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81219 Bratislava, Slovakia (e-mail: miroslav.halas@stuba.sk)
∗∗Department of Systems and Science, Graduate School of Informatics,

Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501,
Japan (e-mail: ykawano@i.kyoto-u.ac.jp;ohtsuka@i.kyoto-u.ac.jp)

∗∗∗ IRCCyN, UMR C.N.R.S. 6597, 1 rue de la Noë, BP 92101, 44321
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Abstract: The paper studies the problem of finding a realization of a nonlinear system
described by a higher-order differential equation in the so-called feedforward form. A necessary
and sufficient condition for the problem to be solvable is given, and it is represented by the
requirement that the corresponding polynomial description of such an equation can be factorized.
Then certain one-forms associated to the factorization are always integrable which allows to write
down the realization. The results are also applied to derive a necessary and sufficient condition
for the transformation of a nonlinear state equations into the feedforward form.
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1. INTRODUCTION

The feedforward form plays important role in the control
theory of nonlinear systems. Mainly for the reason that
once a system is in the feedforward form one can find
a solution to the system equations simply by integrating
recursively the respective state equations. Therefore, the
feedforward form is useful for instance for designing stabi-
lizers for the systems (see e.g. Mazenc and Praly (1996);
Zigang et al. (2001); Respondek and Tall (2004)). In the
continuous-time case, the geometric characterization of the
feedforward form has been studied in Astolfi and Kaliora
(2005) in terms of invariant distributions. However, no
algorithm for computing such distributions was given. In
that respect, the corresponding result for discrete-time
systems, which was studied in Aranda-Bricaire and Moog
(2004), is stronger, as it is accomplished by an algorithm.
Note also that in Respondek and Tall (2004) the problem
has been studied in terms of vector fields. However, the
adaptation of the formalism of Aranda-Bricaire and Moog
(2004) to the continuous-time case is not trivial, as it
requires to find a solution to a set of higher-order partial
differential equations.
In this paper we study the problem of a realization and
transformation of a nonlinear system into the feedforward
form. The systems under consideration are autonomous
(i.e. without input). A necessary and sufficient condition
is given for the both problems to be solvable. In the prob-
lem formulation and solution the so-called polynomial /
transfer function approach is employed (Zheng et al., 2001;
Halás, 2008). In comparison to the analogous approach for
linear systems there are two main differences. First, the

respective polynomials relate the differentials of the system
variables, and second, the polynomials belong to the (non-
commutative) skew polynomial ring. Such an approach has
already been employed to study several control problems
for nonlinear systems (see e.g. Zheng et al. (2001); Halás
et al. (2008); Halás and Kotta (2012)). Employing this
formalism, a necessary and sufficient condition for the
existence of the realization of a nonlinear system in the
feedforward form is derived. The only requirement for
the solution to exist is that the corresponding polynomial
description of the higher order differential equation can be
factorized, as it is shown that certain one-forms associated
to the factorization are always integrable. Then the results
are extended further to derive a necessary and sufficient
condition for the transformation of nonlinear state equa-
tions into the feedforward form. In this case the solution
consists of finding, if possible, a candidate for the system
output being fully observable, and then of applying the
results of the realization problem. An interesting result
here is that one can possibly transform even a linear
system into the feedforward form (by a nonlinear change
of coordinates) while this might not be possible by any
linear change of coordinates.

2. PRELIMINARIES

In this paper we will use the mathematical setting of Conte
et al. (2007); Zheng et al. (2001); Halás (2008); Halás and
Kotta (2012) adapted to the case of autonomous systems
(i.e. systems without input).

Consider a nonlinear system defined either by state-space
equations of the form
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ẋ= f(x) (1)

where x ∈ Rn, or by a higher-order differential equation
of the form

y(n) = F (y, ẏ, . . . , y(n−1)) (2)

In (1) and (2) the functions f and F respectively
are assumed to be elements of the differential field
of meromorphic functions of variables {x1, . . . , xn} or
{y, ẏ, . . . , y(n−1)} respectively, denoted by K. The time-
derivative operator d/dt acts on K in the usual way. In
particular, dx/dt = f(x) and, respectively, dy(n−1)/dt =
F (y, . . . , y(n−1)).

Define the formal vector space of differential one-forms

E = spanK{dξ; ξ ∈ K}
Elements of E are called (differential) one-forms.

A one-form ω ∈ E is called exact, if there exists F ∈ K
such that dF = ω, and it is called integrable, if there exists
α ∈ K such that αω is exact.
A subspace V ⊂ E is called exact or integrable if it has a
basis that consists of exact one-forms only.
Exactness and integrability of a one-form (or a subspace
of one-forms) can be inspected by applying the Poincaré
and, respectively, the Frobenius theorem.

Frobenius theorem. Let V = spanK{ω1, . . . , ωr} be a
subspace of E . Then V is integrable if and only if

dωi ∧ ω1 ∧ . . . ∧ ωr = 0

for all i = 1, . . . , r.

The operator d/dt defined on K induces the time-
derivative operator, which is by abuse of notation denoted
by the same symbol d/dt, that acts on E as follows.
Let v =

∑
i αidξi be in E , then

v̇ =
∑
i

(α̇idξi + αidξ̇i)

The operator d/dt defined on E induces the left skew
polynomial ring K[s] of polynomials in s over K with the
usual addition, and the (non-commutative) multiplication
defined by the commutation rule

sa = as+ ȧ (3)

where a ∈ K.
Thus, the ring K[s] represents the ring of linear ordinary
differential operators that act on any v ∈ E as follows(

k∑
i=0

αis
i

)
v =

k∑
i=0

αiv
(i)

Note that, using the proposed definitions, the time-
derivative operator d/dt and (exterior) differential oper-
ator d commute

E
d
dt−−−−→ E

d

x xd

K
d
dt−−−−→ K

Lemma 1. (Ore, 1931, 1933) For all non-zero a, b ∈ K[s],
there exist non-zero a1, b1 ∈ K[s] such that a1b = b1a.
Moreover, deg a1 and deg b1 are not greater than deg b +
deg a.

To the (higher order) differential equation (2) one can now
associate a polynomial from the ring K[s].

After differentiating (2) we get dy(n)−
∑n−1

i=0
∂F
∂y(i) dy(i) = 0

or alternatively
a(s)dy = 0 (4)

where a(s) = sn −
∑n−1

i=0
∂F
∂y(i) s

i is in K[s].

Example 2. Consider the system described by the differ-
ential equation

ÿ = ẏ + ẏ2/y
The polynomial description of the system can be obtained
as

ÿ − ẏ − ẏ2/y = 0
dÿ − (1 + 2ẏ/y)dẏ + ẏ2/y2 dy = 0(
s2 − (1 + 2ẏ/y)s+ ẏ2/y2

)
dy = 0

Remark 3. Note that in the mathematical setting em-
ployed in this paper, we are interested neither in local nor
global, but in the so-called generic properties, i.e. in the
properties that hold almost everywhere. Therefore, impor-
tant point to notice is that though, for instance, dimension
of a vector space can decrease on a set of singular points,
it is of the same dimension everywhere else. Hence, we say
it is of (generically) constant dimension.

2.1 Problem statement

We will focus on finding conditions under which for the
higher-order differential equation (2) there exists a state-
space representation (1) in the so-called feedforward form.

Definition 4. A system of the form (1) is said to be in the
feedforward form, if

ẋ1 = f1(x1, . . . , xn)
ẋ2 = f2(x2, . . . , xn)

...
ẋn = fn(xn)

(5)

where ∂fi/∂xi+1 6= 0 for i = 1, . . . , n− 1.

As will be shown in Section 3.1 any system of the form (5)
can equivalently be transformed to the following simplified
feedforward form

ż1 = ϕ1(z1, z2)
ż2 = ϕ2(z2, z3)

...
żn = ϕn(zn)

(6)

where ∂ϕi/∂zi+1 6= 0 for i = 1, . . . , n− 1.

Therefore, for the problem to be solvable it is not restric-
tive to look for the conditions under which the system (2)
can be realized in the form (6).

Problem statement. For the nonlinear system (2) find,
if possible, a state-space representation of the form (6).

3. REALIZATION IN THE FEEDFORWARD FORM

A necessary and sufficient condition for the problem to be
solvable is based on the fact that whenever the polynomial
a(s) in (4) can be factorized in n factors (of the order 1),
that is

a(s) = an(s) . . . a2(s)a1(s)
the respective one-forms ωi = ai(s) . . . a1(s)dy, i =
1, . . . , n are integrable.
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The complete proof that the one-forms ωi are always
integrable is not trivial. It consists of proving several
lemmas first. Its sketch is presented in Appendix.

Theorem 5. For the (higher-order) differential equation (2)
there exists a state-space realization in the feedforward
form (6) if and only if the polynomial a(s) in (4) can be
factorized as

a(s) = an(s) . . . a2(s)a1(s)

where ai(s) ∈ K[s] and deg ai(s) = 1; i = 1, . . . , n.

Proof. Sufficiency. By the results presented in Appendix,
the one-forms

ωi = ai(s) . . . a1(s)dy

i = 1, . . . , n are integrable (ωn = a(s)dy being exact).
Hence, there exist n integrating factors ki ∈ K such that

dϕi = kiωi

for some ϕi ∈ K, i = 1, . . . , n. Note that kn = 1 and
ϕn = y(n) − F (y, . . . , y(n−1)).
Then the polynomial a(s) can be written as

a(s) = an(s) . . .
1

k2
· k2a2(s)

1

k1
· k1a1(s)

a(s) = ãn(s) . . . ã2(s)ã1(s)

where ã1(s) = k1a1(s), ãi(s) = kiai(s)
1

ki−1
, i = 2, . . . , n.

That is
dϕi = ãi(s) . . . ã1(s)dy (7)

i = 1, . . . , n.

In other words, if the polynomial a(s) can be factorized
in n factors, a(s) = an(s) . . . a2(s)a1(s), then there always
exists a factorization a(s) = ãn(s) . . . ã2(s)ã1(s) such that
ãi(s) . . . ã2(s)ã1(s)dy, i = 1, . . . , n, are exact one-forms.

From (7) it also implies that

dϕi = ãi(s)dϕi−1

i = 1, . . . , n where we set dϕ0 := dy. Hence ϕi =
ϕi(ϕ̇i−1, ϕi−1), where ϕ0 = y.

Finally, the choice xi = ϕi−1, i = 1, . . . , n, yields a
realization in the feedforward form (6).

Necessity. It suffices to show that for the system (6) there
exists a candidate for the system output which gives us a
(higher-order) differential equation of the system that can
be factorized in n factors (of the order 1).

Such a candidate can simply be chosen as (any nonzero)
function of z1, y = h(z1). After differentiating (6) and
y = h(z1) we get

dż1 = a11dz1 + a12dz2
dż2 = a22dz2 + a23dz3

...
dżn = anndzn
dy = c1dz1

or alternatively

(s− a11)dz1 = a12dz2
(s− a22)dz2 = a23dz3

...
(s− ann)dzn = 0

dy = c1dz1

(8)

where aij = ∂ϕi/∂zj , i, j = 1, . . . , n, and c1 = ∂h/∂z1.

To obtain a polynomial description of the higher-order
differential equation, we eliminate all dzi’s.

Step 1
We start with

dy = c1dz1
and eliminate dz1.
By Ore condition (Lemma 1) there exist (s − α1) and γ1
in K[s] such that 1 (s− α1)c1 = γ1(s− a11). Hence

(s− α1)dy = γ1(s− a11)dz1

and by (8)
(s− α1)dy = c2dz2

where c2 = γ1a12.

Step k+1
Suppose that after Step k we have

(s− αk) . . . (s− α2)(s− α1)dy = ck+1dzk+1

We eliminate dzk+1.
By Ore condition there exist (s− αk+1) and γk+1 in K[s]
such that (s− αk+1)ck+1 = γk+1(s− ak+1,k+1). Hence

(s− αk+1) . . . (s− α1)dy = γk+1(s− ak+1,k+1)dzk+1

and by (8)

(s− αk+1) . . . (s− α2)(s− α1)dy = ck+2dzk+2

where ck+2 = γk+1ak+1,k+2.

After Step n, we have

(s− αn) . . . (s− α2)(s− α1)dy = 0 (9)

Hence, the polynomial description (4) of the higher-order
differential equation of the system (6), for the chosen
output y = h(z1), can be factorized in n factors. 2
Example 6. Consider the system from Example 2

ÿ = ẏ2/y + ẏ

with the polynomial description(
s2 − (1 + 2ẏ/y)s+ ẏ2/y2

)
dy = 0

The polynomial a(s) = s2 − (1 + 2ẏ/y)s + ẏ2/y2 can be
factorized

(s− ẏ/y − 1)(s− ẏ/y)dy = 0

The one-forms
ω1 = (s− ẏ/y)dy
ω2 = (s− ẏ/y − 1)(s− ẏ/y)dy

are integrable (ω2 being exact). The integrating factor
for ω1 is 1/y

1

y
ω1 =

1

y
dẏ − ẏ

y2
dy = d

(
ẏ

y

)
Hence, ϕ0 = y and ϕ1 = ẏ/y. Thus, the choice

x1 = y
x2 = ẏ/y

yields a realization in the feedforward form (6)

ẋ1 = x1x2
ẋ2 = x2

3.1 Equivalence of the feedforward forms

Now, one can show that it is not restrictive to look for a
realization in the form (6), rather than in the form (5).

1 From (s−α1)c1 = γ1(s−a11) one has c1 = γ1, ċ1−α1 = −γ1a11.
This set of equations can always be solved for γ1 and α1.
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Theorem 7. For any system in the feedforward form (5)
there exists a transformation z = φ(x) that transforms
the system into the feedforward form (6).

Proof. The proof is an adaption of the proof of the
necessity part of Theorem 5. It suffices to show that
there exists a candidate for the system output which gives
a higher-order differential equation of the system that
can be factorized in n factors (of the order 1). Again,
such a candidate can simply be chosen as (any nonzero)
function of x1, y = h(x1). Then after differentiating (5)
and y = h(x1), we have

dẋ1 = a11dx1+ a12dx2 + . . .+ a1ndxn
dẋ2 = a22dx2 + . . .+ a2ndxn

...
dẋn = anndxn

dy = c1dx1

or alternatively

(s− a11)dx1 = a12dx2+ a13dx3 + . . .+ a1ndxn
(s− a22)dx2 = a23dx3 + . . .+ a2ndxn

...
(s− ann)dxn = 0

dy = c1dx1

(10)

where aij = ∂fi/∂xj , i, j = 1, . . . , n, and c1 = ∂h/∂x1.

To obtain a polynomial description of the higher-order
differential equation, all dxi’s are eliminated.

Step 1
We start with

dy = c1dx1
and eliminate dx1.
By Ore condition there exist (s− α1) and γ1 in K[s] such
that (s− α1)c1 = γ1(s− a11). Hence

(s− α1)dy = γ1(s− a11)dx1

and by (10)

(s− α1)dy = c2dx2 + c3dx3 + . . .+ cndxn

where ci = γ1a1i, i = 2, . . . , n.

Step k+1
Suppose that after Step k we have

(s− αk) . . . (s− α2)(s− α1)dy =
= ck+1dxk+1 + ck+2dxk+2 + · · ·+ cndxn

We eliminate dxk+1.
By Ore condition there exist (s− αk+1) and γk+1 in K[s]
such that (s− αk+1)ck+1 = γk+1(s− ak+1,k+1). Hence

(s− αk+1) (s− αk) . . . (s− α2)(s− α1)dy =
= γk+1(s− ak+1,k+1)dxk+1+

+(s− αk+1)[ck+2dxk+2 + · · ·+ cndxn]

and by (10)

(s− αk+1) (s− αk) . . . (s− α2)(s− α1)dy =
= γk+1(ak+1,k+2dxk+2 + · · ·+ ak+1,ndxn)

+(s− αk+1)[ck+2dxk+2 + · · ·+ cndxn]

Since sdxi = aiidxi + · · ·+aindxn for all i = 1, . . . , n, one,
after substituting and rearrangement, gets

(s− αk+1)(s− αk) . . . (s− α2)(s− α1)dy =
= ck+2dxk+2 + · · ·+ cndxn

for some ck+2, . . . , cn in K.

After Step n, we have

(s− αn) . . . (s− α2)(s− α1)dy = 0 (11)

Hence, the polynomial description (4) of the higher-order
differential equation of the system (5), for the chosen
output y = h(x1), can be factorized in n factors.

Finally, applying Theorem 5 this implies that there exists a
transformation z = φ(x) which transforms the system (5)
with y = h(x1) to the system (6) with y = z1. 2
Example 8. Consider the system

ẋ1 = x2x3
ẋ2 = x3
ẋ3 = x3

which is in the form (5). One can choose y = x1, for
instance. Then the higher-order differential equation can
be computed as

y = x1
ẏ = x2x3
ÿ = x23 + x2x3 = x23 + ẏ

y(3) = 2x23 + ÿ = 3ÿ − 2ẏ

The polynomial description of the equation can be factor-
ized

y(3) − 3ÿ + 2ẏ = 0
(s3 − 3s2 + 2s) dy = 0
(s− 2)(s− 1)sdy = 0

The choice dz1 = dy, dz2 = sdy, dz2 = (s − 1)sdy, i.e.
(z1, z2, z3) = (y, ẏ, ÿ− ẏ) gives a realization in the form (6)

ż1 = z2
ż2 = z2 + z3
ż3 = 2z3

The corresponding transformation can be found from y =
x1 = z1, ẏ = x2x3 = z2, and ÿ = x23 + x2x3 = z2 + z3.
That is, (z1, z2, z3) = (x1, x2x3, x

2
3).

4. TRANSFORMATION TO THE FEEDFORWARD
FORM

An interesting problem is to find a (necessary and suffi-
cient) condition under which a system of the form (1) can
be transformed to the feedforward form (6) (it has been
shown that it is not restrictive to look for a realization a
nonlinear system in such a simplified feedforward form).

To find a solution one can apply the ideas of the realization
problem presented in Section 3.

Theorem 9. For a system of the form (1) there exists
a state transformation z = φ(x) which transforms the
system into the feedforward form (6) if and only if there
exists a function h(x) ∈ K, a candidate for the output
y = h(x), such that it is fully observable, i.e.

rankK

(
∂(y, ẏ, . . . , y(n−1))

∂x

)
= n (12)

and the conditions of Theorem 5 are fulfilled.

Proof. First, note that for a state-space system (1), with
some output function y = h(x), a state transformation
z = φ(x) preserves the observability of the output y.
That is, rankK

(
∂(y, ẏ, . . . , y(n−1))/∂x

)
is invariant under

z = φ(x).
For the system (6) any nonzero function of z1, y = h(z1),
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is fully observable, i.e. rankK
(
∂(y, ẏ, . . . , y(n−1))/∂z

)
= n.

Therefore, a necessary condition for the system (1) to
be transformable into the feedforward form (6) is the
existence of a function h(x) (a candidate for the output
y = h(x)) such that (12) holds. Then, a necessary and
sufficient condition is given by applying the results of
Theorem 5. 2

In general, the problem is how to find, if possible, for the
system (1) a function h(x) (a candidate for the output)
such that condition (12) holds. In practice, it is usually
not difficult to find such a function and it seems it ”almost
always” exists. However, at the moment the authors are
not aware of any procedure or algorithm that will give such
a function for the system (1), if it exists. This forms an
open problem left for future research. In what follows, we
give some discussion about the topic, though.

A fully observable output does not exist for the system

ẋ = 0

where x ∈ Rn and n > 1. Clearly, for any (nonzero)

function h(x) one has ḣ(x) = 0, and rank of the matrix
in (12) always equals 1.

However, if at least one of the zeros is replaced by a
nonzero constant we can find a fully observable output
function. Consider, for example, the system

ẋ1 = 0
ẋ2 = 1

Then, for instance, for y = x1x2 we have ẏ = x1, and rank
of the matrix in (12) equals 2.

Since one, in general, looks for h(x) in a class of nonlinear
functions, it is possible to find a fully observable output
even if there is none when the attention is restricted to the
linear theory. This gives a chance to transform a linear
system to the feedforward form by a nonlinear change
of coordinates, though this might not be possible by any
linear change of coordinates. This is demonstrated by the
following example.

Example 10. Consider the system

ẋ1 = x1
ẋ2 = x2

For any linear function of x1 and x2, i.e. y = c1x1 +
c2x2 with nonzero c1, c2 ∈ R, one has ẏ = c1x1 +
c2x2, and thus rank of the matrix in (12) equals 1. This
also implies there is no linear transformation that could
transform the system in to the feedforward form (any
linear transformation z = kx gives ż1 = z1 and ż2 = z2).

Nevertheless, if for instance y = x1+x22 then ẏ = x1+2x22,
and rank of the matrix in (12) is 2.
In this case the higher-order differential equation can be
found as

y = x1 + x22
ẏ = x1 + 2x22 = y + x22
ÿ = ẏ + 2x22 = ẏ + 2(ẏ − y) = 3ẏ − 2y

The corresponding polynomial description can be factor-
ized

ÿ − 3ẏ + 2y = 0
(s2 − 3s+ 2) dy = 0

(s− 1)(s− 2) dy = 0

Therefore, the choice dz1 = dy, dz2 = (s − 2)dy, i.e.
(z1, z2) = (y, ẏ− 2y) gives a realization in the feedforward
form

ż1 = 2z1 + z2
ż2 = z2

The corresponding transformation can be found from y =
x1 + x22 = z1 and ẏ = x1 + 2x22 = 2z1 + z2. That is,
(z1, z2) = (x1 + x22,−x1).

5. CONCLUSIONS

This paper studied the problem of a realization of a non-
linear higher-order differential equation in the feedforward
form. First, it was shown that it is not restrictive to look
for a realization in the simplified feedforward form. Then
the existence of the solution only requires that the corre-
sponding polynomial description of the higher-order differ-
ential equation can be factorized, for the respective one-
forms associated to the factorization are always integrable.
The results were also applied to derive a necessary and
sufficient condition for the transformation of a nonlinear
state-space system into the feedforward form. In this case
an interesting result is that one can possibly transform
a linear system into the feedforward form by a nonlinear
change of coordinates while this might not be possible by
any linear change of coordinates. An open problem here
consists of finding, if possible, a candidate for the system
output such that it is fully observable.
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Appendix A. INTEGRABILITY

Let K be the field of meromorphic functions of variables
{y(k); k ≥ 0}, and define d

dty
(k) = y(k+1). That is, all y(k),

k ≥ 0, are independent. Define E = spanK{dξ; ξ ∈ K},
and let K[s] be the corresponding ring of skew polynomials
that act as differential operators over E.

Lemma 11. Let ν be a one-form in E. Then ν is exact if
and only if ν̇ is exact.

Proof. Sufficiency. We show that ν non-exact implies ν̇
is non-exact.
Assume that ν =

∑
i cidy

(i) 6= 0 is not exact, that is

dν =
∑
i

d(ci) ∧ dy(i) =
∑
i,j

∂ci
∂y(j)

dy(j) ∧ dy(i) 6= 0

Since dy(j)∧dy(i) = −dy(i)∧dy(j) and dy(i)∧dy(i) = 0 for
all i, j, one can write dν in the canonical representation

dν =
∑
i>j

aijdy
(j) ∧ dy(i) 6= 0

where i is strictly greater than j, and at least one of
aij = ∂ci/∂y

(j) − ∂cj/∂y(i) is non-zero. Denote by k the
maximum number of i and by l the maximum number of j
such that akl 6= 0.
Then

dν̇ =
∑
i>j

(ȧijdy
(j) ∧ dy(i) + aijdy

(j+1) ∧ dy(i)

+ aijdy
(j) ∧ dy(i+1))

and since akl 6= 0 one has akldy
(l) ∧ dy(k+1) 6= 0 which

implies dν̇ 6= 0.

Necessity. Note that ν exact implies there exists ϕ in K
such that dϕ = ν. Since ϕ̇ is also in K and dϕ̇ = ν̇, one
has ν̇ is exact. 2

In a similar manner one can show the corresponding results
for the integrability.

Lemma 12. Let ν be a one-form in E. Then the following
statements are equivalent

• spanK{ν} is integrable,
• spanK{ν̇} is integrable,
• spanK{ν, ν̇} is integrable.

Proof. The proof is omitted due to the lack of space. 2

Lemma 13. Let ω be an exact one-form in E and assume
ω = (s + α)ν for some s + α in K[s] and ν in E. Then ν
is an integrable one-form.

Proof. For α = 0 it implies from Lemma 11 that ν must
be an exact one-form, therefore also integrable.

For α 6= 0. By assumption

ω = (s+ α)ν = ν̇ + αν

is an exact one-form. That is

d(ν̇ + αν) = dν̇ + dα ∧ ν + αdν = 0

Hence

dν̇ ∧ ν ∧ ν̇ + dα ∧ ν ∧ ν ∧ ν̇ + αdν ∧ ν ∧ ν̇ = 0

dν̇ ∧ ν ∧ ν̇ + αdν ∧ ν ∧ ν̇ = 0 (A.1)

From (A.1) either both summands are zero or both are
nonzero. If

dν̇ ∧ ν ∧ ν̇ 6= 0
dν ∧ ν ∧ ν̇ 6= 0

then by Frobenius theorem spanK{ν, ν̇} is completely
non-integrable. That is, there does not exist any linear
combination of ν and ν̇ being an exact one-form, which is
however a contradiction, for ν̇ + αν is an exact one-form
by assumption.
Therefore, from (A.1) one necessarily has

dν̇ ∧ ν ∧ ν̇ = 0
dν ∧ ν ∧ ν̇ = 0

Hence, by Frobenius theorem spanK{ν, ν̇} is integrable
and by Lemma 12 so is ν. 2
Lemma 14. Let ω = a0dy+ · · ·+ ar+1dy(r+1) be an exact
one-form, where every ai is a meromorphic function of
y, . . . , y(r+1), and ar+1 6= 0. Assume ω = (s + α)ν for
some meromorphic function α of y, . . . , y(r+1) and ν in E.
Then ν is integrable and can be expressed as ν = b0dy +
· · ·+ brdy(r), where every bi is a meromorphic function of
y, . . . , y(r), and br 6= 0.

Proof. From Lemma 13, ν is integrable. Because of ω =
(s+ a)ν, ν can be represented as ν = b0dy+ · · ·+ brdy

(r),
where bi ∈ K (i = 0, 1, . . . , r). Since ν is integrable, there
exist an integrating element c ∈ K and a meromorphic
function ϕ of y, . . . , y(r) such that dϕ = cν. It suffices
to show that c is a meromorphic function of y, . . . , y(r).
For dϕ, there exist meromorphic functions ā and b̄ of
y, . . . , y(r+1) such that (ās+ b̄)dϕ = ω. Thus, we obtain

(ās+ b̄)dϕ = ω = (s+ a)ν = (s+ a)c−1dϕ

= (c−1s+ ac−1 + (c−1)̇)dϕ.

Thus, ā = c−1 and b̄ = ac−1 +(c−1)̇ = aā+ ˙̄a hold. Since a
and b̄ are meromorphic functions of y, . . . , y(r+1), ā = c−1

is a meromorphic function of y, . . . , y(r).

Finally, by recursively applying Lemma 14, one can prove
the integrability of the one-forms ωi in the proof of
Theorem 5.
First, note that ωn−1, satisfying

d(y(n) − F (y, ẏ, . . . , y(n−1))) = (s+ an)ωn−1

for some s+ an in K[s], does not depend on {y(k), k ≥ n}.
And second, ωi = ai(s)ωi−1 with deg ai(s) = 1 for i =
1, . . . , n.
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