ

X
, F/A

Fig. 5. Cascade control structure.

We design a controller that can be used at any operat-
ing point of the strip-looper system. To circumvent the
problems of pure position control (possible overloads) and
pure force control (possible large position deviations),
impedance control is used for the considered control task.
The cascade control structure, which is outlined in Fig. 5,
uses a subordinate force controller for Fc based on in-
put/state linearization of the hydraulic model (cf. Kugi,
2001). The resulting linear system is stabilized by PI-
control. For the design of the superordinate impedance
controller, we can thus use the dynamic model

ẋ1 = f1(x1, u1, t) (15)

(cf. (14)) with the state x1 = [wX , ẇX ]T . The second line
of (15) can always be inverted to obtain the input

u1 = Fc = f−1
12 (x1, ẅX , t). (16)

5.2 Control Law

Consider a desired looper position w̃X and a desired

strip tension F̃ /A. These two values also determine the
current operating point of the looper. Note that only the
system, where the mill speeds are synchronized and where
the looper is in its working position (N from (7d)) is
considered for control design because otherwise F = F0

would be constant anyway. Since the operating point may
change over time, (15) and (16) are time-varying. However,

this time dependence is small because w̃X , F̃ /A, and other
parameters defining the operating point, e. g., v, change
just slowly. Consequently, we neglect the time dependence
of (15), (16), w̃X , and F̃ /A for control design.

Impedance control means that the controller imitates a
user-defined dynamic relation between the control errors
in terms of position and force. Our user-defined dynamic
system has the form

CẅX +DẇX + S(wX − w̃X) = −F − F̃

A
(17)

with the position control error ∆wX = wX − w̃X , the

tension control error (F − F̃ )/A, and appropriately chosen
positive constants C and D. The monotonously non-
decreasing stiffness function

S(∆wX) = S1∆wX + S2 atanh
( ∆w3

X

∆w3
X,max

)

,

with constants S1 > 0 and S2 > 0 determines the
steady-state control error. In fact, it limits the steady-
state position error in the form |w̄X − w̃X | < ∆wX,max,
where a bar is used to label steady-state values. Alter-
natively, we could use the stiffness function S(∆wX) =

tanh(S3∆wX)∆Fmax/A with the constant S3 > 0, which
limits the steady-state tension control error in the form
|F̄ − F̃ |/A < ∆Fmax/A.

From (16) and (17), we obtain the control law

F̃c = f−1
12

(

x1,−
DẇX + S(wX − w̃X) + (F − F̃ )/A

C
, t
)

.

The current tensile force F is monotonously increasing
with respect to wX and can be estimated as described
in Section 4. For the following stability analysis, however,
consider that F = F (wX) is computed by means of (2).

5.3 Stability Analysis

According to (17), the steady-state position w̄X of the
closed-loop controlled system is defined by

S(w̄X − w̃X) = −F (w̄X)− F̃

A
.

Based on the positive definite Lyapunov function

U(e, ẇX) =
C

2
ẇ2

X +

∫ e+w̄X

w̄X

S(ξ − w̃X) +
F (ξ)− F̃

A
dξ,

with e = wX − w̄X , and its time derivative

U̇(e, ẇX) = −Dẇ2
X ≤ 0,

where we used (17), it follows from LaSalle’s principle
(Vidyasagar, 1992) that the steady state x̄1 = [w̄X , 0]T is
asymptotically stable. This holds in the whole operating
range of the system.

5.4 Simulation

The closed-loop behavior of the developed impedance con-
troller is studied by means of simulations. The simulation
environment is structured in the same way as shown in
Fig. 5 with the real strip-looper system being emulated
by (14). To test the robustness of the system, the signals
p1 and p2 are degraded by measurement noise and the
signal lc is quantized. The same two scenarios as defined
in Section 3 are used in the simulation, i. e., the strip has
a thickness of d = 2mm or d = 15mm.

The differential speed of the rolling mills is controlled so
that the surplus strip length ∆l follows the trajectory
given in Fig. 6a. This is the typical shape of ∆l after the
strip has been threaded. Consequently, the looper has to
move from the rest position with wX = 0mm to a final
working position, while the strip tension should be kept
at the constant desired value F̃ /A = 10MPa. Using the

steady-state solution of (5) and (7a)–(7c) with N = F̃ , we
can compute w̃X corresponding to ∆l. Both the desired
signal w̃X and the closed-loop controlled signal wX are
shown in Fig. 6b. Fig. 6c shows that the strip tension
F/A agrees well with its desired value F̃ /A. The reverse
transition from the working to the rest position works
fairly the same way and with the same control accuracy.
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of looper, c) strip tension.
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