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Abstract: Road profile is considered as an essential input that affects the vehicle dynamics.
An accurate information of this data is fundamental for a better understanding of the vehicle
behavior and vehicle control systems design. The present paper presents a novel algorithm
(observer) suitable for real-time estimation of vertical road profile. The developed approach
is based on a quarter-car model, and on elementary measurements delivered by potentially
integrable sensors. The road elevation is modeled as a sinusoidal disturbance signal affecting
the vehicle system. Since this signal has unknown and time-varying characteristics, the
proposed estimation method implements an adaptive control scheme based on the internal
model principle and on the use of the Youla-Kucera parametrization technique (also known
as Q-parametrization). For performances assessment, estimations are comparatively evaluated
with respect to measurements issued from the LPA (Longitudinal Profile Analyzer) profiler
during experimental trials. Further, this new method is compared to the approach provided in
(Doumiati et al. (2011)), where a Kalman filter is applied assuming a linear road model. Results
show the validity and efficiency of the present observer scheme.

1. INTRODUCTION

Road geometries, irregularities and deformations con-
stantly modify vehicle positions and wheel orientations.
Road profile is considered as an essential input that affects
the vehicle dynamics. The knowledge of this significant sig-
nal is essential for road quality evaluation, road roughness
index calculation (see (Gillespie (1992)), and (Sayers and
Karamihas (1998))), analysis of vehicle dynamics, suspen-
sions design, and control systems development (see (Bas-
tow et al. (2004)), (Elmadany and Abduljabbar (1999)),
and (Savaresi et al. (2010))). Its on-board evaluation would
significantly help to adjust the vehicle dynamics and sus-
pension parameters to improve passengers safety, and ride
comfort. However, nowadays, there is no low-cost sensor
that directly measures the road elevation. This motivates
the development of an observer, also known as virtual
sensor, to reconstruct this data.
For the purpose of road survey and maintenance, several
instruments (also called profilers) evaluating road quality
were developed in research labs and industries. Profilers
or profilometers are instruments and methods used to pro-
duce a sequence of numbers related to the true road profile.
A profiler works by combining three main components: a
reference elevation, a height relative to the reference, and
the longitudinal distance (Sayers and Karamihas (1998)).
These ingredients are combined in different ways, based
on the design of the profiler. Among the different existing
profilers, one could cite:

• The (LPA) device developed by the Roads and
Bridges Central laboratory in France (IFSTTAR lab-
oratory previously named LCPC): this system illus-
trated in Figure 1 includes one or two single wheel

⋆ This work was supported by the national French project INOVE/
ANR 2010 BLAN 0308 (www.gipsa-lab.fr/projet/inove).

trailers towed at constant speed by a car and a data
acquisition system. A ballasted chassis supports an
oscillating beam holding a feeler wheel that is kept in
permanent contact with the pavement by a suspen-
sion and damping system. The chassis is connected
to the towing vehicle by a joint. Vertical movements
of the wheel result in angular travel of the oscillated
beam, measured with respect to the horizontal arm
of the inertial pendulum, independently of movements
of the towing vehicle (Imine et al. (2006)).

• The inertial high speed profiler basically introduced
by the General Motors research laboratory (Sprangler
and Kelly (1964)): this technique uses accelerometers
placed on the body of the measuring vehicle to
establish an inertial reference. The recorded profile
is obtained by calculating the relative displacement
between the accelerometers and the pavement surface
(see (Gillespie (1992)), (Imine et al. (2005)), and
(Imine et al. (2006))).

The major drawback of the aforementioned profilers is
their inapplicability in ordinary vehicles for technical and
economical reasons.
Recently, Mercedes-Benz introduces in its new 2014 S-
and E-Class cars stereo cameras for road profile scanning
(Mercedes-Benz (2014)). Other existing approaches consist
to estimate the road elevation using virtual sensors (ob-
servers). In (Imine et al. (2005)) and (Imine et al. (2006)),
estimation techniques based on sliding mode observers
were proposed. These model-based methods consider full
car model of 16 Degree Of Freedom (DOF). Such a model
appears time-consuming for real-time implementation. In
(Doumiati et al. (2011)), authors propose a method based
on a quarter-car model and Kalman filter for on-board
estimation of road elevation. The studies in (Doumiati
et al. (2011)), (Imine et al. (2005)) and (Imine et al.
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Fig. 1. LPA: Longitudinal Profile Analyzer (Imine et al.
(2006)).

(2006)) assume linear road profile models, where the road
accelerations are negligible. However, this hypothesis does
not fully satisfy the analysis of the longitudinal road profile
presented in (Sayers and Karamihas (1998)). Therein, a
demonstration is given that even small road profile varia-
tions could lead to considerable road accelerations depend-
ing on the current vehicle velocity. According to the road
roughness classification ISO 8608 discussed in (Gonzales
et al. (2008)), a real road profile could be interpreted
and evaluated by means of its spectral decomposition. A
typical road profile has no direct resemblance to a pure
sinusoid, but it encompasses a spectrum of sinusoidal wave
lengths. This hypothesis is adopted in this study, and
constitutes one of its particularity with respect to others
existing in literature. The proposed procedure considers
the road profile as unpredictable input disturbance to
the vehicle system. Since this disturbance has unknown
and time-varying frequencies, the estimation problem is
tackled in the context of the feedback adaptive control
while applying the internal model principle (introduc-
ing the disturbance model into the controller) (refer to
(Ioannou and Sun (1996)) and (Landau et al. (2011))).
To simplify the design and reduce the computation load,
the developed controller is built within the Youla-Kucera
parametrization framework.
The rest of the paper is organized as follows. Section 2
describes the adopted vehicle and road models. Section 3
deals with the estimation process and discusses the ob-
server design in a control scheme. Section 4 compares the
estimation results to measured profiles from LPA during
experimental tests. Finally, Section 5 provides concluding
remarks and some perspectives for future works.

2. MODELS OF THE VEHICLE/ROAD
INTERACTIONS

Suitable vehicle and road models must be assumed in order
to implement a model-based observer. The adopted models
will be discussed in the next.

2.1 Quarter-car vehicle model

For on-board implementation reason, a simple linear pas-
sive quarter-car vehicle model is considered. This model
represents a corner of a vehicle as shown in Figure 2,
and accounts for about 75% of the vertical vibrations
present on a vehicle (Sayers and Karamihas (1998)). The
suspension system joins chassis and tire. The sprung mass
of the car body, ms, is connected by a spring and damper
to the unsprung mass of the suspension components, mu,
by the suspension spring, ks, and the damper cs. The tire is
linked with the road displacement, u(t), involving the tire
stiffness, kt. It is generally assumed that the tire damping
is negligible. A study of analysis of ks, cs, ku, kt parameters
on the suspension/tire performance is drawn in (Rajamani
(2006)).
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Fig. 2. Quarter-car vehicle model.

A straightforward driven situation is considered. Hence,
suspension dynamics are especially due to the road inputs
and not to roll/pitch motions. An analysis of the full car
and half car models’ response to road irregularities given
in (Rajamani (2006)) indicated that the suspensions can
be designed independently at each wheel. The quarter car
suspension model is therefore adequate to study and design
automotive suspension systems for optimizing response to
road irregularities.
Assuming that wheels are rolling without slip and without
contact loss, relations (1) and (2) represent the motion of
the vehicle body and the wheel respectively:

msz̈s = −kszs − csżs + kszu + csżu, (1)

muz̈u = −(ks + kt)zu − csżu + kszs + csżs + ktu, (2)

where zs(t) is the position of the vehicle body, zu(t)
is the position of the wheel, and the dot denotes the

time derivative, i.e., z̈s = d2zs
dt2

. In the Laplace-domain,
the transfer function between the road profile U(s) and
the chassis position Zs(s), known as the road-to-body
transmissibility equation, is of fourth-order and can be
given by (3):

Zs(s)

U(s)
=

a1
b1 · b2 − b3

, (3)

where: a1 = kt (scs + ks), b1 =
(

s2ms + scs + ks
)

,

b2 =
(

s2mu + scs + ks + kt
)

, b3 = (scs + ks)
2
.

2.2 Road profile model

As the vehicle moves over the road profile at a speed v,
the static spatial waves (irregularities) of the road are
transformed into a time-variant sinusoid elevation at the
wheel, u(t). The relation between the spatial wavelength,
λ (respectively the wave number γ = 1

λ
) imposed by a

road profile and the resulting oscillation frequency, f , of
the elevation signal is given by (Sayers and Karamihas
(1998)):

f =
v

λ
= v.γ. (4)

It could be observed that the travel speed affects how
vehicle sees sinusoids in the road. In reality, a typical road
profile is a stochastic signal that has no direct resemblance
to a pure sinusoid, but considered as a composition of
series of sinusoidal waves (see (Rajamani (2006)), and
(Sayers and Karamihas (1998))). Figure 3 shows an exam-
ple of spectrum of two different real road profiles collected
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Fig. 3. An example of spectrum of two real road profiles.

through LPA and inertial profilers. These measurements
are obtained using two laboratory cars moving at 75Km/h
and 20Km/h respectively. The spectrum of these low-pass
signals are computed using the Fast Fourier transform.
Working hypothesis: In this study, thereafter, it is assumed
that the time-based dynamics of the road profile can
be modeled as a finite series of N sinusoids with differ-
ent wavelengths, λi, frequencies, fi, amplitudes, Ci, and
phases, φi:

u(t) =

N
∑

i=1

Cisin(2πfit+ φi). (5)

Note that Ci, fi, and φi are unknown time-varying param-
eters. The objective of this paper is not to evaluate these
parameters separately, but to estimate the road elevation
u(t).

3. OBSERVER DESIGN

3.1 Problem formulation

The estimation process developed in this study is for-
mulated as a closed-loop regulation approach, trying to
attenuate the difference e between the measured chassis
position, zs and the estimated quarter-car model output
ẑs (see Figure 4). The chassis position signal is the result
of the real profile u, exciting the vehicle system. A linear
relation is assumed between zs and u. The signal u is
considered as a time-varying sinusoidal disturbance. When
the estimated chassis position coincides with the corre-
sponding measured one, so will also the estimated profile
û be equivalent to u. In other terms, the command, û,
could be interpreted as the estimated road profile required
to produce ẑs, so that e = zs − ẑs = 0. The problem
becomes to find a control law for unknown time-varying
disturbances rejection, case where the plant model (vehicle
system) is known, and the disturbance model (road) is of
unknown parameters.
One of the approaches considered for solving this problem
is to build/estimate the disturbance model, and then re-
compute the controller in real-time. This will lead to in-
direct adaptive control (Landau and Airimitoaie (2013)).
The time-consuming part of this approach is the redesign
of the controller at each sampling time. This method seems
not to be practical for the present application due to the

fast dynamics of the unpredicted variations of the road
profile. Another way, known as direct adaptive control,
consists to apply Youla-kucera parametrization of the
controller also known as Q-parametrization, where it is
possible to insert and adjust the internal model (model of
the disturbance) in the controller by adjusting the param-
eters of the Q-polynomial without recomputing the whole
controller (polynomials R0 and S0 remain unchanged, see
Figure 5). Note that authors in (Constantinescu et al.
(2007)) and (Landau and Airimitoaie (2013)) proved that
the direct adaptive control scheme has simpler structure,
implementation, and provides better performance than an
indirect adaptive control scheme, especially during tran-
sient dynamic phases. Based on the analysis given above,
it is recommended to develop the road profile observer in
the direct adaptive control framework.

+ e 

Controller 
Quarter  

car model 

zs 

zs 
^ 

 u 
^ 

Road, u Vehicle 

system - 

Fig. 4. Block diagram of the observer interpreted as a
closed-loop control system.

3.2 Direct adaptive control Scheme

The discrete direct adaptive control scheme for time-
varying disturbance rejection could be illustrated as in
Figure 5. It uses Youla-kucera parametrization for the
computation of the controller. This algorithm takes its
root from the idea of Tsypkin (Tsypkin (1991)). In this
case, the common framework is the assumption that the
disturbance is the result of a white noise or a Dirac im-
pulse passed through the ”model of disturbance (road)”
considered unknown. The polynomials A(z−1) and B(z−1)
obtained using the Z-transform of Equation (3), represent
the denominator and the numerator of the dynamic car
model.
The adaptive controller to be built is of RS-type. Its
dynamic is separated into a nominal part, defined by
[R0(z

−1), S0(z
−1)], and a performing part given by the

polynomial Q̂ that includes the disturbance model (Q̂ is
the estimation of the Q polynomial requires to suppress
disturbances). The controller [R0(z

−1), S0(z
−1)] is built

so that it stabilizes the closed-loop system, and verifies
desired specifications in the absence of the disturbance
(without internal model of the disturbance, Q̂ = 0). It
can be computed using classical methods in control theory.
Once calculated, (R0, S0) remains unchanged in the con-

trol scheme, but Q̂ is adjusted according to an adaptive
algorithm to make e(t) = 0 in presence of disturbance
without modifying the closed-loop poles (Landau et al.
(2005)). The order nQ of the polynomial Q is fixed, and
depends upon the structure of the disturbance model. It
is seen that the Q-parametrization offers a supplementary
degree of freedom into the controller permitting to treat
separately the problem of disturbance suppression. For de-
tails, robustness and stability analysis of the Youla-Kucera
parametrization in the framework of adaptive control, one
can refer to (Ioannou and Sun (1996)), (Landau et al.
(2005)), and (Landau et al. (2011)). This study is only
restricted to a brief presentation of the adaptive algorithm,
and the estimation of the polynomial Q̂.
Let q−1 be the delay operator used for describing the
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system behavior in the time domain (i.e x(t) = q−1x(t +
1)). Note that z−1 is used to describe the system behavior
in the frequency domain, while q−1 represents its charac-
teristics in the time domain. Using the Q-parametrization,
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Fig. 5. Block diagram of the adaptive observer using the
Q-parameterization.

the output of the system in the presence of disturbance can
be written as:

e(t) =
S0(q

−1)−B(q−1)Q(q−1)

P (q−1)
w(t), (6)

where P (q−1) represents the poles of the closed loop:

P (q−1) = A(q−1)S0(q
−1) +B(q−1)R0(q

−1), (7)

and w(t) (see Figure 5) is:

w(t) = A(q−1)e(t) +B(q−1)û(t). (8)
In the time domain, the internal model principle could be
explained as find Q such that e(t) becomes zero asymp-
totically.
Define Q̂(t, q−1) the estimation of the polynomial Q at
instant t:

Q̂(t, q−1) = q̂0(t) + q̂1(t)q
−1 + · · ·+ q̂nQ

(t)q−nQ , (9)

the associated estimated parameter vector:

θ̂(t) = [q̂0(t) q̂1(t) . . . q̂nQ
(t)]T . (10)

Define the following observation (regressor) vector:

φT (t) = [w2(t) w2(t− 1) . . . w2(t− nQ)], (11)

where:

w2(t) =
B∗(q−1)

P (q−1)
w(t), B = q−1B∗. (12)

The a priori adaptation error, defined as the value of e(t)

obtained with Q̂(t, q−1), may be written as (details are
provided in (Landau et al. (2009)), and (Landau et al.
(2011)):

ǫ0(t+ 1) = w1(t+ 1)− θ̂T (t)φ(t), (13)

The a posteriori adaptation error (using Q̂(t + 1, q−1)),
may be expressed as:

ǫ(t+ 1) = w1(t+ 1)− θ̂T (t+ 1)φ(t), (14)
with

w1(t+ 1) =
S0(q

−1)

P (q−1)
w(t+ 1), (15)

w(t+ 1) = A(q−1)e(t+ 1) +B∗(q−1)û(t), (16)

where B∗(q−1)û(t) = B(q−1)û(t+ 1).

For estimation of Q̂(t, q−1) parameters, the following Pa-
rameter Adaptation Algorithm (PAA) is used (Landau
et al. (2005)):

θ̂(t+ 1) = θ̂(t) + F (t)φ(t)ǫ(t+ 1), (17)

ǫ(t+ 1) =
ǫ0(t+ 1)

1 + φT (t)F (t)φ(t)
, (18)

ǫ0(t+ 1) = w1(t+ 1)− θ̂T (t)φ(t), (19)

F (t+ 1) =
1

λ1(t)
(F (t)−

F (t)φ(t)φT (t)F (t)

α(t) + φT (t)F (t)φ(t)
), (20)

where F (t) is a time-varying adaptation gain (positive

definite matrix), and α(t) = λ1(t)
λ2(t)

. F (t) can be interpreted

as a measure of the parametric error. The tuning factors
λ1(t) and λ2(t) permit the adjustment of the adaptation
speed. An adaptation gain with a variable forgetting
factor, λ1(t) combined with a constant trace of F (t) is
chosen here to track automatically the changes of road
characteristics (Landau et al. (2005)).
For adaptive operation, the following procedure works
continuously and is applied sequentially at each sampling
time:

(1) Get e(t+1) and -û(t) to compute w(t+1) using (16).
(2) Compute w1(t+ 1) and w2(t) through (12) to (15).
(3) Estimate the Q-polynomial using the parametric

adaptation algorithm given by (17) to (20)
(4) Calculate û(t+ 1) according to:

S0(q
−1)û(t+1) = R0(q

−1)e(t+1)+Q̂(t, q−1)w(t+1).

(21)

4. EXPERIMENTAL RESULTS

In this section, the estimated road profile is compared to
the measured one coming from LPA in order to test its
validity (the LPA device of the LCPC lab was briefly
described in the Introduction). The signal measured by
the LPA constitutes our reference profile. Data were
collected during real trials, and then treated off-line. In
the following, the test description, observer configuration
and results are illustrated and analyzed. A comparison of
the present methodology with the approach developed in
(Doumiati et al. (2011)) is also provided in the next.

4.1 Test description

The experimental vehicle shown in Figure 6 is the LCPC
Laboratory’s test vehicle. It is a Peugeot 406 equipped
with accelerometers, relative suspension deflections sensor
and towing LPA for road profile measurement. The suspen-
sion/tire parameters are: ms = 378 Kg, cs = 3000 Ns/m,
ks = 21319 N/m, mu = 36.8 Kg, and kt = 100000N/m
(Imine et al. (2006)). Among numerous experimental tests,
a trial made at the LCPC Laboratory test track is consid-
ered. The car runs on an irregular surface with a quasi-
constant speed of 72 km/h along 600 m. The results
illustrated in the following correspond to the left front
wheel. Figure 3 shows the spectrum of the collected road
profile (see the LPA measurement). Figure 7 shows the
body position influenced by the road input at the wheel.
This signal is obtained by a double integration of the
signal generated by the accelerometer sensor installed at
the vehicle corner in the vertical direction (Doumiati et al.
(2011) and Doumiati et al. (2013)).
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Fig. 6. LCPC laboratory vehicle towing LPA (Imine et al.
(2006)).
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Fig. 7. Up and downward vehicle body movement due to
road irregularities.

4.2 Configuration of the controller

Based on some results obtained for different trials tested
off-line, the number of coefficients of Q̂ is heuristically
selected to be nQ = 6. These coefficients are initialized
with 0. Regarding the nominal controller (R0, S0) (without
the internal model of the disturbance), it is designed
via MATLAB/SISO tool so that it reconstructs the low
frequencies part of the profile elevation. Figure 8 draws
the output sensitivity function of the system defined as
the transfer function between zs and the output of the
system, e:

e

zs
=

S0A

S0A+R0B
, where Q̂ = 0. (22)

The polynomials R0(z
−1) and S0(z

−1) are found to be:

R0 = 9.15− 16.6z−1 + 8.04z−2, S0 = 1− z−1 (23)

4.3 Observer validation and comparison with LPA and
(Doumiati et al. (2011))

Figure 9 plots the estimated longitudinal road profile via
the proposed control approach, and the one measured by
the LPA. Clearly, the estimated values match well the
LPA signal. However, some discrepancies in amplitudes
persist. They might be caused by sensors calibration and
signals filtration process in the LPA system. Figure 10
shows the variations of the polynomial Q̂ coefficients.
These coefficients are adapted as function of the involved
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Fig. 8. Output sensitivity function.

0 100 200 300 400 500 600 

−25 

−20 

−15 

−10 

−5 

0 

5 

10 

15 

20 

Distance (m)  

Road profile elevation (mm) 

  

  
LPA 
Adaptiv e 

Fig. 9. Comparison between the proposed adaptive ob-
server approach and the LPA profiles.

road frequencies, and converge to some suitable values
minimizing the output, e.
For a more precise quantification of the estimation quality,
Figure 11 illustrates the spectrum of the estimation error,
u − û. The observer performs well especially for low
frequencies corresponding to high wavelengths. This figure
also compares the performance of the present method
to the study given in (Doumiati et al. (2011)). Recall
that this previous study assumes low acceleration signal
(related to the road), ü = 0, and applies a model-based
stochastic Kalman filter to estimate the profile elevation.
The novel approach points out better results especially for
small frequencies which is crucial for suspension control.
This is mainly due to the better representation/modeling
of the road profile in the estimation process. It is also
worth noting that the present algorithm is less costly
than the one given in (Doumiati et al. (2011)), since it
requires only information regarding the body position,
while the previous method needs both measurements of
the suspension deflections and the body position.

5. CONCLUSION

This paper described a new model-based estimation pro-
cess suitable for real-time implementation to reconstruct
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Fig. 11. Spectrum of the estimation error signal, u − û:
comparison between the proposed adaptive approach
and the observer given in (Doumiati et al. (2011)).

longitudinal road profile. The vehicle was represented by a
quarter-car model while the road surface was modeled by
a finite number of sinusoids with time-varying character-
istics. Since the estimation quality strongly depended on
the choice of the considered frequencies for the profile rep-
resentation, an adaptive Q-parametrized observer scheme
was designed and applied. The road profile observation
problem tackled in an adaptive control scheme can be con-
sidered as a major contribution of this research. The profile
reconstruction capacity was successfully tested by means
of numerical simulations using experimental data issued
from the LPA profiler. Results confirmed the validity of
the postulated working hypothesis.
Further investigations consist to apply half or full-car vehi-
cle model instead of a simple quarter-car model for a better
representation of the vehicle dynamics in different driving
situations (cornering, steering, accelerating, and braking).
The proposed method will be also applied to the INOVE
testbed for validation (www.gipsa-lab.fr/projet/inove).

ACKNOWLEDGEMENTS

Special thanks to the LCPC (www.ifsttar.fr) for the ex-
perimental data collected through their LPA. This real
data was delivered in the framework of SARI/RADARR
project in collaboration with Heudiasyc laboratory, France
(www.hds.utc.fr).

REFERENCES

D. Bastow, G. Howard, and J. P. Whitehead. Car suspen-
sion and handling. SAE International, 2004.

A. Constantinescu, D. Rey, and I.D. Landau. Rejection
of narrow band unknown disturbances in an active
suspension system. In Proceedings of the European
Control Conference, Kos, Greece, 2007.

M. Doumiati, A. Victorino, A. Charara, and D. Lechner.
Estimation of road profile for vehicle dynamics motion:
experimental validation. In Proceedings of the Ameri-
can Control Conference, St Francisco, CA, USA, pages
5237–5242, 2011.

M. Doumiati, A. Charara, A. Victorino, and D. Lechner.
Vehicle dynamics estimation using Kalman filtering -
Experimental validation. ISTE ltd and J. Wiley, 2013.

M. M. Elmadany and Z. S. Abduljabbar. Linear quadratic
gaussian control of a quarter-car suspension. Vehicle
System Dynamics, 32:479–497, 1999.

T. D. Gillespie. Fundamentals of vehicle dynamics. Society
of Automotive Engineers, 1992.

A. Gonzales, E.J. O’Brien, Y.Y. Li, and K. Cashell. The
use of vehicle acceleration measurements to estimate
road roughness. Vehicle System Dynamics, 46:483–499,
2008.

H. Imine, Y. Delanne, and N.K. M’sirdi. Road profile
inputs for evaluation of the loads on the wheels. Vehicle
System Dynamics, Supplement 43:359–369, 2005.

H. Imine, Y. Delanne, and N.K. M’sirdi. Road profile
input estimation in vehicle dynamics simulation. Vehicle
System Dynamics, 44(4):285–303, 2006.

P. A. Ioannou and J. Sun. Robust adaptive control.
Prentice-Hall, 1996.

I. Landau, A. Constantinescu, and D. Rey. Adaptive
narrow band disturbance rejection applied to an active
suspension-an internal model principle approach. Auto-
matica, 41:563–574, 2005.

I.D. Landau and T. Airimitoaie. An indirect adaptive feed-
back attenuation strategy for active vibration control.
In Proceedings of the 21st Mediterranean Conference on
Control and Automation, Chania, Greece, 2013.

I.D. Landau, A. Constantinescu, and M. Alma. Adaptive
regulation - rejection of unknown multiple narrow band
disturbances. In Proceedings of the 17th Mediterranean
Conference on Control and Automation, Thessaloniki,
Greece, 2009.

I.D. Landau, R. Lozano, M. M’Saad, and A. Karimi.
Adaptive control: Algorithms, Analysis and Applica-
tions. Springer-Verlag, 2011.

Mercedes-Benz, 2014. URL http:
www5.mercedes-benz.com.

R. Rajamani. Vehicle dynamics and control. Springer,
2006.

S. M. Savaresi, C. Poussot-vassal, C. Spelta, O. Sename,
and L. Dugard. Semi-active suspension control design
for vehicles. Elsevier, Butterworth Heinemann, 2010.

M. W. Sayers and S. M. Karamihas. The little book of
profiling. University of Michigan, 1998.

E.B. Sprangler and W.J. Kelly. Profilometer method
for measuring road profile. General Motors Research
Publication GMR-452, 1964.

Y. Tsypkin. Adaptive invariant discrete control systems.
Springer Verlag, 1991.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8450


