
Fixed-Point Implementation
of a Proximal Newton Method

for Embedded Model Predictive Control

Alberto Guiggiani ∗ Panagiotis Patrinos ∗ Alberto Bemporad ∗

∗ IMT - Institute for Advanced Studies, Piazza San Ponziano 6, 55100
Lucca, Italy (e-mail:

{alberto.guiggiani, panagiotis.patrinos, alberto.bemporad}@imtlucca.it).

Abstract: Extending the success of model predictive control (MPC) technologies in embedded
applications heavily depends on the capability of improving quadratic programming (QP)
solvers. Improvements can be done in two directions: better algorithms that reduce the number
of arithmetic operations required to compute a solution, and more efficient architectures in
terms of speed, power consumption, memory occupancy and cost. This paper proposes an
implementation with fixed-point arithmetic of a proximal Newton method to solve optimization
problems arising in input-constrained MPC. The main advantages of the algorithm are its fast
asymptotic convergence rate and its relatively low computational cost per iteration since it the
solution of a small linear system is required.
A detailed analysis on the effects of quantization errors is presented, showing the robustness
of the algorithm with respect to finite-precision computations. A hardware implementation
with specific optimizations to minimize computation times and memory footprint is also
described, demonstrating the viability of low-cost, low-power controllers for high-bandwidth
MPC applications. The algorithm is shown to be very effective for embedded MPC applications
through a number of simulation experiments.

Keywords: Predictive control, Convex optimization, Embedded systems, Model-based control,
Implementation, Gradient methods, Quantization errors, Overflow

1. INTRODUCTION

Model Predictive Control (MPC) is a mature and well-
estabilished technology in many application areas (Bem-
porad (2006); Qin and Badgwell (2003)). It supports multi-
input, multi-output process models, grants a direct perfor-
mance optimization, and inherently handles constraints on
inputs, outputs and states (Rawlings and Mayne (2009)).

In standard MPC approaches, the control action is gen-
erated from the optimal solution of a Quadratic Pro-
gramming (QP) problem where a performance index is
minimized, usually a combination of the controller effort
and the deviation of predicted outputs from reference
trajectories. This optimization problem is parametrized
with respect to the current state measurement and needs
to be solved within each sampling period. This fact has
constrained the applicability of MPC strategies to low-
bandwidth processes, as in chemical industries and re-
fineries. To overcome this problem, a possibility is to
pre-compute an explicit, piecewise-affine mapping be-
tween the state space and the optimal inputs (Bemporad
et al. (2002); Patrinos and Sarimveis (2010)). Approx-
imate explicit MPC methods tailored to FPGAs (Field
Programmable Gate Arrays) were proposed by Bemporad
et al. (2011) based on simplicial partitions. However, as
the QP size increases, this approach becomes infeasible,
mainly due to memory requirements.

In the last years there has been an increasing interest and
effort to extend predictive control methods to a broader
range of applications, including high-bandwidth systems
with low-power embedded controllers (see Jerez et al.
(2011); Knagge et al. (2009); Ling et al. (2008); Vouzis
et al. (2009); Wills et al. (2012)). Those implementations

rely on floating-point number representations, where real-
world values are coded into binary words with variable
scaling.

Within embedded setups, using fixed-point arithmetic
grants an optimal utilization of the computing and power
resources (Kerrigan et al. (2012)). However, this comes
at the price of numerical issues with a critical impact on
the stability and the convergence of the optimization al-
gorithm. More precisely, the number representation space:
(1) is quantized, causing round-off errors to occur when
performing arithmetical operations (except for additions
and subtractions), and (2) has a lower and an upper
bound, leading to underflow and overflow errors. Although
those issues arise for floating-point arithmetic too, their
effect is amplified in the fixed-point case. Therefore, im-
plementing an optimization solver on embedded hardware
with fixed-point arithmetic requires a QP algorithm that
is robust to finite precision computations. Moreover, it
becomes important to study the propagation of errors
between algorithm iterations, as well as to define design
guidelines that guarantee the avoidance of overflow and
underflow errors.

Very recently, successful applications of QP solvers with
fixed-point arithmetic to embedded MPC were reported.
Jerez et al. (2013) proposed an FPGA implementation of
the Fast Gradient method (cf. Nesterov (2004)), Longo
et al. (2012) an interior-point algorithm, and Patrinos
et al. (2013) a dual gradient projection method.

In this paper, we present an implementation with fixed-
point arithmetic of a QP solver based on the proximal
Newton method of Patrinos and Bemporad (2013). We
focus our efforts in analyzing crucial issues resulting from

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 2921

low-precision computations, and propose optimizations to
enhance algorithm efficiency and robustness. Moreover, we
perform an in-depth comparison against gradient-based
approaches, both in terms of computational complexity
and solution accuracy. We assess algorithm performance
when employed as a solver in an MPC controller, and
finally propose a hardware implementation on a low-
power, low-cost computing device. The applicability of the
algorithm to embedded MPC applications is confirmed by
a number of numerical experiments.

This paper is organized as follows. After a brief description
of the adopted notation in Section 2, Section 3 introduces
the problem setting and the motivation behind this work.
Section 4 details the proximal Newton procedure, explains
the basic concepts of fixed-point arithmetic, and inves-
tigates the impact of low-precision computation on the
algorithm execution. In Section 5 two algorithm optimiza-
tions are discussed, while Section 6 shows the results of
simulations exploring computational complexity, solution
accuracy, and an aircraft control application. A hardware
implementation is proposed in Section 7. Finally, conclu-
sions are drawn in Section 8.

2. NOTATION

Let R, N, Rn, Rm×n denote the sets of real numbers,
nonnegative integers, column real vectors of length n, and
m by n real matrices, respectively. The transpose of a
matrix A ∈ Rm×n is denoted by A′. For a vector z ∈ Rn, zi
denotes its i-th component, ‖z‖ the Euclidean norm, and
[z]zz the Euclidean projection on the box [z, z], i.e. [z]zz =

min{max{z, z}, z}}, where z, z ∈ Rn are lower and upper
bounds for z, respectively. If A ∈ Rm×n, ‖A‖ denotes the
spectral norm of A (unless otherwise stated), Ai the i-th
row, and Aij the element at row i and column j. For a
symmetric positive definite matrix Q, λmin(Q), λmax(Q)
denote its smallest and largest eigenvalues, respectively.

3. PROBLEM SETUP AND MOTIVATION

Consider the following input-constrained, discrete-time
LTI system

x(t+ 1) = Ax(t) +Bu(t) (1)

u ≤ u(t) ≤ u, ∀t ∈ N,
where x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu the input
vector, and A,B are real-valued matrices of appropriate
dimensions.

From (1) it is possible to formulate a receding-horizon
optimal control problem over N prediction steps (cf.
Maciejowski (2002)) in the following condensed form

minimize 1
2z
′Qz + (Fxx)′z (2)

subject to z ∈ Z,
where x is the measured system state, z ∈ Rn denotes the
sequence of inputs over the control horizon (n = Nnu),
Q ∈ Rn×n is a symmetric positive definite (SPD) matrix,
Fx ∈ Rn×nx and Z = [u, ū]× ...× [u, ū] is the feasible set.

The goal is to implement an algorithm to solve (2) each
time a new measurement of the state x of the controlled
system arrives. The solution should be computed suffi-
ciently fast to be suitable for high-bandwidth applications
(e.g., automotive and aerospace, where sampling periods
are usually in the range 10 − 100 ms), even in control
frameworks where computing capabilities and power con-
sumptions may be constrained.

4. FIXED-POINT PROXIMAL NEWTON METHOD

In this section we summarize the proximal Newton method
of Patrinos and Bemporad (2013) for the solution of the
bound-constrained QP (2). Then, we analyze quantization
and overflow errors occurring with fixed-point number
representation.

4.1 Proximal Newton Algorithm

A computationally efficient proximal Newton method
for convex, possibly non-smooth, composite optimization
problems has been recently introduced by Patrinos and
Bemporad (2013). The proposed approach is attractive
for embedded applications since it retains the low num-
ber of iterations typical of Newton-based methods, and
concurrently lowers per-iteration complexity requiring the
solution of a linear system on a reduced-order problem. Al-
gorithm 1 is the proximal Newton method applied to solve
the quadratic programming problem (2). It is based on the
idea that problem (2) is equivalent to minimizing the real-
valued, continuously differentiable convex function

Fγ(z)=V (z)−
−γ2 ‖∇V (z)‖2 + 1

2γ ‖z − γ∇V (z)− [z − γ∇V (z)]zz‖2,
where V denotes the cost function of problem (2) (we
omit the dependence on x for clarity), provided that the
parameter γ is smaller than 1/λmax(Q). The procedure
requires as inputs the Hessian matrix Q, the linear term
q = Fxx, and the box constraints (z, z̄) on the optimization
vector. Additional tuning parameters are the value of
γ and the line search parameter σ ∈ (0, 12), e.g. σ =

10−4. It should be remarked here that the performance
of the algorithm is insensitive to the choice of these
two parameters. Under exact arithmetic, the algorithm
guarantees convergence to the unique optimal solution z?

in a finite number of iterations. In practice the algorithm
can be stopped as soon as∥∥∥zk − [zk − γ (Qzk + q

)]z
z

∥∥∥ ≤ γ√2µε,

where µ is (lower bound on) the smallest eigenvalue of the
positive definite matrix Q, for some given error tolerance
ε > 0. This condition guarantees that V (ẑk, x)−V ∗ ≤ ε for

ẑk =
[
zk − γ

(
Qzk + q

)]z
z
, where V ∗ is the optimal value

of problem (2), respectively.

4.2 Fixed-point basics

By the term fixed-point we denote a way to represent
numbers on digital calculators, meaning a norm to map
real numbers into a sequence of binary values. Fixed-point
representations are of particular interest in embedded
applications as they grant fast and efficient additions and
multiplications on nearly all computing devices.

A fixed-point data type is characterized by four param-
eters: (1) the total word length w, (2) the signedness s,
(3) the number r of bits for the integer part, and (4) the
number p of bits for the fractional part.

A round-off error may occur when converting a number
ζ ∈ R into its fixed-point representation fi(ζ). This error
is bounded by a function of the number of fractional bits
as follows: |ζ − fi(ζ)| ≤ 2−(p+1). The same rounding error
occurs when a multiplication is performed; extending this
result, it is possible to bound the total error for an inner
product operation as follows

|x′y − fi(x′y)| ≤ 2−(p+1)n, (3)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2922

Algorithm 1 Proximal Newton algorithm for box-
constrained QP

Input: Q, q, z, z, σ ∈ (0, 12), γ < 1/λmax(Q), z0 ∈ Rn

1: for k = 1, 2, . . . do
compute Newton direction

2: β ←
{
i|zi < zki −

(
Qiz

k + qi
)
< zi

}
3: di ← −

(
zi −

[
zki − γ

(
Qiz

k + qi
)]zi
z
i

)
, i /∈ β

4: dβ ← −Q−1ββ
(
Qβz

k
β + qβ +Qβ¬βd¬β

)
perform line search

5: α← 1

6: while Fγ
(
zk + αd

)
−Fγ

(
zk
)
>σα∇Fγ

(
zk
)′
d do

7: α← α
2

8: end while

9: zk+1 ← zk + αd, k ← k + 1
10: end for

Output: z∗

where x, y ∈ Rn, and for a matrix-vector product,

‖Ax− fi(Ax)‖∞ ≤ 2−(p+1)n. (4)

Moreover, numbers can be represented in a limited range
dependent on the number of integer bits, [−2r, 2r − 1].
Values exceeding these bounds cause an overflow or un-
derflow error and, depending on the architecture, are ei-
ther saturated or cast back into the representable space
(modulo arithmetic). Either case must be avoided, since
can critically affect the convergence of Algorithm 1.

4.3 Round-off error analysis

We now analyze the effects of round-off errors occurring
when executing Algorithm 1 supported by a fixed-point
number representation with p bits for the fractional part.
Assume that input data is represented exactly, i.e. fi(x) =
x for x = {Q, q, z, z̄, ε, σ}. The goal is to bound the round-
off error accumulated on the optimization vector z during
the execution of one algorithm iteration.

We proceed by bounding the error on the Newton direction
fi(d) − d when executing lines (2-4). The values of d are
updated either according to line 3, by computing a matrix-
vector product and an Euclidean projection, or according
to line 4, where a matrix-vector product and the solution of
a linear system is required. Computing the projection does
not cause additional errors; on the other hand (as detailed
shortly) this happens for the linear system. Therefore,
we analyze the error on d by considering the worst-case
scenario where β = {1, 2, . . . , Nnu} and d is updated by
solving a linear system whose dimension is equal to the
number of variables of Problem (2).

From standard linear algebra results (see, e.g., van der
Sluis (1970); Wilkinson (1994)), given a perturbed linear

system in the form Q (x+ x̃) = b+ b̃, it holds that

‖x̃‖ ≤ κ(Q)‖b̃‖‖b‖‖x‖

≤ κ(Q)‖b̃‖‖Q−1‖, (5)

where κ(Q) = ‖Q‖‖Q−1‖ is the condition number of
matrix Q. In our case b = Qzk + q and x̃ = d − fi (d).
Substituting into (5) and taking into account bound (4)
we obtain

‖d− fi (d) ‖ ≤ κ(Q)‖Q−1‖2−(p+1) (Nnu)
3/2

(6)

The line search operation does not cause round-off errors
to accumulate on zk, since it only involves halving the
stepsize α. Finally, in line (9) zk acquires the perturbation
on d, bounded by (6), plus a final round-off due to
multiplication by α. Therefore, the bound on round-off
errors accumulated on the optimization vector in one
iteration becomes

‖z − fi (z) ‖ ≤
(

1 + κ(Q)‖Q−1‖ (Nnu)
3/2
)

2−(p+1) (7)

4.4 Avoiding overflow errors

Overflow errors occur when trying to store a number
outside of the representable range [−2r, 2r − 1]; to avoid
them, r must be chosen large enough such that every
computed value during the execution of the algorithm lies
within the admissible range. Provided that r is chosen
large enough to represent all static problem data, we now
give lower bounds for it that guarantee the representability
of variable data as well, namely z and d vectors.

Let εd and εz be the right-hand sides of inequalities (6)
and (7), respectively. Then,

‖fi (z) ‖∞ = ‖fi (z)− z + z‖∞
≤ ‖z‖∞ + ‖fi (z)− z‖∞
≤ max {‖z‖∞, ‖z‖∞}+ εz , ẑ. (8)

Moreover,

‖fi (d) ‖∞ = ‖fi (d)− d+ d‖∞
≤ ‖d‖∞ + ‖fi (d)− d‖∞
≤ ‖Q−1‖∞ (‖Q‖∞ẑ + ‖q‖∞) + εd , d̂. (9)

Therefore, the execution of Algorithm 1 supported by
fixed-point number representation with r bits for the
integer part does not cause overflow or underflow errors
if

r ≥ log2

(
max

{
ẑ, d̂
}

+ 1
)

+ 1, (10)

5. OPTIMIZATION OF THE ALGORITHM

In this section we analyze key issues regarding algorithm
implementation in fixed-point arithmetic and propose pro-
cedures to deal with them and optimize computation effi-
ciency.

5.1 Preconditioning

The accuracy of the result when computing the solution
of a perturbed linear system is sensible to the conditioning
of the problem, as shown in (5). This sensitivity is directly
reflected in the accuracy of the overall solution of the QP
given by Algorithm 1, where an ill-conditioned Hessian
cause a significant degeneration of its performance. The
impact of this phenomenon can however be reduced by
preconditioning the problem, i.e. finding a change of coor-
dinates z̄ = P̄−1z, such that the condition number of the
Hessian of the transformed problem, P̄QP̄ , is smaller than
that of of (2), Q. Ideally P̄ should solve the problem

minimize κ (PQP) (11)

subject to P ∈ Rn×n is PSD

In general, the preconditioner resulting from (11) will not
preserve the box structure of the feasible set Z. This can
be avoided by forcing P diagonal. Solving problem (11),

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2923

0 0.5 1 1.5 2
0

20

40

60

80

100

120

140

Conditioned to non−conditioned ratio

O
c
c
u
rr

e
n
c
e
s

Solution error

Condition number

Fig. 1. Impact of preconditioning on the Hessian condition
number and the solution relative error.

as shown by Boyd (1994), is equivalent to solving the
following generalized eigenvalue problem (GEVP)

minimize ξ (12)

subject to S > 0, S diagonal, ξ ≥ 0

S ≤ Q ≤ ξS
and picking P = S−1/2. In order to avoid the inclusion of
a bilinear matrix inequality constraint, problem (12) can
be reformulated (for an alternative approach, see Richter
et al. (2012)) by means of the Schur complement as follows

maximize δ (13)

subject to S > 0, S diagonal, δ ≥ 0[
S δI
δI Q−1

]
≥ 0

Figure 1 highlights the effects of preconditioning on 1000
random QP problems of variable sizes in the range [20, 200]
and variable Hessian condition numbers. The green his-
togram plots the variation of the condition number ex-
pressed as κ (PQP)) /κ (Q). The red histogram plots
the variation of the solution errors expressed as ‖ζ∗ −
zC‖/‖z∗ − zC‖, where ζ∗ is the solution of the precondi-
tioned problem and zC is the solution given by the solver
of CPLEX (http://www.ibm.com/software/commerce/
optimization/cplex-optimizer/). Results show an av-
erage 56.4 % reduction of condition number of the Hessian
and 34.7 % of the solution error. Note that precondition-
ing can be computed offline. However, preconditioning
is not beneficial for all the problems: in 10.6 % of the
cases the solution error is increased. This happens since
a modification of the Hessian may cause a change in the
constraint activation behavior during algorithm execution,
and therefore the size of the linear system that has to be
solved at each iteration.

5.2 Division-free computations

An efficient way to solve the linear system in step 4
of Algorithm 1 is by means of a Cholesky factorization
followed by forward and backward substitution. However,
these procedures require the computation of the recip-
rocal and the square root of the diagonal entries of the
matrix. Performing a division on most embedded devices
requires more cycles than performing additions and mul-
tiplications; therefore, the presence of divisions can cause
a significant degeneration of overall performances.

3 4 5 6 7 14 16 18 20 22 24 26
0

10

20

30

40

50

60

Number of iterations

O
c
c
u
rr

e
n
c
e
s

Proximal Newton
Fast Gradient
Simple Gradient

Avg. FIOPs/iter

9.700 4.900

Fig. 2. Proximal Newton method compared to Gradient
methods for required number of iterations in fixed-
point arithmetic and average fixed-point computa-
tions (FIOPs) per iteration.

A possible approach for division-free computations is to
scale the QP problem such that the Hessian has all entries
in the range [−1, 1]; this means (since it is SPD) that all
diagonal entries fall in the range (0, 1]. The subsequent
step is to store into the device a pre-computed look-up
table containing 1/

√
ξ with ξ covering all the fixed-point

values in the range (0, 1] for the selected precision; then,
to evaluate the inverse of a desired value it is sufficient to
access the table with the value itself as index, and square
the result.

This solution constitutes a trade-off knob between compu-
tation speed and memory occupancy, increasing the latter
by w · 2p/8 bytes.

6. SIMULATIONS

6.1 Computational complexity

We first compare the computational complexity for the
implementation in fixed-point arithmetic of Algorithm
1 against gradient-based methods (see Nesterov (1983,
2004)). The reason of this choice is due to the interest
arising recently in embedded implementations of first-
order algorithms, which have been proven to perform well
on low-precision arithmetic (cf. Patrinos et al. (2013) for
a dual gradient method or Jerez et al. (2013) for a primal,
accelerated version).

Figure 2 shows the histogram distribution of the number of
iterations required to reach a target solution quality. Com-
putations are performed in fixed-point arithmetic with
word length w = 32 bits and fraction length p = 16 bits.
Results are based on 100 random QPs of size n = 50
and show that iteration count lies in the range [3, 7] for
proximal Newton, [14, 23] for fast gradient, and [17, 27]
for simple gradient methods. However, the estimated aver-
age fixed-point operations (multiplications and additions)
performed per-iteration is roughly double for the Newton
method compared to gradient-based ones.

Table 1 shows how per-iteration and overall computation
complexities scale with number of variables n. The goal is
to estimate the exponent ρ when fitting the actual fixed-
point operations as a function of the problem size, ac-
cording to the relation a ·nρ. The theoretical per-iteration
complexity bound for the gradient methods is O(n2), due
to the computation of a matrix-vector product, and this

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2924

Table 1. Estimation of the exponential co-
efficient for single iteration (ρi) and overall
algorithm (ρA) complexities with respect to
problem size (with 95% confidence bounds).

Method ρi ρA
Proximal Newton 2.32± 0.08 2.544± 0.12
Fast Gradient 2.01± 0.01 2.19± 0.09
Simple Gradient 2.01± 0.01 2.21± 0.12

20 40 60 80 100

10
3

10
4

10
5

Problem Size

F
ix

e
d
−

p
o
in

t
o
p
e
ra

ti
o
n
s

Proximal Newton

Fast Gradient

Simple Gradient

Fig. 3. Proximal Newton method compared to Gradient
methods for overall number of fixed-point operations
varying problem size.

is confirmed by the simulations. Newton-based methods
are instead bounded by O(n3) due to the solution of a
linear system; however, the effective complexity growth is
estimated as n2.32. This happens because the proposed
algorithm requires only the solution of a linear system of
reduced order.

Finally, Figure 3 shows a comparison of the overall fixed-
point operations executed for matrix computations, es-
timated over 200 random QPs of different sizes ranging
from n = 10 to n = 100 variables. Results show that the
proposed implementation is indeed computationally effi-
cient; however, the benefits compared to gradient methods
decrease for larger problems, and eventually vanish due to
the higher exponential dependency on n (cf. Table 1).

6.2 Solution accuracy

The following simulation shows how solution accuracy
varies with the number of fractional bits chosen in the
fixed-point representation, comparing Algorithm 1 (New-
ton) with fast and simple gradient methods (FGM and
GM, respectively). By ‘solution accuracy’ we mean the
relative discrepancy εz with the solution zC obtained from
the state-of-the-art solver of CPLEX running on double-
precision arithmetic, that is

εz =
‖z∗ − zC‖
‖zC‖

. (14)

Figure 4 shows average solution errors, computed as in
(14), over 100 QPs of size 10 and 100 QPs of size 120,
varying the number of fractional bits from p = 4 to p = 16.
In compliance with the bound in (7) on the round-off
error accumulation, we observe an exponential decrease
with respect to p. Results show a remarkable robustness
of the proposed implementation when running in finite-
precision arithmetic. Nevertheless, it is more susceptible

4 6 8 10 12 14 16
10

−3

10
−2

10
−1

Fractional Bits

R
e
la

ti
v
e
 e

rr
o
r

o
n
 s

o
lu

ti
o
n

Newton (n=10)

FGM (n=10)

GM (n=10)

Newton (n=120)

FGM (n=120)

GM (n=120)

Fig. 4. Achieved solution accuracy with proximal Newton
and gradient methods for two problem sizes, varying
number of fractional bits.

0 1 2 3 4 5
−10

−5

0

5

10

Time [s]

D
e
g
re

e
s

Roll, p=16

Pitch, p=16

Roll, p=6

Pitch, p=6

CPLEX Ref.

Fig. 5. AFTI-F16. Closed-loop trajectories obtained feed-
ing proximal Newton optimal inputs for different
fixed-point precisions, compared to double-precision
reference solver of CPLEX

to variations on problem size, as reflected by the term

(Nnu)
3/2

in (7).

6.3 Control of a F16 aircraft

We verify the closed-loop behavior of a simulated physical
system connected to a predictive controller that relies on
an implementation in fixed-point arithmetic of Algorithm
1 to solve on-line the QP problem. The goal is to regulate
roll and pitch angles of an AFTI-F16 aircraft.

The controller was based on a linearized aircraft model of
Kapasouris et al. (1988) consisting of four states (namely
roll, pitch, yaw and attack angles) and two inputs (elevator
and flaperon angles). Both inputs are constrained in the
[−25◦,+25◦] range. The system is open-loop unstable.

Figure 5 shows the closed-loop trajectories of roll and pitch
angles. Two implementations with fixed-point arithmetic
of Algorithm 1, with 16 and 6 bits for the fractional part,
are compared with the trajectories obtained acquiring
control inputs from the state-of-the-art solver of CPLEX,
running in double-precision arithmetic. Results show that
a predictive controller supported by the proposed imple-
mentation with fixed-point arithmetic is able to stabilize

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2925

Table 2. Hardware implementation

Vars. Tfi [ms] Tfl [ms] Sizefi [KB] Sizefl [KB]
10 0.6 1.8 14.7 20.2
20 1.8 5 16 22
30 4.7 9.7 18 27
40 8.8 45.5 21 32.8
50 14.7 89.8 24.8 39.6
60 25.7 100.8 29.3 59.2
70 44.8 n/a 34.6 n/a
80 52.4 n/a 40.7 n/a

the system. Note that the controller sampling time should
be fast enough such that oscillations in system inputs due
to the quantization of the QP solution fall outside the
process bandwidth.

7. HARDWARE IMPLEMENTATION

An implementation of Algorithm 1 was deployed on a low-
power, low-cost, ARM-based Cortex-M3 general-purpose
processing unit, model Atmel SAM3X8E. This unit fea-
tures a 32-bit CPU operating at 84 MHz, 100 KB of RAM
and 512 KB of flash memory.

The device was assigned to solve a set of random QPs
of increasing size. The algorithm was coded both with
floating-point arithmetic (word length of 32 bits) and
fixed-point arithmetic (word length of 16 bits, of which
8 bits for the fractional part).

Table 2 shows the average experimental results: for each
problem size ranging from 10 to 80 variables, we report
overall computation time for the fixed-point arithmetic
(Tfi) and floating-point arithmetic (Tfl) versions; simi-
larly, we report code size for the compiled binary.

Table 2 shows that switching from floating- to fixed-point
arithmetic causes the computation time and code size to
become up to 4 and 2 times smaller, respectively. Advan-
tages become more evident as the number of variables
increases; for problems with n ≥ 70 the floating point
version is not able to converge at all, probably due to lack
of memory.

8. CONCLUSION

In this work we investigated in detail the implementa-
tion with fixed-point arithmetic of a Newton-based QP
solver for embedded MPC applications. We analyzed the
propagation of the round-off error coming from the quan-
tization of the number representation space, and derived
design guidelines to avoid overflow errors. Simulation re-
sults showed a good algorithm performance and solution
accuracy when compared to gradient-based approaches.
For ill-conditioned problems, we proposed an optimal scal-
ing method to hinder them. Finally, we showed how the
proposed solver can be deployed in low-cost, low-power
hardware.

REFERENCES

A. Bemporad. Model predictive control design: New trends
and tools. In Proc. 45th IEEE Conference on Decision
and Control, 2006.

A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos.
The explicit linear quadratic regulator for constrained
systems. Automatica, 2002.

A. Bemporad, A. Oliveri, T. Poggi, and M. Storace. Ultra-
Fast Stabilizing Model Predictive Control via Canonical
Piecewise Affine Approximations. Automatic Control,
IEEE Transactions on, 56(12):2883–2897, 2011.

S. Boyd. Linear matrix inequalities in system and control
theory, volume 15. Siam, 1994.

J. L. Jerez, G. A. Constantinides, and E. C. Kerrigan. An
FPGA implementation of a sparse quadratic program-
ming solver for constrained predictive control. In Proc.
of the 19th ACM/SIGDA international symposium on
Field programmable gate arrays, pages 209–218. ACM,
2011.

J. L. Jerez, P. J. Goulart, S. Richter, G. A. Constantinides,
E. C. Kerrigan, and M. Morari. Embedded predictive
control on an FPGA using the fast gradient method. In
Proc. European Control Conference, 2013.

P. Kapasouris, M. Athans, and G. Stein. Design of feed-
back control systems for unstable plants with saturating
actuators. NASA STI/Recon Technical Report N, 89:
14377, 1988.

E. C. Kerrigan, J. L. Jerez, S. Longo, and G. A. Constan-
tinides. Number representation in predictive control.
In Proc. IFAC Conference Nonlinear Model Predictive
Control, pages 60–67, 2012.

G. Knagge, A. Wills, and A. Mills. ASIC and FPGA
implementation strategies for model predictive control.
Proc. European Control Conference, 2009.

K. V. Ling, B. F. Wu, and J. M. Maciejowski. Embedded
model predictive control (MPC) using a FPGA. Proc.
17th IFAC World Congress, 2008.

S. Longo, E. C. Kerrigan, and G. A. Constantinides. A
predictive control solver for low-precision data represen-
tation. In Proc. 51st IEEE Conference on Decision and
Control, 2012.

J. M. Maciejowski. Predictive Control: With Constraints.
Prentice Hall, 2002.

Y. Nesterov. A method of solving a convex programming
problem with convergence rate O (1/k2). Soviet Math-
ematics Doklady, 1983.

Y. Nesterov. Introductory lectures on convex optimization:
A basic course. 2004.

P. Patrinos and A. Bemporad. Proximal Newton methods
for convex composite optimization. In Proc. 52st IEEE
Conference on Decision and Control, pages 2358–2363,
2013.

P. Patrinos and H. Sarimveis. A new algorithm for
solving convex parametric quadratic programs based on
graphical derivatives of solution mappings. Automatica,
46(9):1405–1418, 2010.

P. Patrinos, A. Guiggiani, and A. Bemporad. Fixed-point
dual gradient projection for embedded model predictive
control. In Proc. 12th European Control Conference,
pages 3602–3607, 2013.

S. J. Qin and T. A. Badgwell. A survey of industrial model
predictive control technology. Control engineering prac-
tice, 2003.

J. B. Rawlings and D. Q. Mayne. Model Predictive Control:
Theory and Design. Nob Hill Publishing, 2009.

S. Richter, C. N. Jones, and M. Morari. Computational
Complexity Certification for Real-Time MPC With In-
put Constraints Based on the Fast Gradient Method.
Automatic Control, IEEE Transactions on, 57(6):1391–
1403, 2012.

A. van der Sluis. Stability of solutions of linear algebraic
systems. Numerische Mathematik, 14(3):246–251, 1970.

P. D. Vouzis, M. V. Kothare, L. G. Bleris, and M. G.
Arnold. A System-on-a-Chip Implementation for Em-
bedded Real-Time Model Predictive Control. Con-
trol Systems Technology, IEEE Transactions on, 17(5):
1006–1017, 2009.

J. H. Wilkinson. Rounding Errors in Algebraic Processes.
Dover, 1994.

A. G. Wills, G. Knagge, and B. Ninness. Fast Linear
Model Predictive Control Via Custom Integrated Cir-
cuit Architecture. Control Systems Technology, IEEE
Transactions on, 20(1):59–71, January 2012.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2926

