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Abstract: Visual homing which is behavior-based can make use of the natural landmarks to achieve 
homing in the unstructured environment. The local features, represented by the SIFT (Scale Invariant 
Feature Transform), have a variety of invariance and are quite suitable as the natural landmarks. Many 
visual homing methods can exhibit high precision only when the landmarks meet to isotropic distribution. 
However, most of the local feature extraction algorithms have not taken into account the uniformity of 
the feature distribution. Based on the initial SIFT, an improved feature extraction algorithm called UD-
SIFT (Uniform Distribution-SIFT) is obtained which can improve the uniformity. The visual homing 
experiments are carried out indoors and in the corridor, using the ADV (Average Displacement Vector) 
and ALV (Average Landmark Vector) methods which are both based on the panoramic vision. The 
results turn out that the UD-SIFT algorithm has improved the feature distribution and the robot homing 
precision. 

Keywords: visual homing; uniform distribution; SIFT feature; panoramic vision. 

 

1. INTRODUCTION 

Autonomous navigation is a challenging task in robotics. 
Some insects own incredible abilities of navigation. Inspired 
by this, some researchers have started studying the navigation 
methods that are based on insect behaviours. Among these 
methods, the visual homing methods have attracted much 
attention due to their low computation complexity and 
memory resources. In visual homing, there have been two 
major theories on the description of localization information: 
template hypothesis and parameter hypothesis (Moller 2001). 
Between them, the template hypothesis, which is mainly 
based on the snapshot model (Cartwright & Collett 1983), 
has a great influence. The snapshot model has been employed 
in the control of Micro Air Vehicle (Garratt & Lambert 2013) 
and robot. Hong et al. conducted homing experiments based 
this principle (Hong & Tan 1992) and came up with the ADV 
(Average Displacement Vector) method (Franz & Schölkopf 
1998). The representative model of parameter hypothesis is 
the ALV (Average Landmark Vector) method (Lambrinos & 
Möller 2000), where the agent localizations are denoted by 
two dimensional vectors.  

In both template and parameter hypothesises, there is a need 
of feature extraction from surrounding environments. During 
the verification experiments, artificial landmarks were widely 
used. In order to get around the limitation of use of artificial 
landmarks in un-structured environments, many researchers 
extract local invariant features as natural landmarks (Argyros 
& Bekris 2005). The SIFT (Scale Invariant Feature 
Transform) features (Lowe 2004) were widely employed in 
visual navigations due to their invariance to transform, 
rotation, changes in illumination and scale, and occlusion 
(Churchill & Vardy 2008). Ramisa et al. conducted homing 
experiments using ALV method by extracting SIFT features, 
and drew a conclusion that the homing precision of ALV 

method was affected by the uniformity of feature distribution 
(Ramisa & Goldhoorn 2011). In the ALV method, there is no 
specific requirement on isotropic landmark distribution. 
However, due to the lack of depth information, the ALV 
method implies an equal-distance assumption (Yu & Lee 
2012). In addition, the ADV method is directly built on the 
equal distance assumption (Lambrinos & Möller 2000). 
Though SIFT features have good invariance, there is no 
control on the distribution. The majority of versions of SIFT 
algorithms have focused on the phase of feature description, 
and only a few have improved the feature extraction (Lingua,  
& Marenchino 2009, Sedaghta & Mokhtarzade 2011). 

In this paper, we extend the conventional feature extraction 
algorithm SIFT to UD-SIFT (Uniform Distribution-SIFT). 
Compared with the SIFT, the proposal is capable of acquiring 
uniformly distributed features to improve the homing 
precision. The effectiveness of this algorithm was verified 
indoors and in the corridor, using the ADV and ALV 
methods. 

2. ROBOT HOMING METHODS 

For various visual homing methods, the homing precision 
increases with the uniformity of feature distribution. To 
identify the improvement of the proposed UD-SIFT 
algorithm, the ADV and ALV methods, which are influenced 
greatly by the feature distribution, are adopted in this study. 

2.1 Average Displacement Vector 

The landmark equal distance assumption is a key in many 
visual homing methods, and ADV is directly based on this. 
According to this assumption, the landmarks have the same 
distance from the agent location. What’s more, the 
probability of observing the landmarks is assumed to be 
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identical, regardless of the agent location. With regard to all 
displacement vectors, the vector components orthogonal to 
the direction of the movement can cancel each other when all 
displacement vectors are added up under the circumstance. 

When the robot moves from the home position to the current 
position, the landmark bearings iL  change from H

iθ  to C
iθ  

(Fig. 1). Then the homing direction i
Lβ  is computed 

according to (1). The homing vector M
→

 and direction δ
→

 are 
obtained by adding up all the features’ homing direction. The 
error η  between the actual homing direction and ideal 
homing direction will decrease as the robot gets closer to the 
home position. In addition, this method needs the assist of 
angle sensor, or the initial bearing remains unchanged. 
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Fig. 1. Computation of the homing direction. 
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2.2 Average Landmark Vector 

The landmark vectors 1LV
→

 and 2LV
→

 are unit vectors from 
robot position to landmark 1l  and 2l , respectively (Fig. 2). 
The average of all the landmark vectors is named as the 
average landmark vector. It is obvious that this vector can 
represent the features of different positions. The homing 

vector M
→

 can be computed according to (5) by comparing 

the average landmark vector CALV
→

 and HALV
→

 in current 
and home positions. 

2l

1LV
→ 2LV

→

1l ALV
→

 

Fig. 2. Model of the ALV. 

1

1,
n

C H i
i

M ALV ALV ALV LV
n

→ → → → →

=

= − = ∑          (5) 

3. EXTRACTION OF THE UD-SIFT FEATURE 

In the initial SIFT algorithm, the Gaussian pyramid is 
obtained by sub-sampling the original image and using a 
Gaussian kernel with different scales. The images of 
difference-of-Gaussian pyramid are differences between 
adjacent Gaussian images. The locations and scales of 
features are acquired by searching for local maximums. 
During the extraction phase, there is no control on the feature 
distribution. In the case that the distribution of features is 
uneven, the homing performance will turn down.  

Because of the smoothing characteristics of the Gaussian 
kernel used in generating the pyramid, the image details and 
the number of features tend to decrease with the increase of 
Gaussian scales. Thus the number of features in each scale 
layer of each octave is set in an inverse proportion to the 
corresponding Gaussian scale. Supposing that the number of 
key-points extracted by the standard SURF algorithm in the 
scale layer (s) of the octave (o) is osN , and the corresponding 
Gaussian scale is osσ , osN  is inversely proportional to osσ . 
If the required number of features is N  and the proportion of 

osN  is osP , then 
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During the construction of Gaussian pyramid, the Gaussian 
scale in the same scale layer of different octaves is identical. 
To discern the difference of feature number among different 
scale layers, the number of extracted features in each scale 
layer is determined by (7).  
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Then the distribution of features in each scale layer is 
considered. In consideration of the use of panoramic images, 
each scale layer can be divided into regular sector rings along 
the radial and circumferential directions, as shown in Fig. 3. 
The number of sector rings in the scale layer (s) of the octave 
(o) is osn , and the osN  features should be evenly distributed 
in these sector rings. Supposing that the initial number of 
key-points in the ith sector ring is im , the average contrast is 

con
iM , and the spatial divergence factor is dist

iD , the required 
number i

osN  is computed according to (10). jE  is entropy of 
a circular region around the feature, and lq  is the histogram-
driven probability within the region. By the control of feature 
number in each scale layer and sector ring, uniformly 
distributed features are obtained. 
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Fig. 3. Division of the DoG image. 

In accordance with the aforementioned procedure, the UD-
SIFT feature extraction algorithm is as follows. 

(1) The initN  initial key-points are extracted by the SIFT 
algorithm, and those with low contrast and strong 
responses along edges are eliminated. Too many points 
increase the computing time. On the contrary, the low 
number may give rise to false matches. So it is necessary 
to determine the required number N  according to 
different environments. 

(2) Compute osN according to (6) and (7). 

(3) Divide each scale layer into osn  sector rings and 
compute the required number i

osN . In each ring, 2 i
osN×  

features with the highest entropy are reserved. And then 
i
osN  features with the highest contrast are selected. In the 

cases where it is not possible to select the required 
number of features in each ring, the problem of 
insufficient features will be addressed by a proportional 
increase of feature number in other rings. 

4. EXPERIMENTS 

Our experiments were performed with a crawler mobile robot 
(Fig. 4), which was equipped with a digital compass. A 
panoramic vision system with a 360o visual field, composed 
of a mirror with a diameter of 100 mm and a camera with a 

resolution of 800 × 800, was mounted on top of the robot. 
When the robot moved indoors, N  is a third of initN . When 
the robot moved in the corridor, N  is two thirds of initN . 
The difference-of-Gaussian pyramid had four octaves, and 
each octave had five scale layers, that is to say, 4O =  and 

5S = . There were 5 5 4× ×  sector rings in each scale layer of 
the first octave, and the others were 4 4 4× × , 3 3 4× ×  and 
2 2 4× × , respectively. The radius of the circular region used 
to compute the entropy in (9) was set at 4.5 osσ× . What’s 
more, numW  and distW  were experimentally set at 0.2 and 0.3, 
respectively. In addition, the compass was used to compute 
the bearing of the robot.  

 

Fig. 4. Experimental system. 

4.1 Homing Indoors 

Forty locations in a room of 10m×5m were selected to 
capture panoramic images (Fig. 5). The number in the circle 
was the location number, and the location with number of 23 
was the home position. Moreover, the direction of arrow was 
the homing direction by calculation. Fig. 6(a)-6(d) were the 
homing errors using the initial SIFT algorithm and UD-SIFT 
algorithm with ADV and ALV methods, respectively. 
Obviously, the homing errors were relatively small when the 
UD-SIFT algorithm was applied. This can be explained by 
the improvement of feature distribution.  
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(a) ADV (SIFT)            (b) ADV (UD-SIFT) 
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(c) ALV (SIFT)            (d) ALV (UD-SIFT) 

Fig. 5. Vector maps of homing indoors. 

        

(a) ADV (SIFT)            (b) ADV (UD-SIFT) 

        

(c) ALV (SIFT)            (d) ALV (UD-SIFT) 

Fig. 6. Homing errors indoors. 

4.2 Homing in the Corridor 

Ten locations in the corridor of 15m×3m were selected to 
capture panoramic images (Fig. 7). The location with number 
of 40 was the home position. Fig. 7 shows the vector maps of 
homing using different methods, and Fig. 8 corresponding to 
the homing errors. Though the homing errors in the corridor 
were relatively high, the UD-SIFT algorithm indeed 
improves the homing precision.  
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(c) ALV (SIFT)            (d) ALV (UD-SIFT) 

Fig. 7. Vector maps of homing in the corridor. 

     

(a) ADV (SIFT)           

 

  (b) ADV (UD-SIFT) 

     

(c) ALV (SIFT)         

 

    (d) ALV (UD-SIFT) 

Fig. 8. Homing errors in the corridor. 

4.3 Analysis of Experimental Results  

The experimental results show that the UD-SIFT algorithm 
has improved the homing performance of both ADV and 
ALV methods. The average homing errors obtained through 
the above experiments are presented in Table 1. The increase 
of homing precision is credited to the improvement of feature 
distribution. In addition, the experimental results further 
validate that the ADV and ALV methods will perform better 
with uniformly distributed features.  

Table 1. Average homing errors (°) 

Environment ADV ALV 
SIFT UD-SIFT SIFT UD-SIFT 

Indoor 35.4 21.1 31.2 17.6 
Corridor 56.3 36.9 53.7 33.4 
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The better results were obtained with the panoramas captured 
indoors, compared with the results obtained in the corridor. 
When the robot moves in the region with high length-width 
ratio, the imaging positions on the panorama get closer to 
each other as the increase of distances between features and 
the robot (Fig. 9), thus the uniformity of feature distribution 
is worse.  

C2C1

F2F1

 

Fig. 9. Feature projection in the panorama. 

5. CONCLUSION 

Autonomous navigation is the critical technology for mobile 
robot to realize intelligence. Visual homing, which is inspired 
by insect navigation, is an important research direction due to 
the advantages of low storage and simple computation. When 
the robot performs tasks in un-structured environments, it 
often needs to extract local invariant features as nature 
landmarks. What is more, the distribution of features always 
affects accuracy. In order to increase the uniformity of 
feature distribution, an improved feature extraction algorithm 
UD-SIFT is proposed. The experimental results show that the 
UD-SIFT algorithm does significantly improve the feature 
distribution and homing accuracy. However, the number of 
extracted features is manually determined in advance. The 
robot can succeed in homing with only a few features. The 
restriction on number of features without decrease in homing 
accuracy will be the focus of future research. 
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