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Abstract: This paper develops a novel non-optimality detection technique for continuous
processes based on the theory of process monitoring. Since the optimal statuses have some
common features so as to satisfy optimality necessary conditions, the distributions of process
variables are found to fall in some subspace that is determined from the disturbances. To detect
those statuses that are not optimally operated, non-optimality is considered as a special kind
of process fault. An equivalent interpretation is also provided to demonstrate the rationale
of proposed analogy. For illustration, the principal component analysis (PCA) is particularly
employed as a detection tool, whose effectiveness is verified through an exothermic reactor
example.
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1. INTRODUCTION

Chemical plants are often initially operated in the nominal
points, which are optimally determined at the process de-
sign phase. However, under various uncertain disturbances
(such as raw material quality variation, catalyst aging,
etc.), the process will deviate from the true optimum and
induce significant economic loss for plant operation. There-
fore, it is a natural motivation to increase the economic
profit by re-adjusting the operation such that the process
is again optimally operated in new circumstances, which
is the aim of real-time optimization (RTO).

A typical RTO solution, such as the so called two-step
approach (Chachuat et al., 2009), involves two steps,
namely disturbance estimation and re-optimization, which
are alternatively repeated in sequence. In such a two-step
RTO approach, the computation burden is intense because
it has to solve large scale nonlinear programming problems
in an acceptable time period, in order to quickly adjust the
plant operation, i.e. update the set-points of control loops
in the lower layer of a hierarchical control system in time.
However, such computation efforts may unnecessarily be
wasted or deficient in the following situations: (1) if the
disturbances remain relatively unchanged in certain RTO
cycles, the RTO procedures can be avoided because no
actions are actually needed; (2) the influences of various
disturbances are interacted, their effects may counteract
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with each other such that the overall operation may still
be optimal in spite of the existence of disturbances. In such
a case, the computation of RTO is also wasted; (3) In prac-
tical applications, the time interval of implementing RTO
is often set to be hours (Skogestad, 2004). However, there
is no information on how well the process is maintained in
optimality between two RTO updates, which is crucial for
daily operation.

Motivated by the reasons above, this paper develops a
non-optimality detection technique based on the theory of
process monitoring. By saying non-optimality, we refer to
those system statuses where the overall plant operation is
not optimal. Since the process operation is in a continuous
sense and the measurements are noisy, in practice, non-
optimality can be understood that the system deviates
from the optimality over a certain level. In the proposed
technique, the non-optimality is to be treated as a special
process fault and identified through a multivariate statis-
tical approach. To our best knowledge, such an idea has
not been reported in literature. For illustration purpose,
the principal component analysis (PCA) is employed as a
tool for non-optimality detection. The new technique can
be used for on-line monitoring of the system status, so
as to inform the control system whether it is necessary
to perform RTO, thus it overcomes the aforementioned
defects of a traditional RTO strategy.

The rest of the paper is organized as follows: Section 2
describes some features of the optimal statues and then
the principle of non-optimality detection is presented. In
Section 3, the mathematical formulations of PCA is briefly
reviewed. An example of exothermic reactor is studied in
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Section 4. The work is concluded with some discussions in
Section 5.

2. PRINCIPLE OF NON-OPTIMALITY DETECTION

2.1 Descriptions of Optimal Statuses

Consider a static optimization problem for continuous
processes with uncertainties

min
u

J(u, d) (1)

s.t.
g(u, d) ≤ 0 (2)

with available measurements

y = f(u, d) (3)

where J is a scalar cost function to be minimized, which
is assumed to be convex in this paper; u ∈ Rnu , d ∈
Rnd and y ∈ Rny are the manipulated, disturbance and
measurement variables, respectively; g : Rnu×nd ⇒ Rng

and f : Rnu×nd ⇒ Rny are the operational constraints
and measurement equations, respectively.

Denote the solution of the optimization problem (1) as
uopt, it can be easily shown that the following necessary
conditions of optimality (NCO) should be satisfied at
uopt (Ye et al., 2013)

ga = 0, ga ∈ Rna

∇rJ =
∂J

∂u
V2 = 0, ∇rJ ∈ Rnu−na (4)

where ga is a subset of g that are active and ∇rJ is the
reduced gradients. V2 is defined in the following way: let
the singular value decomposition of the Jacobian matrix
∂ga/∂u = USV T and V = [V1 V2], where V2 are nu −
na right singular vectors corresponding to nu − na zero
singular values. Therefore, the reduced gradients ∇rJ can
be intuitively interpreted as the gradients of objective
function J with respective to the remained degrees of
freedom of u after ga has been satisfied.

Let Π =
[
gTa ∇rJT

]T
be the overall set of NCO, which

includes a total number of nu equations to satisfy. Clearly,
for optimal statuses, the degree of freedom is nd, which is
determined from the number of system disturbances. Once
the disturbance values has been fixed, the optimal status
for the system states can be determined via satisfying the
NCO (4) and the process model.

Let x ∈ Rnx denotes the system states. The relationship
between optimal states xopt and the disturbances d can
then be represented in the following form

F (xopt, d) = 0 (5)

where F consists of the NCO and model equations, which
establishes an implicit mapping from d to xopt. For the
sake of simplicity in representation and without loss of
generosity, in the following derivations, we assume the
input u is included in the system state x and all the states
are measurable. Therefore, it is possible to approximately
write (5) in a linear quasi-steady state as (Qin, 2003)

Axopt +Bd = 0 (6)

yopt = xopt + n (7)

where A = ∂F/∂x (A ∈ Rnd×nx), B = ∂F/∂d (B ∈
Rnd×nd), yopt is the measurements in optimal statuses and

n is the noises. Denote B⊥ as the orthogonal complement
of B such that BTB⊥ = 0, left multiply the term (B⊥)T

for (6) gives

(B⊥)TAxopt ≡ Cxopt = 0 (8)

where C = (B⊥)TA. From above equation we see that xopt

lies in the orthogonal spaces of C, i.e.

xopt = (CT )⊥s (9)

where s denotes the independent component. Inserting
above equation into (7) we obtain

yopt = (CT )⊥s+ n (10)

from which we know that with the projection matrix C, the
observed measurements yopt can be compactly described a
lower nd-dimensional space. In other words, the common
features of optimal statuses can be equivalently interpreted
by some independent latent variables.

Therefore, using the theory of process monitoring, the
non-optimality as a special process fault, for which the
relationship in (10) is not satisfied, can be effectively
identified.

2.2 An Equivalent Interpretation

Before proceeding to introducing the PCA monitoring
tool, in this subsection we provide an equivalent inter-
pretation for the principle of non-optimality detection
technique, where it is demonstrated that non-optimality
actually amounts to a kind of biased sensor faults.

Consider a hypothesized control system CS1 where all
the NCO components, denoted as Π, are selected as the
controlled variables with 0 set-points. If we assume the
controllers include integral actions, so that Π = 0 can be
satisfied in steady state. Therefore, CS1 is always optimal
under any disturbance scenario with all the NCO satisfied.
Note CS1 is stated to be hypothesized because it may not
be practically realizable due to the measurability of Π.

Now consider a practical control system CS2 where a
measurable Π̂, which could be measurements or their
combinations, are the controlled variables, and without
loss of generality, they are all assumed with 0 set-points.
For comparisons, here we assume CS2 is not optimally
operated, i.e. there is some error ∆ = Π̂−Π 6= 0 between
Π̂ and Π, hence the integral controllers in CS2 will push
Π̂ = 0 and result in NCO violations with a magnitude of
∆.

Both CS1 and CS2 can be uniformly described in another
control system CS3, where the sensor for measuring the
controlled variables contain possible faults. As illustrated
in Fig. 1, CS1 is optimal where the controlled variables are
Π and the sensors output Π for the controllers, whereas
CS2 is not optimal where the controlled variables are
Π̂ and the sensors output Π̂. CS3 provides a uniform
framework where the sensors contain possible faults. In
CS3, the controlled variables are Π, however, the sensors
may output Π or Π̂ for the controllers. When the sensors in
CS3 are normal, CS3 is equivalent to CS1 which is optimal.
When the sensors in CS3 are faulty with a bias of ∆, CS3
is equivalent to CS2 which is not optimal.
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Fig. 1. Analogies between non-optimality detection and
sensor fault detection: (a) CS1 with normal sensors
(optimal) (b) CS2 with normal sensors (non-optimal)
and (c) CS3 with possible faulty sensors (normal:
optimal, faulty: non-optimal)

Through above analogies, the non-optimality detection
can be interpreted as detecting a kind of biased sensor
fault for CS3. Therefore, the procedures for non-optimality
detection are as follows:

(1) Collect sampling data for normal conditions in CS3,
which can be realized by off-line solving the optimiza-
tion problem (1) with different disturbance scenarios
using a process model and store the corresponding
measurements to form a database;

(2) Based on multi-variable statistical approaches, use
appropriate monitoring tools to build a monitoring
model and calculate corresponding control limits;

(3) On-line monitoring for sensor faults in CS3, which is
equivalent to non-optimality detection in this paper.

3. PRINCIPAL COMPONENT ANALYSIS

In this section, we briefly review a monitoring tool, namely
the principal component analysis (PCA), which is em-
ployed for non-optimality detection in this paper.

Denote the data samples for PCA modelling in a matrix
form Y opt ∈ RM×ny , where M is the number of sam-
ples. The row vector (yopti )T in Y opt denotes a group of
measurements associated with an optimal state. To obtain
Y opt, we can solve the optimization problem (1)-(2) under
various disturbance scenarios, and store the corresponding
measurements using measurement model (3). Normally
Y opt is firstly scaled to have zero mean values and unit
variance for each variable. The PCA form is represented
as

Y opt = TPT + E = TPT + T̃ P̃T (11)

where T ∈ RM×k and P ∈ Rny×k is the score and
loading matrix of principle components, respectively. E ∈
RM×ny is the residual matrix, T̃ ∈ RM×(ny−k) and P̃ ∈
Rny×(ny−k) is the score and loading matrix of residual
components, respectively. k is the number of principle
components, whose value can be determined from cross
validation or cumulative percent variance (CPV).

The various matrices in (11) can be obtained through
the symmetric eigenvalue decomposition for the covariance
matrix of Y opt, Σ = (Y opt)TY opt/(M − 1)

Σ =
[
P P̃

]
Λ
[
P P̃

]T
(12)

T = Y optP

T̃ = Y optP̃

where Λ is a diagonal matrix consists of all eigenvalues of
Σ, i.e.

Λ = diag{λ1, λ2, ..., λny} (13)

Through above steps, each row vector (yopti )T in Y opt can
be projected onto the principle and residual spaces

ŷopti = PPTyopti (14)

ỹopti = (I − PPT)yopti

where ŷopti and ỹopti is the projected vector onto the
principle and residual spaces, respectively, while satisfying

(ŷopti )Tỹopti = 0 (15)

yopti = ŷopti + ỹopti

Using the PCA, the original data can be described in the
reduced k dimensional uncorrected principle directions,
with most of the information retained. For PCA, the T 2

and SPE statistics can be constructed in the principle and
residual spaces, respectively. The T 2 statistic indicates the
variation extent of data in principle space, which is defined
as

T 2 = xTPΛ−1PTx (16)

If we assume the distributions of process data is Gaussian,
then the T 2 statistic is demonstrated to obey an F
distribution with k and N −k as the degrees of freedom in
normal conditions. Given a significance level α, the control
limit of T 2 statistic can be calculated and the process is
monitored as

T 2 ≤ T 2
α =

k(N − 1)

N − k
Fk,N−k;α (17)

Meanwhile, the SPE statistic indicates the distribution of
data in the residual spaces, which is defined as the norm
of projected residual vector

SPE = ‖x̃‖2 = ‖(I − PPT)x‖2 (18)

Similarly, the corresponding SPE control limit δ2α can also
be computed as Jackson and Mudholkar (1979)

SPE ≤ δ2α = θ1

(
1 +

cα
√

2θ2h20
θ1

+
θ2h0(h0 − 1)

θ21

)1/h0

(19)

where
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θi =

ny∑
j=k+1

λij , i = 1, 2, 3 (20)

h0 = 1− 2θ1θ3
3θ22

(21)

and cα is the normal deviate corresponding to the upper
1− α percentile.

4. ILLUSTRATIVE EXAMPLE: A REACTOR CASE

4.1 Process description

This is a continuous stirred-tank reactor (CSTR) where
a reversible exothermic reaction occurs in the CSTR, as
shown in Fig. 2 (Alstad, 2005; Kariwala, 2007; Ye et al.,
2013). The raw material is A and the desired product is B.
The inlet temperature, concentrations of A and B in the
feed are denoted as Ti, CAi and CBi respectively, whilst,
the outlet temperature, concentrations of unreacted A and
product B in the outlet stream are denoted as T , CA and
CB respectively.

TiCAi

CBi

T CA

CB

A→B

Fig. 2. Exothermic reactor process

The first principle models are composed of differential
equations for mass and energy balances

dCA
dt

=
1

τ
(CAi − CA)− r (22)

dCB
dt

=
1

τ
(CBi − CB) + r (23)

dT

dt
=

1

τ
(Ti − T ) + 5r (24)

where τ = 60 s is the residence time, and r is the rate of
reaction which is determined from other process variables

r = 5000e−
10000
1987T CA − 106e−

15000
1987T CB (25)

The classifications for manipulated variable, available
measured variables and disturbances are given as

u = [Ti]

y = [CA CB T Ti]
T

d = [CAi CBi]
T

For the measurements, the anticipated noises for measured
variables are all of Gaussian type, the means are all
assumed to be 0 and the standard deviation is considered
as 0.01 for the concentration CA and CB , and 0.5 for the
temperatures T and Ti. Disturbances are considered to be
uniformly distributed with varying ranges in 0.5 ≤ CAi ≤
1.5 and 0 ≤ CBi ≤ 0.5.

The objective of this CSTR operation is to maximize the
economic profit, which can be represented as minimizing
a cost function

Table 1. Process variables and nominal values
for exothermic reactor

Variable Physical description Nominal value

CA Outlet A concentration 0.498 mol·L�1

CB Outlet B concentration 0.502 mol·L�1

T Outlet steam temperature 426.803 K
Ti Inlet steam temperature 424.292 K
CAi Inlet A concentration 1.0 mol·L�1

CBi Inlet B concentration 0 mol·L�1

J Economic objective -5149.3 ×10�4$

J = −20090CB + (0.1657Ti)
2 (26)

where the first term of J is the negative profit of product
B and the second represents the cost of heating the input
stream. The nominal values for various process variables
are given in Table 1.

4.2 Non-optimality detection

The data set for building the detection model is generated
by off-line solving 500 optimization problems minimizing J
under different disturbances, which randomly vary within
the predefined ranges. Therefore, the data set obtains
distinct features belonging to optimal statuses of the
CSTR. For the PCA, the number of principle components
is set to be 2, which explained more than 99% of the
total variation. The confidence level α is set to be 0.99,
the control limits are calculated to be T 2

lim = 9.3330 and
SPElim = 0.0552, as stated in the previous section.

Two different testing data sets are used for performance
evaluation. Data set 1 contains 500 optimal samples which
are generated the same as the modeling data set, however,
with different random disturbances. Data set 2 contains
500 non-optimal samples whose economic costs are larger
than the minimal cost by more than 1%. The detection
performances are provided in Fig. 3, where the effective-
ness of proposed non-optimality technique is verified. It
can be found that most samples in Data set 1 fall in the
class of optimal status whilst most samples in Data set 2
are confirmed to be not optimal.

For more precise evaluation, the false detection rate for
Data set 1 and missing detection rate for Data set 2
are used as the indicators for performance evaluation, the
results are summarized in Table 2. For Data set 1, both
the T 2(0.006) and SPE(0.012) statistics give very low false
rates. For Data set 2, The T 2(0.11) gives a higher missing
rate than the SPE(0.022), which is in accordance with the
fact that the SPE statistic is generally more suitable for
detecting sensor fault than the T 2 statistic, where we have
provided an equivalent interpretation of non-optimality
detection to be a special kind of biased sensor fault. Be-
sides, the results indicate that the PCA algorithm exhibits
a better ability in monitoring the optimal samples than
the non-optimal samples, which means that the algorithm
is more apt to assign a sample to be optimal to avoid a
false alarm. This may be caused by the nonlinearity of the
CSTR process and a conservation solution is achieved for
non-optimality detection.

4.3 On-line monitoring

For on-line implementing the proposed technique, two con-
trol systems are simulated to evaluate their economic per-
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Fig. 3. Detection chart: (a) Data set 1; (b) Data set 2

Table 2. Summary of detection performance

Testing data set
Monitoring statistics
T 2 SPE

Data set 1: False rate 0.006 0.012
Data set 2: Missing rate 0.110 0.022

formances, which are configured with different controlled
variables.

The controlled variable in control system I is a linear
combination of measurements as

c1 = −0.1657CA + 0.1334CB + 0.0023T

with a set-point of c1,sp = 0.9771. The controlled variable
in control system II is a quadratic combination of mea-
surements as

c2 = −0.0349CA − 0.102CB − 0.00066T + 0.00116CACB

+ 1.3594× 10−5CAT + 0.00029CBT + 0.00014C2
A

− 0.00241C2
B + 7.8887× 10−7T 2

with a set-point of c2,sp = −0.1413. Both c1,sp and
c2,sp are calculated by substituting the nominal values of
measurements into their controlled variable expressions.
The simulated disturbance scenario is shown in Fig. 4,
where abrupt and large magnitude of step changes are
considered.

The closed-loop behaviors of the two control systems are
evaluated with applying the proposed detection technique.
To better verify the correctness of detection results, the
on-line trajectory of manipulated variable Ti and its true
optimal value (Note this would be unknown for real
applications) are also plotted for comparisons.

As shown in Fig. 5 for control system I, the detection
technique suggests that phases 0-1000 s, 3000-4000 s and
4000-5000 s are optimal where both T 2 and SPE statistics
are within alarm bounds (Strictly speaking, 0-1000 s and
4000-5000 s are suspicious because the SPE statistic lies
at the boundary), which coincide with the fact that Ti
runs near its optimal value. Phases 1000-2000 s and 2000-
3000 s are detected as non-optimal with SPE statistics out
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Fig. 4. Simulated disturbance scenario

of range, which are also in agreement with the fact that Ti
deviates significantly from its optimal value.
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Fig. 5. On-line monitoring results for control system I: (a)
trajectory of Ti; (b) T 2 statistic; (c) SPE statistic

Compared with control system I, control system II exhibits
better self-optimizing performances under uncertainties, as
indicated in Fig. 6. All phases are shown to be optimal
with neither T 2 nor SPE statistic violation (except for
suspicious phase 4000-5000 s whose SPE statistic lies at
the boundary). Note that occasional sudden violations for
T 2 and SPE statistics in the entire time range are due
to process dynamics, which can be overcome by certain
steady state conformation techniques to avoid a false
alarm.

It is observed that in both control system I and II, the
T 2 statistic has not successfully detected any non-optimal
operations, this is because the two control systems are
self-optimizing and the process is already near optimally
operated. For near optimal operations, the T 2 statistic
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exhibits a degraded performance compared with SPE
statistic. The failure of T 2 for detecting near optimality
operation can also be explained by the analogy in Section
2.2, generally, SPE is more sensitive for detecting sensor
faults than T 2 metric. On the other hand, it can be verified
that for an arbitrary Ti that far away from the optimum,
the T 2 statistic will trigger an alarm.
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Fig. 6. On-line monitoring results for control system II: (a)
trajectory of Ti; (b) T 2 statistic; (c) SPE statistic

Overall, in the above experiments, we conclude that
(1)control system II is superior to control system I that
it maintains the operation nearer to optimality under
uncertainties; (2) the proposed methodology is effective
for non-optimality detection.

5. CONCLUSION AND DISCUSSIONS

In this paper, a novel non-optimality detection technique
is proposed to evaluate whether the plant is optimally
operated. The key idea is to treat non-optimal statuses
as abnormal situations, which can be identified through
process monitoring means. A CSTR case is simulated
to verify the effectiveness of proposed technique, where
both off-line and on-line experiments are demonstrated.
Concerning the contribution of this work, the following
discussions are presented to point out possible directions
for future work:

• The commonest monitoring tool PCA is used for
demonstration. Since we have interpreted non-optimality
as a special kind of process fault, one can naturally
conclude that numerous tools developed in the field
of process monitoring (Ge et al., 2013) will also ap-
plicable. For more complex processes, the PCA may
not be sufficient hence more suitable monitoring tools
should be sought.

• The currentness of proposed technique relies on an
accurate model that describes the real plant. Howev-
er, there exists model and plant mismatch for most
of industrial practices. Under such circumstances, the
detection technique may probably give a false alarm
that unnecessarily interrupts normal operations. How
to develop solutions to the cases with model and
plant mismatch, and even those without any prior
knowledge on process model, is an open problem.

• One potential usage of proposed technique is as a tool
for evaluating the quality of plant operation and opti-
mizing performance of the control system. A natural
extension would be combining other techniques to
improve the RTO performance. For examples, in the
two-step RTO approach, the disturbance estimation
and re-optimization may only perform when a non-
optimality has been detected, thus reduce unneces-
sary and repeated computing resources. This promis-
ing usage for assisting in RTO can also be advocated
from another perspective. Traditional two-step R-
TO approach suffer from the “slowness” shortcoming
of RTO performances, recently, the self-optimizing
control (SOC) (Skogestad, 2000) has gained much
attention due to its superior performance in RTO
speed. A new type of hierarchical control structure
is currently under progress (Ye et al., 2014), where
the non-optimality detection runs at the optimization
layer and the SOC runs at the regular control layer,
both of which work complementarily to improve the
RTO performance of control system.
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