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Abstract: We present a new method for the approximation of the largest constraint admissible
set (CAS) for linear continuous-time systems with state and input constraints. The CAS is the set
of initial states for which the controlled system does not violate the input or state constraints. The
presented approach is based on a suitable discretization of the continuous-time system. In fact, we
will show that CAS in the continuous-time case can be computed analogously to the discrete-time
case, given an appropriate sampling time was chosen. We stress that the computation of CAS for
continuous-time systems is considerably more difficult than for discrete-time systems, since one has
to guarantee that the system does not violate the constraints in between the sampling instances.
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1. INTRODUCTION

Constraint admissible sets (CAS) are important for the
analysis of controlled systems with constraints. The CAS
is defined to be the set of initial conditions x0 for which
the closed-loop trajectory emanating from x0 does not
violate the input and state constraints (see, e.g, Gilbert
and Tan (1991) or Wang et al. (2009)). CAS are of special
interest in the framework of constrained linear quadratic
regulation (Scokaert and Rawlings, 1998) or model pre-
dictive control (MPC). In fact, CAS are instrumental for
reformulating the linear-quadratic infinite-horizon optimal
control problem as a finite-dimensional optimization prob-
lem (see, e.g., Sznaier and Damborg (1987), Chmielewski
and Manousiouthakis (1996) or Scokaert and Rawlings
(1998)). With regard to MPC, CAS serve as terminal
sets guaranteeing (asymptotic) stability of the controlled
system (De Doná et al., 2002).

The paper deals with the computation of the largest CAS
for constrained linear systems. In the discrete-time case,
an iterative procedure for the exact computation of the

largest CAS, which we denote by Ĉ∞ (where the accent
“̂” indicates the discrete-time case), is stated in Gilbert
and Tan (1991). We extend the findings in Gilbert and
Tan (1991) by providing an upper bound for the required

number of iterations to obtain Ĉ∞. Based on the results
for discrete-time systems, we tackle the more complex
continuous-time case. Of course, for a continuous-time
system, an outer approximation of the largest CAS (de-
noted by C∞) can be found by discretizing the system

and computing Ĉ∞ for the resulting discrete-time system
(Gilbert and Tan, 1991). Unfortunately, outer approxima-
tions C∞ ⊇ C∞ are of little use, since they may contain
initial states x0 ∈ C∞ for which the closed-loop trajectory
emanating from x0 violates the input or state constraints.
Here, we intend to derive a method for the computation
⋆ This research was partly funded by the Deutsche Forschungsge-
meinschaft (DFG, MO 1086/11-1).

of tight inner approximations C∞ of C∞. Precisely, for any
given ǫ ∈ (0, 1), we show how to compute a set C∞ such
that

C∞ ⊆ C∞ and (1− ǫ) C∞ ⊆ C∞. (1)
Essentially, we provide a criterion for an appropriate choice
of the sampling time (see Eq. (29)).

The paper is organized as follows. We introduce some
notation and preliminaries in the remainder of this section.
Afterwards, we recall how to calculate the largest CAS
for constrained discrete-time systems in the first part of
Sect. 2. We extend the established results by providing
an upper bound for the number of iterations necessary to

identify Ĉ∞. The main result of the paper, i.e., the compu-
tation of a tight inner approximation of C∞, is presented
in Sect. 3. Finally, we analyze two numerical examples and
state conclusions in Sects. 4 and 5, respectively.

1.1 Preliminaries and Notation

We denote matrices by capital letters, vectors and scalars
by lowercase letters and sets by calligraphic letters. Let
A,P ∈ R

n×n and B ∈ R
n×m with P = PT and n,m ∈ N.

By ‖A‖2 and µ2(A) denote the spectral norm and the
associated logarithmic norm (see Söderlind (2006)) of A.
By λmin(P ) and λmax(P ) denote the smallest and the
largest eigenvalue of the (symmetric) matrix P , respec-
tively. By B(r) := {x ∈ R

n | ‖x‖2 ≤ r}, denote a ball in
R

n with radius r ∈ R+, where R+ := {r ∈ R | r > 0}. Let
E(P, ρ) := {x ∈ R

n | ‖x‖2P ≤ ρ2} be shorthand notation
for an ellipsoid, where ‖x‖2P := xTPx and where ρ ∈ R+.
Define R0 := {r ∈ R | r ≥ 0}, Nj := {i ∈ N | j ≤ i}
and Nj,k := {i ∈ N | j ≤ i ≤ k}. Finally, let T ⊆ R

n

and λ ∈ (0, 1) and define λ T := {λx |x ∈ T }. The set
T is called A-invariant, if Ax ∈ T for every x ∈ T . The
following lemmas summarize some properties which we use
in later sections.

Lemma 1. Let T ⊆ R
n be A-invariant and let ǫ ∈ (0, 1).

Then, (i) (1 − ǫ) T is A-invariant and (ii) Akx ∈ T for
every x ∈ T and every k ∈ N.

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 5574



Lemma 2. Let T ⊂ R
n be a convex and compact set

with 0 ∈ int(T ), let ǫ ∈ (0, 1) and let r ∈ R+ be such
that B(r) ⊆ T . Let x ∈ (1 − ǫ) T and let ∆x ∈ R

n. If
‖∆x‖2 ≤ ǫ r, then x+∆x ∈ T .

2. THE DISCRETE-TIME CASE

In this section, we consider discrete-time linear systems

x̂(k + 1) = Â x̂(k) + B̂ û(k), x̂(0) = x̂0 (2)

with input and state constraints of the form

û(k) ∈ Û and x̂(k) ∈ X̂ for every k ∈ N, (3)

where Â ∈ R
n×n and B̂ ∈ R

n×m and where Û ⊂ R
m and

X̂ ⊂ R
n are assumed to be convex and compact sets with

the origin as an interior point. We further assume that a
linear control law

û(k) = −K̂ x̂(k) (4)

with K̂ ∈ R
n×m is given, such that the closed-loop system

x̂(k + 1) = (Â− B̂ K̂) x̂(k), x̂(0) = x̂0 (5)

is Schur stable. In the following, we recall the procedure for
the computation of the largest CAS in the discrete-time
case. In order to clearly divide between established results
and new findings, we introduce the subsections State of
the art and Improvement (here and in Sect. 3).

2.1 State of the art: Exact computation of Ĉ∞

Let ϕ̂(k, x̂0) denote the solution of the closed-loop system
(5) at step k ∈ N for initial condition x0 and define the set

Ĉmax := {x̂ ∈ X̂ | − K̂ x̂ ∈ Û}, (6)

which collects all states x̂ ∈ X for which the application of
the feedback law (4) does not violate the inputs constraints

U . Then, the largest CAS Ĉ∞ can be expressed as (Gilbert
and Tan, 1991)

Ĉ∞ := {x̂0 ∈ Ĉmax | ϕ̂(k, x̂0) ∈ Ĉmax, ∀k ∈ N}. (7)

We collect some statements which are important for the

characterization of Ĉ∞.

Lemma 3. Let T ⊆ Ĉmax be Ã-invariant with Ã = Â −
B̂ K̂. Then, T ⊆ Ĉ∞.

The proof of Lem. 3 can be found in Athans and Falb
(1966) as cited in Chmielewski and Manousiouthakis

(1996). Now, let Ĉi denote the set of all initial states

x̂0 ∈ Ĉmax for which the closed-loop trajectory ϕ̂(k, x̂0)
respects the constraints for at least the first i ∈ N steps.
Formally,

Ĉi := {x̂0 ∈ Ĉmax | ϕ̂(k, x̂0) ∈ Ĉmax, ∀k ∈ N0,i}. (8)

Then

Ĉ∞ ⊆ Ĉi+1 ⊆ Ĉi ⊆ Ĉmax (9)

for every i ∈ N (cf. relation (2.2) in Gilbert and Tan
(1991)). Lemma 4 states an interesting implication.

Lemma 4. Let i ∈ N. If Ĉi = Ĉi+1, then Ĉi is Ã-invariant

with Ã = Â− B̂K̂.

The statement in Lem. 4 results from the proof of Thm.
2.2 in Gilbert and Tan (1991). Combining Lems. 3, 4 and
relation (9) leads to Thm. 5, which is equivalent to Thm.
2.2 in Gilbert and Tan (1991).

Theorem 5. Let i ∈ N. If Ĉi = Ĉi+1, then Ĉ∞ = Ĉi.

Theorem 5 suggests to implement the following algorithm

for the iterative computation of Ĉ∞ (cf. Alg. 3.1 in Gilbert
and Tan (1991)).

Algorithm 1. Exact computation of Ĉ∞.

(1) Set i = 0 and Ĉ0 = Ĉmax.

(2) Compute Ĉi+1.

(3) If Ĉi = Ĉi+1, return Ĉ∞ = Ĉi and terminate,
otherwise increase i by one an go to step 2.

2.2 Improvement: Maximal number of iterations

In order for Alg. 1 to be useful in practice, we have to

guarantee that the termination criterion Ĉi = Ĉi+1 is met
after a finite number of iterations. In principle, Thm. 4.1 in
Gilbert and Tan (1991) provides this guaranty. We extend
this theorem by providing an upper bound for the number
of iterations required by Alg. 1. The basic idea is to study
the convergence rate of the unconstrained system to the
origin. A similar approach was used in Fiacchini et al.
(2007) to compute λ-contractive polytopic sets for linear
and nonlinear discrete-time systems. Basically, the proof of
the following lemma represents a specialized variant of the
proof of the well-known Lyapunov criterion for asymptotic
stability (see, e.g., (Vidyasagar, 2002, pp. 165 ff.)). As a
preparation, note that, for every positive definite matrix

Q̂ = Q̂T , the discrete-time Lyapunov matrix equation

(Â− B̂K̂)T P̂ (Â− B̂K̂)− P̂ + Q̂ = 0 (10)

has a unique solution for P̂ = P̂T and this solution

is positive definite since (Â − B̂K̂) is Schur stable by
assumption (see, e.g., (Vidyasagar, 2002, p. 267)).

Lemma 6. Let Q̂ = Q̂T ≻ 0 be arbitrary and let P̂ =

P̂T ≻ 0 be the solution of (10). Let ρ, ρ ∈ R+ with ρ ≤ ρ

and let x̂0 ∈ E(P̂ , ρ). Then, ϕ̂(k, x̂0) ∈ E(P̂ , ρ) for every
k ∈ N with k ≥ tmax, where

tmax :=

(
ρ2

ρ2
− 1

)
λmax(P̂ )

λmin(Q̂)
. (11)

Proof. We first show that x̂0 ∈ E(P̂ , ρ) implies ϕ̂(i, x̂0) ∈

E(P̂ , ρ) for at least one i ∈ N0,imax
, where imax := ⌈tmax⌉.

This claim is shown by assuming ϕ̂(i, x̂0) /∈ E(P̂ , ρ) for
every i ∈ N0,imax

and showing that a contradiction results.
Let the positive definite function v̂ : Rn → R0 be defined
by v̂(x) = ‖x‖2

P̂
and note that

v̂(x̂) ≤ ρ2 ⇐⇒ x̂ ∈ E(P̂ , ρ). (12)

It follows from (10), that the trajectories of the closed-loop
system (5) satisfy the relation

∆v̂(k, x̂0) = −‖ϕ̂(k, x̂0)‖
2

Q̂
(13)

for every x̂0 ∈ R
n and every k ∈ N, where ∆v̂(k, x̂0) :=

v̂(ϕ̂(k+1, x̂0))− v̂(ϕ̂(k, x̂0)). In the remainder of the proof,
we use (13) to show

v̂(ϕ̂(imax, x̂0)) < ρ2, (14)

which results in the desired contradiction, since (14) im-

plies ϕ̂(imax, x̂0) ∈ E(P̂ , ρ) with (12). To show (14), first
note that

v̂(ϕ̂(i, x̂0)) = v̂(x̂0) +
∑i−1

k=0 ∆v̂(k, x̂0) (15)
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for every i ∈ N. Thus, overestimating the l.h.s. in (14)
yields

v̂(ϕ̂(imax, x̂0)) = v̂(x̂0)−
∑imax−1

k=0 ‖ϕ̂(k, x̂0)‖
2

Q̂
,

≤ ρ2 −
∑imax−1

k=0 λmin(Q̂) ‖ϕ̂(k, x̂0)‖
2
2,

≤ ρ2 −
∑imax−1

k=0
λmin(Q̂)

λmax(P̂ )
‖ϕ̂(k, x̂0)‖

2

P̂
,

< ρ2 −
∑imax−1

k=0
λmin(Q̂)

λmax(P̂ )
ρ2,

≤ ρ2 − tmax
λmin(Q̂)

λmax(P̂ )
ρ2 = ρ2,

(16)

where the first relation holds according to (15) and (13).
To understand the second and the third relation, first note
that v̂(x̂0) ≤ ρ2 according to (12) since x̂0 ∈ E(P, ρ) by
assumption. Moreover, we have

λmin(V )‖x̂‖22 ≤ ‖x̂‖2V ≤ λmax(V )‖x̂‖22
for any symmetric matrix V ∈ R

n×n (Horn and Johnson,
1985, p. 176). Thus, we obtain the second and the third
relation, since Q and P are symmetric positive definite
matrices. The fourth relation results with the assumption
that ϕ̂(i, x̂0) /∈ E(P, ρ) for every i ∈ N0,imax

, i.e.,

v̂(ϕ̂(i, x̂0)) = ‖ϕ̂(i, x̂0)‖
2

P̂
> ρ2

according to (12). Finally, the fifth and the sixth relation
hold due to imax ≥ tmax and by definition of tmax in
(11). In summary, we obtain (14). Thus, we proved that

there exists an i∗ ∈ N0,imax
such ϕ̂(i∗, x̂0) ∈ E(P̂ , ρ).

Taking into account that ∆v̂(k, x̂0) ≤ 0 for every k ∈ N

and every x̂0 ∈ R
n, it directly follows from (15) that

ϕ̂(i∗, x̂0) ∈ E(P̂ , ρ) implies ϕ̂(k, x̂0) ∈ E(P̂ , ρ) for every
k ∈ Ni∗ .

It is obvious how to apply Lem. 6 in order to provide the

desired iteration bound. Basically, the ellipsoids E(P̂ , ρ)

and E(P̂ , ρ) should be chosen in such a way that they

approximate the set Ĉmax from inside and outside, re-
spectively. Proposition 7 formalizes this approach. See
the discrete-time example in Sect. 4.1 for a geometrical
interpretation.

Proposition 7. Let Q̂ = Q̂T ≻ 0 be arbitrary and let

P̂ = P̂T ≻ 0 be the solution of (10). Let ρ, ρ ∈ R+ be such

that E(P̂ , ρ) ⊆ Ĉmax ⊆ E(P̂ , ρ) and let tmax be defined as
in (11). Then, there exists an i ∈ N with i < imax such

that Ĉi = Ĉi+1, where imax := max{⌈tmax⌉, 1}.

Proof. Since Ĉmax ⊆ E(P̂ , ρ), we have ϕ̂(k, x̂0) ∈

E(P̂ , ρ) ⊆ Ĉmax for every x̂0 ∈ Ĉmax and every k ∈ Nimax

according to Lem. 6. In particular, we find ϕ̂(imax, x̂0) ∈

Ĉmax for every x̂0 ∈ Ĉmax. Thus, we obtain

x̂0 ∈ Ĉimax−1 =⇒ x̂0 ∈ Ĉimax
(17)

according to the definition of Ĉi in (8). Obviously, (17)

implies Ĉimax−1 ⊆ Ĉimax
. Since we also have Ĉimax−1 ⊇ Ĉimax

according to (9), we finally find Ĉimax−1 = Ĉimax
. Thus,

there exists at least one i ∈ N with i < imax such that
Ĉi = Ĉi+1, e.g., i = imax − 1.

Note that it is necessary to use imax := max{⌈tmax⌉, 1} in
Prop. 7 in order to guarantee imax ≥ 1 for the (rare but
possible) exception tmax = 0.

3. THE CONTINUOUS-TIME CASE

Consider the continuous-time linear system

ẋ(t) = Ax(t) +B u(t), x(0) = x0 (18)

with input and state constraints of the form

u(t) ∈ U and x(t) ∈ X for every t ∈ R0. (19)

Further assume that a linear control law

u(t) = −K x(t) (20)

is given, such that the closed-loop system

ẋ(t) = (A−BK)x(t), x(0) = x0 (21)

is Hurwitz stable.

3.1 State of the art: Outer approximation of C∞
Let ϕ(t, x0) denote the solution of the closed-loop sys-
tem (21) at time t ∈ R0 with initial condition x0 and
define the set

Cmax := {x ∈ X | −Kx ∈ U}. (22)

Then, analogously to the discrete-time case, the largest
CAS for continuous-time systems can be expressed as

C∞ := {x0 ∈ Cmax |ϕ(t, x0) ∈ Cmax, ∀t ∈ R0}. (23)

Inspired by (8), we may overestimate C∞ by considering
only a finite number of points in time. Let

C∆t
i :={x0 ∈ Cmax |ϕ(k∆t, x0) ∈ Cmax, ∀k ∈ N0,i} (24)

for an arbitrary but fixed ∆t ∈ R+ and note that

C∞ ⊆ C∆t
i+1 ⊆ C∆t

i ⊆ Cmax (25)

for every i ∈ N. With regard to (24), the computation
of C∆t

i builds on the discretization of the continuous-time
system based on the sample time ∆t. To see this, note that
ϕ(k∆t, x0) can be written as

ϕ(k∆t, x0) = exp((A −BK)∆t)kx0.

Obviously, the outer approximation of C∞ in terms of
C∆t
i (generally) becomes “tighter” for larger i ∈ N and

smaller ∆t ∈ R+, respectively. However, in contrast to the
discrete-time case, the limit

C∆t
∞ := lim

i→∞
C∆t
i (26)

is, in general, still an overestimation of the largest CAS,
i.e., C∞ ⊆ C∆t

∞ . This is due to the fact that C∆t
∞ is generally

not positively invariant 1 for system (21). To solve this
problem, it is reasonable to scale C∆t

∞ in such a way that
the shrunken set is a subset of C∞. Obviously, the under-
lying scaling factor determines the accuracy of the inner
approximation. Thus, if we are interested in a certain user-
defined accuracy (see ǫ in (1)), the scaling is limited. We
have to choose the remaining parameter ∆t in an appro-
priate way to address these limitations. In fact, Gilbert
and Tan (1991) already showed that an appropriate ∆t
always exists. We summarize the corresponding result in
the following theorem which builds on (Gilbert and Tan,
1991, Thm. 6.1).

Theorem 8. For every ǫ ∈ (0, 1) there exists a ∆t ∈ R+

such that
(1− ǫ) C∆t

∞ ⊆ C∞ ⊆ C∆t
∞ . (27)

1 For discrete-time systems, a (Â − B̂ K̂)-invariant set T is also
positively invariant for the closed-loop system (5). In contrast, for
continuous-time systems, a exp((A−BK)∆t)-invariant set T is not
necessarily positively invariant for (21). See (Blanchini and Miani,
2008, p. 99 ff.) or Blanco and De Moor (2007) for details on positive
invariance.
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3.2 Improvement: Appropriate discretization

In principle, Thm. 8 provides the statement that we are
looking for. Assume we found a ∆t ∈ R+ such that (27)
holds for a given ǫ ∈ (0, 1), then the choice C∞ = (1−ǫ) C∆t

∞
fulfills (1). To see this, note that C∞ ⊆ C∞ holds according
to the first relation in (27). Moreover, multiplying the
second relation in (27) with the factor (1− ǫ) > 0 yields

(1 − ǫ) C∞ ⊆ (1 − ǫ) C∆t
∞ = C∞.

Note that, analogously to the discrete-time case, the set
C∆t
∞ can be exactly calculated by a finite number of

iterations (see Prop. 15 further below for details). Thus,
it only remains to choose ∆t ∈ R+. Unfortunately, neither
Thm. 8 nor the corresponding proof in Gilbert and Tan
(1991) provide a practical algorithm for the computation
of ∆t. The main contribution of this paper is a simple
criterion (see Eq. (29)) for an appropriate choice of ∆t
such that (27) (or equivalently (1) with C∞ = (1 −
ǫ) C∆t

∞ ) holds. This criterion will be used to provide a
method for the tight inner approximation of C∞, which
is summarized in Prop. 12. Several steps are required
as a preparation to Prop. 12. We begin by formulating
conditions on a set T to be a subset of the largest CAS.
Obviously, the following lemma represents the continuous-
time counterpart to Lem. 3.

Lemma 9. Let ∆t ∈ R+ and let T ⊆ Cmax be Ã-invariant

with Ã = exp((A−BK)∆t). Let ϕ(τ, x0) ∈ Cmax for every
x0 ∈ T and every τ ∈ [0,∆t). Then T ⊆ C∞.

Proof. We have to show that ϕ(t, x0) ∈ Cmax for every

x0 ∈ T and every t ∈ R0. Since T is Ã-invariant, we
have exp((A − BK)∆t)kx0 = exp((A − BK) k∆t) =
ϕ(k∆t, x0) ∈ T for every x0 ∈ T and k ∈ N according
to Lem. 1. Moreover, we have ϕ(τ, x0) ∈ Cmax for every
x0 ∈ T and every τ ∈ [0,∆t) by assumption. Thus, since
ϕ(k∆t, x0) ∈ T , we obtain

ϕ(τ, ϕ(k∆t, x0)) = ϕ(k∆t+ τ, x0) ∈ Cmax (28)

for every x0 ∈ T , every k ∈ N and every τ ∈ [0,∆t).
Now let x0 ∈ T and t ∈ R0 be arbitrary but fixed. Set
k∗ = ⌊ t

∆t
⌋ and τ∗ = t − k∗ ∆t and note that k∗ ∈ N,

τ∗ ∈ [0,∆t) and t = k∗ ∆t+ τ∗. Thus

ϕ(t, x0) = ϕ(k∗ ∆t+ τ∗, x0) ∈ Cmax

according to (28). This completes the proof, since x0 ∈ T
and t ∈ R0 were arbitrary.

Similar to the discrete-time blueprint, Lem. 9 requires

T to be Ã-invariant (with Ã = exp((A − BK)∆t)).

Analogously to Lem. 4, C∆t
i = C∆t

i+1 implies Ã-invariace.
This is summarized in the following lemma.

Lemma 10. If C∆t
i = C∆t

i+1, then C∆t
i is Ã-invariant with

Ã = exp((A−BK)∆t).

We omit the proof of Lem. 10 since it is a direct conse-
quence of Lem. 4. While Lem. 3 (discrete-time) and Lem. 9

(continuous-time) are similar in terms of Â-invariace,
Lem. 9 differs from Lem. 3 in that it contains additional
conditions on ϕ(τ, x0). A simple criterion for the fulfill-
ment of these conditions is introduced in Lem. 11.

Lemma 11. Let ǫ ∈ (0, 1) and let T be such that T ⊆ (1−
ǫ) Cmax. Let r, r ∈ R+ be such that B(r) ⊆ Cmax and
T ⊆ B(r). Finally, let ∆t ∈ R+ be such that

∆t ≤
1

µ2(A−BK)
ln

(
µ2(A−BK)

‖A−BK‖2

ǫ r

r
+ 1

)
. (29)

Then, ϕc(τ, x0) ∈ Cmax for every x0 ∈ T and τ ∈ [0,∆t).

Proof. Assume for a moment

‖ϕ(τ, x0)− x0‖2 ≤ ǫ r (30)

for every x0 ∈ T and every τ ∈ [0,∆t). Define ∆x(τ, x0) :=
ϕ(τ, x0)− x0. Then, we have

ϕ(τ, x0) = x0 + (ϕ(τ, x0)− x0) = x0 +∆x(τ, x0) ∈ Cmax

for every x0 ∈ T ⊆ (1 − ǫ) Cmax and every τ ∈ [0,∆t)
according to Lem. 2 in combination with (30) and B(r) ⊆
Cmax. Thus, it remains to show (30) in order to prove the
claim in Lem. 11. To do so, we initially note that the l.h.s.
in (30) cannot be larger than the arc length

s(τ, x0) =
∫ τ

0 ‖ϕ̇(t, x0)‖2 dt (31)

at time τ of the trajectory emanating from x0. Thus, we
have

‖ϕ(τ, x0)− x0‖2 ≤ s(τ, x0)

for every x0 ∈ T and every τ ∈ [0,∆t). Since ϕ(τ, x0) refers
to the solution of (21), the derivative of the trajectory with
respect to t is given by

ϕ̇(t, x0) = (A−BK)ϕ(t, x0),
= (A−BK) exp((A −BK) t)x0.

(32)

Overestimating the arc length (31) yields

s(τ, x0)=
∫ τ

0 ‖(A−BK) exp((A−BK) t)x0‖2 dt,
≤
∫ τ

0
‖(A−BK)‖2‖ exp((A −BK) t)‖2‖x0‖2 dt,

≤‖(A−BK)‖2‖x0‖2
∫ τ

0
exp(µ2(A−BK) t) dt,

= ‖(A−BK)‖2‖x0‖2

µ2(A−BK) [exp(µ2(A−BK) t)]
τ
0 ,

= ‖(A−BK)‖2‖x0‖2

µ2(A−BK) (exp(µ2(A−BK) τ)− 1),

where the first relation holds due to (32). The second
relation is satisfied since the matrix 2-norm (spectral
norm) is compatible with the Euclidean vector norm in
the sense that ‖V x‖2 ≤ ‖V ‖2 ‖x‖2 for every matrix
V ∈ R

n×n and every x ∈ R
n (Horn and Johnson, 1985,

p. 293). The third relation holds, since the norm of the
matrix exponential can be overestimated according to
‖ exp(V t)‖2 ≤ exp(µ2(V ) t) for every V ∈ R

n×n and every
t ∈ R0. Note that the logarithmic norm was introduced
in order to provide tight bounds for the solution of (21)
(Söderlind, 2006). Since x0 ∈ T ⊆ B(r), i.e., ‖x0‖2 ≤ r,
and since τ ∈ [0,∆t), we obtain

s(τ, x0) ≤
‖(A−BK)‖2 r

µ2(A−BK)
(exp(µ2(A− BK)∆t)− 1)

for every x0 ∈ T and every τ ∈ [0,∆t). Taking into account
that ∆t is bounded above according to (29), we easily find
s(τ, x0) ≤ ǫ r, which finally proves (30).

The combination of Lems. 9, 10 and 11 leads to Prop. 12,
which states a method for the tight underestimation of C∞
based on an appropriate discretization in terms of ∆t.

Proposition 12. Let ǫ ∈ (0, 1) and let r, r ∈ R+ be such
that B(r) ⊆ Cmax and (1 − ǫ) Cmax ⊆ B(r). Let i ∈ N and
let ∆t ∈ R+ be such that (29) holds. If C∆t

i = C∆t
i+1, then

C∞ := (1 − ǫ) C∆t
i is such that (1) holds.

Proof. In order to prove the claim, we assume C∆t
i = C∆t

i+1
and show that the relations (1) are fulfilled for the choice
C∞ := (1 − ǫ) C∆t

i . The second relation in (1) obviously
holds, since we have
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(1− ǫ) C∞ ⊆ (1− ǫ) C∆t
i = C∞

according to (25) and by definition of C∞, respectively.
In order to prove the first relation in (1), i.e., C∞ ⊆ C∞,

we will apply Lem. 9. It remains to show that C∞ is Ã-

invariant with Ã = exp((A−BK)∆t) and that

ϕ(τ, x0) ∈ Cmax for every x0 ∈ C∞, τ ∈ [0,∆t). (33)

Since C∆t
i = C∆t

i+1, it follows that C∆t
i is Ã-invariant

according to Lem. 10. Thus, C∞ := (1 − ǫ) C∆t
i is Ã-

invariant according to Lem. 1. In order to show (33), first
note that

C∞ = (1 − ǫ) C∆t
i ⊆ (1− ǫ) Cmax ⊆ B(r)

by definition of C∞, according to (25) and by assumption
in Prop. 12, respectively. Moreover, again by assumption,
we have B(r) ⊆ Cmax and ∆t ∈ R+ such that (29) holds.
Thus, (33) follows from Lem. 11, which completes the
proof.

Propositon 12 suggests to implement the following algo-
rithm for the iterative computation of C∞.

Algorithm 2. Inner approximation of C∞ for ǫ ∈ (0, 1).

(1) Choose r, r and ∆t according to Prop. 12.
(2) Set i = 0 and C∆t

0 = Cmax.
(3) Compute C∆t

i+1.

(4) If C∆t
i = C∆t

i+1, return C∞ := (1−ǫ) C∆t
i and terminate,

otherwise increase i by one an go to step 3.

The termination of Alg. 2 after a finite number of iterations
can be guaranteed analogously to the discrete-time case. In
fact, we find Lem. 13 and Prop. 14 as direct counterparts
to Lem. 6 and Prop. 7, respectively. As a preparation,
note that, for every positive definite matrix Q = QT , the
continuous-time Lyapunov matrix equation

(A−BK)TP + P (A−BK) +Q = 0 (34)

has a unique solution for P = PT and this solution is
positive definite since (A − BK) is Hurwitz stable by
assumption (see, e.g., (Vidyasagar, 2002, p. 199)).

Lemma 13. Let Q = QT ≻ 0 be arbitrary and let P =
PT ≻ 0 be the solution of (34). Let ρ, ρ ∈ R+ with ρ ≤ ρ
and let x0 ∈ E(P, ρ). Then, ϕ(t, x0) ∈ E(P, ρ) for every

t ∈ R0 with t ≥ tmax, where tmax is defined as in (11) with

P̂ = P and Q̂ = Q.

Proof. Analogously to the proof of Lem. 6 with v̇(ϕ(t, x0))
= −‖ϕ(t, x0)‖

2
Q and

v(ϕ(t∗, x0)) = v(x0) +
∫ t∗

0
v̇(ϕ(t, x0)) dt

instead of Eqs. (13) and (15), respectively.

Proposition 14. Let Q = QT ≻ 0 be arbitrary and let
P = PT ≻ 0 be the solution of (34). Let ρ, ρ ∈ R+

be such that E(P, ρ) ⊆ Cmax ⊆ E(P, ρ). Let ∆t ∈ R+

and let tmax be defined as in (11). Then, there exists
an i ∈ N with i < imax such that C∆t

i = C∆t
i+1, where

imax := max{⌈ tmax

∆t
⌉, 1}.

The proof of Prop. 14 is analogous to that of Prop. 7.
Finally, in order to link Thm. 8 and Prop. 12, we state the
following trivial result without proof.

Proposition 15. Let i ∈ N. If C∆t
i = C∆t

i+1, then C∆t
∞ = C∆t

i .

4. NUMERICAL EXAMPLES

We apply Alg. 1 and Alg. 2 to a discrete-time and
continuous-time example, respectively. For both examples,

we study the shape of the computed (approximation of)
the largest CAS. Moreover, we show that the iteration
bounds introduced in Props. 7 and 14 hold.

4.1 Discrete-time example

We study the same discrete-time system as in Sznaier and
Damborg (1987) with the matrices

Â =

(
1.0000 0.2212
0.0000 0.7788

)
, B̂ =

(
0.0288
0.2212

)

and the constraints

X̂ = {x̂ ∈ R
2 | |x̂1| ≤ 1.5, |x̂2| ≤ 0.3},

Û = {û ∈ R | |û| ≤ 0.5}.

For the choice K̂ = ( 0.8831 0.8811 ), the closed-loop
system (5) is stable. With the weighting matrix Q = I,
we obtain

P̂ =

(
6.5334 2.0254
2.0254 2.6003

)

as a solution of (10). Moreover, it is easy to prove and

visualized in Fig. 1 that we have E(P̂ , ρ) ⊆ Ĉmax ⊆ E(P̂ , ρ)
for the particular choice ρ = 0.4213 and ρ = 2.0191.
Thus, corresponding to Lem. 6 and Eq. (11), we obtain
tmax = 162.3200. According to Prop. 7, this implies that
the number of iterations required by Alg. 1 can a priori be
limited above by imax − 1 = ⌈tmax⌉− 1 = 162. In practice,
for this example, Alg. 1 terminates after 3 steps. Thus, the
computed iteration bound is valid but conservative.

1.51.00.50.0−0.5−1.0−1.5

1.5

1.0

0.5

0.0

−0.5

−1.0

−1.5

x1

x
2

Fig. 1. Visualization of X̂ (gray), Ĉmax (yellow) and Ĉ∞ (green)
for the discrete-time example in Sect. 4.1. The dashed and the

dashed-dotted elliptic shapes refer to the ellipses E(P̂ , ρ) and E(P̂ , ρ),
respectively. The solid curves represent trajectories of the closed-loop
system (5) emanating from x̂0 = (−0.27 −0.30 )T and x̂0 = ( 0.86 −

0.30 )T , respectively. For both trajectories, the first three steps are
marked by crosses. The red line segments of the right trajectory
highlight the critical steps, where constraints are violated.

Figure 1 visualizes the computed shape of the largest
CAS. Moreover, two trajectories of the closed-loop system
(5) are shown in order to illustrate the fundamental idea
behind Lem. 6. Basically, any trajectory emanating from

a state x̂0 ∈ E(P̂ , ρ) will enter E(P̂ , ρ) after imax steps.

However, even trajectories that start in Ĉmax may violate
the input or state constraints during the first imax−1 steps
(see the red highlighted steps in Fig. 1).

4.2 Continuous-time example

We now consider the continuous-time system with the
matrices
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A =

(
−0.1 1.0
−0.2 0.1

)
, B =

(
−0.9
0.5

)

and the constraints

X = {x ∈ R
2 | ‖x‖∞ ≤ 2, } and U = {u ∈ R | |u| ≤ 1}.

For the choiceK = (−0.1903 1.7768 ), the closed-loop sys-
tem (21) is stable. Moreover, with the following weighting
matrix Q, we obtain the listed matrix P as a solution of
(34):

Q =

(
1.0 −0.6

−0.6 7.0

)
, P =

(
1.2458 1.5458
1.5458 9.5353

)
.

To compute an inner approximation of C∞, we a priori
have to fix the maximal “error” by selecting ǫ. Here, we
choose ǫ = 0.1 relatively large in order to provide a better
illustration. To satisfy the specified error bound, we have
to select the sample time ∆t such that (29) holds. We
initially compute r = 0.5596 and r = 1.9311 such that
B(r) ⊆ Cmax ⊆ 1

1−ǫ
B(r) (see Fig. 2). Then, according

to Prop. 12, ∆t = 0.0105 results in an appropriate
discretization.In order to provide an upper bound for
the number of iterations required by Alg. 2, we choose
ρ = 1.3352 and ρ = 3.9425 such that E(P, ρ) ⊆ Cmax ⊆
E(P, ρ). Then, corresponding to Lem. 13, we obtain tmax =
80.5430. According to Prop. 14, this implies that the
number of iterations can a priori be limited to imax −
1 = ⌈ tmax

∆t
⌉− 1 = 7605. In practice, Alg. 2 terminates after

89 steps for this example. Again, the computed iteration
bound is valid but conservative.

420−2−4

2

0

−2

x1

x
2

Fig. 2. Visualization of X (gray), Cmax (yellow), C∆t
∞

(blue) and
C
∞

(green) for the continuous-time example in Sect. 4.2. The
dashed and the dashed-dotted elliptic shapes refer to the ellipses
E(P, ρ) and E(P, ρ), respectively. The dashed and the dashed-dotted

round shapes refer to the circles B(r) and 1

1−ǫ
B(r), respectively.

The solid curve represents a trajectory of the closed-loop system
(21) emanating from x0 = ( 1.76 0.29 )T . The red vectors visualize
the slope field associated with system (21) for some points at the
boundary of C∆t

∞
.

Figure 2 illustrates the shape of the computed set C∆t
∞ and

the scaled set C∞ = (1 − ǫ) C∆t
∞ . Moreover, the slope field

associated with the differential equation (21) is sketched.
Based on the illustrated velocity vectors and Nagumo’s
invariance theorem (see, e.g., (Blanchini and Miani, 2008,
pp. 101-103)), it is immediately clear that C∆t

∞ can not
be positively invariant. Obviously, the same conclusion
holds for the scaled set (1− ǫ) C∆t

∞ . In fact, the illustrated
trajectory temporarily leaves 2 C∞. However, based on the

2 Note that the resolution of Fig. 2 is too low to visualize this
excursion.

suitable choice of ∆t, it is guaranteed (by Prop. 12) that
every trajectory that starts in C∞ remains in C∆t

∞ for all
times.

5. CONCLUSION AND OUTLOOK

We presented methods for the computation of CAS for
constrained linear systems. For discrete-time systems, we
extended established results on the iterative computation

of the largest CAS Ĉ∞ by providing an upper bound
for the number of required iterations. Simulation studies
confirm the derived bound is valid but also indicate it
is conservative w.r.t. the actually required number of
iterations. For continuous-time systems, we showed how
to reasonably discretize the system in order to provide an
inner approximation of C∞ with a certain, user-defined
accuracy. In fact, criterion (29), which allows for an
appropriate choice of the sampling time ∆t, is the main
result of the paper. Taking this criterion into account, CAS
for continuous-time systems can be computed analogously
to the discrete-time case.

We claim criterion (29) is interesting, since it allows for an
a priori choice of ∆t depending on the desired accuracy.
Unfortunately, appropriate sampling times will be very
small, in general. Consequently, the number of iterations
that are necessary to approximate C∞ will be high. One
way to reduce the number of iterations will be to start
with sampling times larger than ∆t in order to derive
coarse outer approximations of C∞. Subsequently, the
required number of steps based on the small sampling
time ∆t should be significantly smaller. Future work has
to investigate such strategies.
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Blanco, T.B. and De Moor, B. (2007). Polytopic invariant sets

for continuous-time systems. In Proc. of the European Control

Conference 2007, 5087–5093.
Chmielewski, D. and Manousiouthakis, V. (1996). On constrained

infinite-time linear quadratic optimal control. System and Control

Letters, 29, 121–129.
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