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Abstract:
This paper investigates the use of algebraic estimators for numerical filtering and derivation
applications. After giving some explanations for the choice of the estimator order, we focus
on the order one. The frequency and time responses are compared with standard filtering and
derivation methods, including the Kalman filter. These estimators are finally implemented and
tested with real sensor signals. Results show that for quite equivalent performances, Kalman
filter is less time consuming, while the first order algebraic filter is easier to implement without
a priori knowledge on the signal.

1. INTRODUCTION

Numerical estimation of noisy signal is a major challenge
in the field of real time applications. Numerical filters
are needed to extract the signal from noisy data; this
demand is even higher in case of derivation, which tends
to amplify the high frequency components of the signal,
thus increasing the effect of the noise.

Some solutions are well known in the literature [1]. On
the one hand, Finite Impulse Response (FIR) filters (for
instance a moving average or the Gaussian filter) are
commonly used due to the simplicity of implementation
and of their inherent stability [2]. They are only based
on the last measured data on a finite time window.
However, specific filtering requirements may raise the
window length, and thus the computational effort [1].
On the other hand, recursive filters, or Infinite Impulse
Response (IIR) filters use the previous values of the
estimation. They can reach sharper cut-off characteristics,
but on the cost of more tedious settings. Among them, the
Kalman filter [3] introduces an evolution model to improve
the estimation, thus requiring information on the noise
properties.

A new family of signal filters and derivators has been
introduced in the last decade: the algebraic estimators [4]
[5]. These estimators enable filtering and differentiation
by integration methods introduced by Lanczos in [6], they
have already been implemented in different applications
(for instance [7, 8]). In [9], the authors predict the fre-
quency response from the window length. This estimation
method has then been generalized using Jacobi polynomi-
als in [5, 10]. In [11], the noise error contribution of the
derivative estimation is investigated.

The purpose of this paper is to investigate the benefits
and the limits of the algebraic estimators for real time
filtering and derivation of signals. In the following, section
2 introduces the algebraic estimators and gives a geo-
metrical interpretation for the order one, sections 3 and
4 study the effect of the estimator’s order for filtering
and derivation applications. These estimators are then
compared to standard filtering and derivation methods,
and implemented on real signals in section 5.

2. STUDY OF THE ALGEBRAIC ESTIMATORS

2.1 Introduction to the algebraic estimators

The algebraic estimators are based on the approximation
p of a signal X(t) at time t0 by its truncated Taylor
expansion on a time window ]t0 − T, t0], where T is
the window length. For instance, the Taylor development
truncated at the first order is:

p(t− t0) = a0 + a1(t− t0) (1)

Per definition, a0 and a1 are respectively the estimation of
the signal and of its first derivative at time t0.

The order of the estimator corresponds to the order of
the Taylor development. Likewise, the order n estimator
can estimate the signal, and its n first derivatives. The
algebraic estimators can thus be implemented for both
signal filtering and derivation.

The terms of the Taylor development can be identified
by means of algebraic methods, based on the Laplace
transforms. The computation algorithm of the algebraic
estimators is intensively explained by Mboup et al in [4].
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For example, we give here the equations for the first order
algebraic filter (a0 in eq. 1):

a0 =
2

T 2

∫ T

0

(2T − 3τ)X(τ) dτ (2)

and for the first order algebraic derivator (a1 in eq. 1):

a1 =
6

T 3

∫ T

0

(T − 2τ)X(τ) dτ (3)

The definition of the algebraic estimators, based on oper-
ational calculus, may be difficult to interpret directly for
a non specialist. To easier the implementation of these
estimators, we seek a more intuitive understanding of
their properties.That is why we looked for a geometrical
interpretation for the first order algebraic estimators. The
following gives another demonstration for the equations 2
and 3, on the basis of simple geometrical considerations
on the signals.

2.2 Interpretation for the order one derivator

Let X be a noisy signal observed on a time window [t0 −
T, t0]. In the following, we are seeking an approximation

X̂ of the first derivative of X at time t = t0 − T
2 .

Fig. 1. Principle of the derivative estimation

Let P1(t1) and P2(t2) be two points of X such as t1 ∈ [t0−
T, t0 − T

2 [ , t2 ∈]t0 − T
2 , t0], and t1 − (t0 − T ) = t0 − t2

(see fig. 1). Let’s call τ = t0 − t2 . The slope a(τ) of the
segment [P1P2] is given by:

a(τ) =
X(τ)−X(T − τ)

T − 2τ
(4)

The first derivative of X at time t = t0 − T
2 can be

estimated as the mean value of the slope a(τ) when τ
varies from t0 − T

2 to t0. The slope is more sensitive to
high frequency noise when the points P1 and P2 are close
to the middle of the window. We should then weight the
calculation of the mean in order to promote the furthest
points. Different weighting functions have been explored,
and the following one allows to retrieve eq. 3:

w(τ) = (
T

2
− τ)2

Let a1 be the weighted average value of the slope:

a1 =
1∫ T

2

0
w(τ) dτ

∫ T
2

0

a(τ)w(τ) dτ (5)

Combining equations 4 and 5, we obtain:

a1 =
6

T 3

(∫ T
2

0

X(τ)(T − 2τ) dτ

−
∫ T

2

0

X(T − τ)(T − 2τ) dτ

)
With the variable change τ ′ = T − τ , we get:

a1 =
6

T 3

(∫ T
2

0

X(τ)(T − 2τ) dτ −
∫ T

2

T

X(τ ′)(T − 2τ ′) dτ ′

)

Which leads to the same formulation as in equation 3. We
have then shown that the first order algebraic derivator is
an estimation of the derivative of the signal at time t0− T

2 .

2.3 Interpretation for the order one filter

We are now seeking to estimate the signal at time t0. For
this purpose, we firstly estimate the signal with a simple
calculation of the mean 〈X〉 of the signal on the time
window. This estimation is delayed by T

2 .

〈X〉 =
1

T

∫ T

0

X(τ)dτ

The delay is then compensated thanks to the estimated of
the derivative a1 calculated in 2.2:

a0 = 〈X〉+
T

2
a1 (6)

We obtain:

a0 =
1

T

∫ T

0

X(τ)dτ +
3

T 2

∫ T

0

X(τ)(T − 2τ) dτ

Here again, we get the same formulation as in eq. 2.

2.4 Conclusion on the geometrical interpretation

We have demonstrated that this filter gives actually the
estimation of the signal at time t0 − T

2 via of standard
moving average with delay compensation. According to
eq. 6, this compensation is based on the estimation a1 of
the first derivative of the signal at time t0− T

2 . If the first

derivative changes during the interval [t0− T
2 , t0], the delay

compensation is faulty. Consequently, this filter tends to
lose accuracy and to generate distortion in the signal when
the signal second derivative is high.

In order to reduce the distortion, a solution would consist
in introducing a time delay δ in the estimator. This reduces
the effect of the delay compensation. The purpose is to find
an optimal compromise between delay and accuracy. The
delay compensation becomes (T

2 − δ)a1. Such an approach
has been studied in [5] and [10]. A major advantage for real
time applications is to have a steady and known delay.
However, a fine tuning of this parameter would require
precise a priori knowledge on the signal.

2.5 Numerical implementation

The equations 2 and 3 can be written on the form X̂ =∫ T

0

α(τ)X(τ)dτ . The implementation of the estimators

consists in an integration. This can be computed with a
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classical numerical integration method, for instance using
the trapezoid rule.

We obtain the typical expression for a finite impulse

response (FIR) filter: X̂ =

N∑
i=0

αN−iXi , where Xi are

the measured samples, X̂ is the estimate of X (or of its
derivative), N + 1 the number of samples in the time
window, and αi the filter coefficients.

In case of equally spaced samples (constant sampling
frequency), these coefficients can be computed a priori for
a given window length, thus reducing drastically the real-
time computational effort. In this case, the implementation
consists only in buffering the N + 1 last samples and
multiplying them by the steady filter coefficients αi.

3. ALGEBRAIC ESTIMATORS FOR FILTERING
APPLICATIONS

This section compares the performances of the algebraic
filters from order 0 to 3.

3.1 Study on the time domain

In this section, we investigate the algebraic filters in the
time domain. Fig. 2 shows the response of the algebraic
filters from order 0 to 3 for a sinusoidal signal (50Hz)
coupled with Gaussian noise (σ = 0.1). For this study,
the sampling rate of the signals is 10 KHz. The window
length of the filters is set to 2ms (i.e. 20 samples).
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Fig. 2. Response of algebraic filters to a noisy sinusoidal
signal

The 0 order filter has a delay of 1ms (the half on the
window length), as expected for a symmetrical window
FIR filter. For the higher orders, the response seems delay-
free.

To compare the noise attenuation, we look at the Signal-
to-Noise Ratio (SNR), defined by the ratio between the
mean power of the signal (Psignal) and the noise variance
(Pnoise). For a FIR filter, the response of a Gaussian white

noise is a Gaussian noise, whose variance (or mean power)
is given by:

Pnoise = σ2
N∑
i=0

α2
i (7)

where αi are the N + 1 filter coefficients and σ the noise
standard deviation [5]. For a noisy sinusoidal signal of
amplitude A, the SNR of the filter response is thus given
by:

SNR =
Psignal

Pnoise
=

A2

2σ2
∑N

i=0 α
2
i

(8)

Table 1 compares the SNR of the response of a noisy
sinusoid, with A = 1 and σ = 0.1, for the algebraic filters
of orders 0 to 3.

The unfiltered signal SNR is equal to 50 (=
A2

2σ2
).

Table 1. SNR of filtered noisy sinusoids for
algebraic filters

Algebraic filter order 0 1 2 3

response SNR 1025 266 124 74

For the 0 order, the noise is almost totally filtered (com-
pared to the input signal, the SNR is improved by a factor
20). For the order 1, the noise is well filtered (SNR is
improved by factor 5), while the remaining noise amplitude
increases for the orders 2 and 3.

3.2 Study in the frequency domain

Fig. 3 shows the transfer function of algebraic filters from
order 0 to 3, with a window length T = 2 ms.
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Fig. 3. Frequency response of the algebraic filters

It confirms the observation made in the time domain.
These filters are low-pass filters, whose cut-off frequencies
fc increase with the order of the filter. We note that fc
can be approximated according to the filter order n and T
the window length T by:

fc ≈
n+ 1

2T
(9)

As expected, the 0 order filter (in blue) bode diagram is
very close to a standard moving average.
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For the orders greater than 0, the phase lift is close to 0
at law frequency. It confirms that the filters do not induce
delay in the low frequency components of the signal. The
magnitude reaches a peak at a frequency slightly under fc.
The amplitude of this peak increases with the order of the
filter (first order: 1.3, second order: 1.9, third order:2.1).

3.3 Conclusion on the algebraic filters

Algebraic filters are a very simple and efficient method for
low-pass filtering. The only parameter, the window length,
defines the filter cut-off frequency.

While the 0 order filter is a standard moving average, the
filter with higher order are delay-free filters. Moreover,
these filters amplify a frequency range under the cut-off
frequency. The amplitude of this overshoot increases with
the order of the filter.

Increment the order of the filter results thus in increasing
the cut-off frequency, but also the signal distortion due
to the overshot, and increasing the computational effort.
This limits the interest for filters of order 2 or more.
Consequently, the first order filter is more suitable. The
implementation effort only consists in adapting the win-
dow length to the desired cut-off frequency, without any
other tuning parameter.

4. ALGEBRAIC ESTIMATORS FOR SIGNAL
DERIVATION

As well as the signal filtering, the algebraic estimators can
be used to estimate the first derivative of a signal. The
section compares the algebraic derivators from order 1 to
3. The sampling frequency is still 10 KHz and the window
length 2 ms.

4.1 Study of the algebraic derivators in the time domain
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Fig. 4. Response of algebraic derivators to a noisy sinusoid

The response of these derivators to a noisy sinusoidal
signal (50 Hz, σ = 0.1, as in section 3.1) is displayed in
Fig. 4. The derivative of the noiseless sinusoid is plotted
also (in magenta). While the order 1 derivator (in red)
gives an accurate estimation of the derivative, but with a

steady delay of 1 ms, the order 2 derivator response (in
blue) remains noisy. This is even worst for the order 3.

The SNR of the response can be calculated via equation
8, considering an amplitude A = 2πfsinus, where fsinus
is the input sinusoid frequency. The results are given is
table 2. They confirm the major deterioration of the noise
attenuation for the orders higher than 1.

Table 2. SNR of noisy sinusoid responses for
algebraic derivators

Algebraic derivator order 0 1 2 3

derivative SNR n.a. 35 2.3 0.4

Enlarging the size of the window would increase the
filtering effect (by reducing the cut-off frequency), but it
would also affect the accuracy of the derivation (the 50 Hz
sinusoid would be filtered too). It is then difficult to build
an accurate derivator of order 2 or 3 for this application.

4.2 Study of the algebraic derivators in the frequency
domain

The algebraic derivators achieve at the same time a signal
derivation and a noise filtering. In order to compare the
different derivators, we define the frequency response of
the estimator by comparing its frequency to those of a
perfect derivator. It means, a perfect derivator would have
a magnitude equal to 1 (no signal attenuation) and a phase
lift equal to 0 (no delay) on the whole frequency spectrum.

To do so, a step signal (whose derivative is an impulse), is
used as input signal. The Fast Fourier Transform (FFT)
of the output is divided by the FFT of an impulse
signal (considered as perfect derivative), and the result
is displayed in a Bode diagram (see Fig. 5). The window
length is still T = 2 ms.
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Fig. 5. Frequency response of the algebraic derivator

It confirms that the first order derivator has a steady delay
(phase lift proportional to the frequency). The order 2 and
3 derivators are theoretically delay-free (no phase lift at
law frequency). However, the attenuation of high frequency
noise is not sufficient to compensate the noise amplification
due to the derivation.

In the following, we will thus concentrate on the first order
algebraic estimators (filter and derivator) to understand
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their properties and compare their performances with
usual estimation methods.

5. COMPARISON A ALGEBRAIC ESTIMATORS
WITH USUAL ESTIMATION METHODS

In this section, the first order algebraic estimator is com-
pared to usual FIR and recursive filters. The moving av-
erage, the Gaussian filter and the Kalman filter have been
selected. The Kalman filter implemented in this compari-
son is described in the following part.

5.1 Implementation of the Kalman filter

The Kalman filter is well known in the field of numerical
signal estimation [3], we will thus not intensively recall its
principle. It can be used for denoising and derivation. In
this use case, the state vectorX, composed of the estimates
of the signal x̂ and of its first derivative ˆ̇x, can be estimated
using the following simple evolution model:

{
x̂i+1 = x̂i + dtˆ̇xi
ˆ̇xi+1 = ˆ̇xi

(10)

The Kalman filter parameters are set while assigning
values to the measurement noise matrix R and model noise
matrix Q.

R is the estimated value of the variance of the measure-
ment noise.

To define Q, the model error variance is estimated thanks
to the first truncated term in 10. The error for ˆ̇xi+1 is of

the order of dtˆ̈x, and the error for x̂i+1 is of the order of
dt2

2
ˆ̈x (which will be neglected if dt is small). We obtain:

Q =

(
0 0

0 Var(ˆ̈x)dt

)
(11)

To define the variance of ˆ̈x, we propose the following
method: (1) Looking at the physical property, we define
the upper limit fmax of the signal frequency range, on
which the effect of the filtering should be minimal (it
means that the desired filter cut-off frequency should be
above fmax).

(2) In the next step, we consider the sinusoidal signal
y(t) = sin(2πfmaxt), and tune Q so as to minimize the
effect of the filter on y. As ÿ(t) = −(2πfmax)2y(t), and

Var(sin(t)) =
1

2
, the variance of ÿ can be easily calculated.

We obtain: Q =

(
0 0

0
(2πfmax)2dt

2
)

)
Remark : the filter cut-off frequency depends on both Q
and R; however, its actual value should be slightly above
the frequency fmax.

As the matrix R and Q are time-invariant, the Kalman
gain matrix Ki and the error variance matrix Pi converge
to a steady state. This steady state gain, noted K, can be
computed a priori, thus reducing drastically the compu-
tational effort in case of a real time application. So, the

Kalman recursive algorithm is simplified: (1) prediction
phase: {

x̂−i = x̂i−1 + dtˆ̇xi−1
ˆ̇x−i = ˆ̇xi−1

(12)

(2) update phase:{
x̂i = x̂−i + k1(xi − x̂−i )
ˆ̇xi = ˆ̇x−i + k2(xi − x̂−i )

(13)

where k1 and k2 are the fixed gains of K, which can be
computed a priori via a recursive method.

5.2 Computational effort

In case of a real time embedded application, another inter-
esting filter characteristic is the computational effort. The
number of elementary operation needed to implement the
filter can be evaluated. The effort during the initialization
phase (for instance the coefficient or gain computation) is
generally not relevant and is hence not taken into account.

The moving average with a window length N is given by:

x̂i = x̂i−1 +
1

N
(xi − xi−N+1) (14)

where x̂i is the estimate of the signal x.

For FIR filters, like the algebraic or the Gaussian filters,
the estimate is given by :

x̂ =

N∑
i=0

αN−ixi (15)

where αi are the filter weighting coefficients.

The equations 12, 13, 14 and 15 lead us to the table
3, which compares the number of elementary operations
needed to implement each of these filters.

Table 3. Comparison of the computational
effort

Moving avg Algebraic filter Kalman

addition 2 N − 1 4

multiplication 1 N 3

The computational effort for a fixed-gain Kalman filter
is very low (7 operations for both the filtering and the
derivation). The effort for the algebraic filter increases
proportionally to the number of samples in the window.
For a small window, the effort stays comparable to the
Kalman filter. However, when the window size increases,
the algebraic filter becomes heavier.

5.3 Comparison in the frequency domain

We are here comparing the previously cited filtering meth-
ods (see Fig. 6). The parameters have been set to have a
similar cut-off frequency (around 500 Hz).

For the Kalman filter, the parameter fmax is set to 400 Hz,
and the matrix R is set to 0.01 (σnoise = 0.1). The window
length for the algebraic estimators (filter and derivator) is
2.5 ms, for the Gaussian filter: 1.4 ms and for the moving
average: 1 ms.

Like the algebraic filter, the Kalman filter presents a
magnitude overrun (but slightly less pronounced). The
phase lift at low frequency is zero for both, which indicates
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Fig. 6. Frequency response of the different filters

a delay free response. This is not the case for the moving
window and the Gaussian filter.

Concerning the derivation (Fig. 7), the Kalman and alge-
braic derivators (with the same parameters) have a very
similar frequency response.
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Fig. 7. Frequency response of the algebraic and Kalman
derivators

5.4 Comparison in the time domain

Fig. 8 provides the response of the filter and derivator to a
noisy sinusoid (50 Hz, σnoise = 0.1). The moving average
and the Gaussian filter have very similar responses. The
noise is well filtered, but with a delay of 1 ms. The
algebraic and the Kalman filters seem to be also very
similar. No delay is observed, but the signal is slightly
overestimated (+6% for both filters).

For the derivative estimation (the noiseless sinusoid deriva-
tive is plotted in magenta), here again the Kalman and
algebraic are very close. The delay is approximately 12
ms.

A quantitative comparison of the noise attenuation is given
by the SNR of the response of the noisy sinus. For the
FIR filters (moving window, Gaussian and algebraic), the
SNR computation is the same than in section 3. For the

0.04 0.045 0.05 0.055 0.06

−1

−0.5

0

0.5

1

time [s]

si
gn

al

 

 

0.04 0.045 0.05 0.055 0.06
−400

−200

0

200

time [s]

de
riv

at
e

 

 

input signal
sliding average
Gaussian filter
algebraic filter
Kalman filter

derivated sinusoid
algebraic derivator
Kalman derivator

Fig. 8. Response to a noisy sinus

Kalman filter, the estimate of the remaining noise variance
is estimated by the diagonal terms of the steady error
variance matrix. The resulting SNR are compared is table
4 (Note that the unfiltered input signal SNR is 50).

Table 4. SNR of noisy sinusoid responses for
different estimators

Filter type Moving avg Gaussian Algebraic Kalman

filtering 500 484 315 262

derivation n.a. n.a. 60 11

For all filters, the SNR shows a very good noise attenua-
tion. Even better for the moving average and the Gaussian
filter, but on the cost of a delay. For the derivators,
the noise attenuation is slightly better for the algebraic
estimator than for the Kalman filter. This result should
however be interpreted carefully due to the different SNR
calculation methods for the two estimators.

5.5 Implementation on real signal

The wheel speed belongs to the most relevant signals in the
field of vehicle control. This signal and its derivative are
important inputs for algorithms of many advance driving
assistance systems, such as the ESC (Electronic Stability
Control) and the ABS (Anti-lock braking system).

The wheel speed is measured via inductive sensors fixed in
front of a rotating impulse wheel (toothed wheel or multi-
pole magnet ring). The lack of precision of these mea-
surements induces noise in the signal. Signal estimation
and filtering derivation are consequently generally required
upstream of the algorithm.

This section compares the previously studied filtering and
derivation methods applied on a wheel speed signal. The
signals have been acquired on a test vehicle.

To apply the algebraic filter, the first step is to choose
the window length. Fig. 9 compares the result of different
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window length on the filter response. The best compromise
between noise attenuation and signal delay is reached with
a window lenght between 200 ms and 300 ms.
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Fig. 9. Effect of the window length on the first order
algebraic filter

For the fixed gain Kalman filter, the first step consists
in estimating the measurement noise (here, σnoise '
0.2rad/s). The optimal gains can be chosen by varying
the parameter fmax (see Fig. 10). The best compromise is
reached with fmax = 0.3 Hz.
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Fig. 10. Effect of the parameter fmax on the Kalman filter

We can know compare the 2 estimators on this signal (Fig.
11). The 2 methods give comparable results for the signal
filtering, but the algebraic filter seems more reactive for the
derivation. This may be improved by tuning the Kalman
parameters. However, it exemplifies the difficulty to choose
the optimal Kalman gains for real world application, where
the noise properties may vary.

6. CONCLUSION

The algebraic estimators are powerful FIR filters, which
can be used for low-pass filtering and signal derivation.
For both applications, the first order estimator offers
the more suitable compromise between noise attenuation
and signal distortion. The comparison with a fixed-gain
Kalman filter shows very similar performances. Despite
a slightly higher computational effort than the Kalman
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Fig. 11. Estimation and derivation of wheel speed signal

filter, the main advantage of this filter is the simplicity
of the implementation: only one parameter defines the
filter cut-off frequency, while the Kalman implementation
requires a priori knowledge of the noise variance and the
signal dynamics. Moreover, the filter properties can be
adapted in real time by varying the window length (and
thus recomputing the weighting parameter), what would
be more tedious for adaptating Kalman gain.
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dérivateurs algébriques. In XXIIe Colloque GRETSI.

[10] Liu, D. Y., Gibaru, O., and Perruquetti, W. (2011).
Differentiation by integration with Jacobi polynomi-
als. Journal of Computational and Applied Mathemat-
ics, 235(9), 3015-3032.

[11] Liu, D. Y., Gibaru, O., and Perruquetti, W. (2011).
Error analysis of Jacobi derivative estimators for
noisy signals. Numerical Algorithms, 58(1), 53-83.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9158


