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Abstract: We analyze the robustness of a system-level genetic circuit which is constructed
by a bottom-up strategy. The latest trend in synthetic biology is to create large-scale and
complex genetic circuits realizing desired programmable functions. An approach for the creation
is bottom-up construction, that is, well-characterized small-scale circuits are coupled into large-
scale system-level circuits involving desired programmable functions that can be predicted from
the modules. However, in general, an intrinsic property in a circuit may be broken by internally
connecting external circuits. We analyze a successful circuit created by a bottom-up construction
strategy to identify the reason behind a successful synthesis. Utilizing the robustness analysis
method based on the structured singular value, we can guarantee the validity of the bottom-up
construction.

Keywords: Robustness; Bi-stability; Biocybernetics; Structured singular value; Uncertain
dynamical systems.

1. INTRODUCTION

In synthetic biology, the researchers pursue, through de-
sign and construction of new biological circuits realizing
desired functions, for fundamental understanding of vital
functions in every living organisms and utilizing them to
medical treatment. To achieve them, many module-level
biological circuits, that is, circuits realizing desired prop-
erties, have been created, for example, genetic oscillators
by Atkinson et al. [2003], Stricker et al. [2008], Del Vecchio
et al. [2008], Kim &Winfree [2011], genetic toggle switches
by Gardner et al. [2000], Atkinson et al. [2003], Loinger &
Biham [2009], and so on. In the last decade, the trend in
the research field has been changed from creating module-
level circuits into assembling modules to create system-
level circuits, that is, circuits realizing desired controllable
functions Purnick & Weiss [2009]. However, few successful
examples have been reported for the system-level circuit
synthesis. In general, system-level circuits become larger
and more complex than module-level circuits. Thus, it is
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difficult to obtain the exact mathematical models of the
entire systems. In addition, there are many physical pa-
rameters we have to tune for large-scale circuits. There are
only few system-level circuits constructed in a systematic
way.

Guido et al. [2006] and Padirac et al. [2012] take bottom-
up approaches in system-level circuit construction. The
strategy is that well-characterized modules are coupled
into complex large-scale systems involving desired pro-
grammable functions that can be predicted from the mod-
ules. A successful example by Padirac et al. [2012] is
realized by construction of enzyme-catalyzed, DNA-based
reactions in vitro. The purpose of Padirac et al. [2012]
is to create biological switchable memories which emulate
rewritable memory storages with 1-bit capacity, the motif
of which is illustrated in Fig. 1. Although conventional
module-level switches (Gardner et al. [2000], Atkinson
et al. [2003], Loinger & Biham [2009]) only possess bi-
stability properties, i.e., there exist two stable equilibria
in the phase space, the system-level circuit created by
Padirac et al. [2012] has an ability that a state near one
equilibrium can be flipped to the other equilibrium by
injecting an external molecular stimulus into the circuit.
Successful switching behavior is observed in vitro experi-
ments as well as numerical simulation.
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Fig. 2. Switchable memory circuit (a) is transformed to
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However, the reason behind the success of the construction
is still unclear theoretically. In general the problem arises
that bi-stability of a core circuit may be broken by an
external circuit that is internally connected in the core.
It may be expected that the bi-stability can be preserved
in the entire system if the core circuit has high robust-
ness against parametric variations, which is evaluated in
the same way as many robustness analysis problems of
biomolecular systems (see, e.g., Kim et al. [2006], Ghaemi
et al. [2009], Chen et al. [2010], Waldherr & Allgöwer
[2011], Cosentino & Bates [2012]). However, the robust-
ness against parametric perturbations does not relate to
that against dynamic perturbations and the feedback-type
connection of external circuits cannot be represented by
parametric variations of the core circuit but by dynamic
perturbations. Therefore, we must evaluate robustness
against the connection of circuits which is not determined
at the step of construction.

In this paper, we analyze the switchable memory created
in the previous work by Padirac et al. [2012] and reveal
the reason behind the success. In order to evaluate the
reasonability of the switchable memory system, we use the
structured singular value to represent robustness against
additional circuit connection. Then, we can guarantee the
validity of the bottom-up construction. Finally, we propose
a bottom-up strategy which assembles core circuits with
high dynamic robustness to create system-level biomolec-
ular circuits.

Notation: R+ = [ 0, ∞ ). The poles (system poles) of a
linear system ẋ = Ax are defined by the roots of the
characteristic polynomial ϕ(s) := det (sI−A). In addition,
an unstable pole is defined as poles lie in the open right
half-plane.

2. SWITCHABLE MEMORY AND MOTIVATION

In this section, let us review the differential equation model
of the switchable memory created by Padirac et al. [2012],
which is illustrated in Fig. 2.

To construct the switchable memory systems, the paper
by Padirac et al. [2012] starts with the design of the
core circuit based on three enzyme-catalyzed, DNA-based
reactions. The mathematical model of the core circuit is
described by the Michaelis-Menten-type differential equa-
tions

Σ :



dα

dt
=

tαα

1 + α+ λαiα
− α+ w1,

dβ

dt
=

tββ

1 + β + λβiβ
− β + w2,

diα
dt

=
tiαβ

1 + β
− iα,

diβ
dt

=
tiβα

1 + α
− iβ ,

(1)

where α, β, iα, iβ ∈ R+ are the state variables (concen-
trations of proteins and their inhibitors), w1, w2 ∈ R+

are the external signals, tα, tβ , tiα, tiβ are the scaled
template concentrations with positive values, and λα and
λβ are the ratios of binding constants of activators over
that of inhibitors with the values (λα, λβ , tiα, tiβ) =
(100, 100, 30, 30) and tα, tβ ∈ [1, 30]. Let x = [α, β, iα, iβ ]

T.

For the differential equation model (1), there exist three
equilibria in R4

+: the origin xe
0 = 0,

xe
1(tα) =


−1 + tα

0
0

3(−1 + tα)

10tα

 , xe
2(tβ) =


0

−1 + tβ
3(−1 + tβ)

10tβ
0

 .

We perform bifurcation analysis (see, e.g., Wiggins [2003],
Kuznetsov [2004]), i.e., stability analysis of xe

1(tα) and
xe
2(tβ) for all parameter values tα, tβ ∈ [1, 30]. The

result of the analysis is illustrated in the bifurcation
diagram as Fig. 3 (a). The model is said to be bi-stable
if both of the equilibria xe

1(tα) and xe
2(tβ) are stable,

while we call mono-stable when one of them is stable
and the other is unstable. The core circuit is supposed
to have bi-stable equilibria depending on the value of
the parameters. The volume of the bi-stability region
is identified with the robustness of the bi-stability in
conventional robustness analysis of biomolecular systems
(Kim et al. [2006], Ghaemi et al. [2009], Chen et al.
[2010], Waldherr & Allgöwer [2011], Hori et al. [2011],
Cosentino & Bates [2012]). The bi-stability of the module
is robust for parametric perturbations when the parameter
region is sufficiently large. As illustrated in Fig. 3 (b), we
have bi-stable behavior of the module on the red region
in the parameter space P = {(tα, tβ) | tα, tβ ∈ [1, 30]},
although all initial states converge to a unique fixed point
on the blue region in P. Fig. 3 (b) illustrates some state
trajectories on the phase space of the core module model
(1) for the parameter values (tα, tβ) = (20, 20).

After the core circuit (1) with the bi-stability property
is designed, the following external controller described
by ∆ = diag{∆1, ∆2} is connected to the module. The
symbols ∆1 and ∆2 are represented by

∆1 :
diδα
dt

=
tiδαα

1 + α
− iδα, w1 =

tδαδ

1 + δ + λδαiδα
,

∆2 :
diδβ
dt

=
tiδββ

1 + β
− iδβ , w2 =

tδβδ

1 + δ + λδβiδβ
,

(2)
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Fig. 3. Bifurcation diagram (a) and phase portrait (b) of
core circuit.
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Fig. 4. Integral curve (a) and trajectory (b) of switchable
memory.

where δ ∈ R+ is the external stimulus which is used to
control the core circuit (1), iδα, iδβ ∈ R+ are the states
of ∆ (concentrations of inhibitors for δ), and tiδα, tiδβ ,
λδα, and λδβ are the positive constants. Then, a system-
level circuit achieving desired programmable function is
constructed as illustrated in Fig. 2 (a). The integral curve
and trajectory of α and β of the switchable memory (Σ,∆)
from the initial state x(0) = xe

1 are illustrated in Fig. 4.
In the figure, we consider (tiδα, tiδβ , tδα, tδβ , λδα, λδβ) =
(5, 5, 120, 120, 30, 30) and the external stimulus δ is deter-

mined by the dynamics δ̇ = −δ+ δimp. The states α and β
of Σ can be controlled by δ. The sufficiently large impulsive
stimulus δimp is injected in the switchable memory (Σ,∆)
at the time t = 10 and 100. By the stimulus the state can
be flipped from an equilibrium point to the other point.
Due to such a function, the switchable memory can be
utilized as a biological memory storage.

We discuss the implementability of the switchable memory
in vitro and in vivo from a theoretical point of view. By
Padirac et al. [2012], switching behavior is successfully
observed in vitro experiment as well as the numerical sim-
ulation described above. However, the reason behind this
experimental success and the perspective to those in vivo
are still unclear. As shown in later sections, the external
controller ∆ of (1) can affect the desirable bi-stability of
the core circuit Σ under the existence of persistent external
stimulus δ. Actually, in vivo experiment, δ is fluctuated by
the expression of other intracellular genes. In addition, we
need to consider cell heterogeneity if the module Σ and
controller ∆ are implemented in intracellular genes. This
heterogeneity can be represented by parametric variations
of the module Σ, for example, the parameters tα and tβ are
affected by cell population dynamics, which are assumed
to be fast (see e.g., Belta et al. [2001]). In view of this,
we analyze the robustness of the bi-stability of Σ, i.e., the
stability of xe

1(tα) and xe
2(tβ) and the instability of the

origin, taking these dynamic uncertainties into an explicit
account. This enables us to characterize the class of allow-
able external controllers ∆, and also to perform reliable
switchable memory synthesis. To this end, we propose a
dynamic robustness analysis method in the next section.

3. GENERAL ANALYSIS METHOD

3.1 Robust stability and instability

First, the switchable memory (Σ,∆) is transformed into
a feedback form as is illustrated in Fig. 2. In Fig. 2
(b), the signals w and z are given by w = [w1, w2 ]

T

and z = [α, β ]T. For a general discussion of robustness
analysis, we consider a general nonlinear feedback system
(ΣNL,∆NL). The core circuit Σ of (1) is generalized to the
nonlinear differential equations ΣNL

ΣNL : ẋ = f(x,w), z = g(x,w),

where x ∈ Rn is the inner state vector and w ∈ Rm is the
input. The symbol ∆NL is the operator that represents
the external circuit w = ∆NLz.

To discuss the local stability and instability of a specific
steady state (x,w) = (xe, 0), the differential equation
model of ΣNL is linearized to

ΣL : ˙̃x = Ax̃+Bw, z = Cx̃+Dw,

where A = ∂f/∂x, B = ∂f/∂w, C = ∂g/∂x, and D =
∂g/∂w at the steady state (x,w) = (xe, 0). We characterize
the class of external circuits ∆NL such that the stability
and instability of the equilibria xe

0, x
e
1, x

e
2 of the core circuit

ΣNL are robustly preserved in the entire feedback system.

We review the robustness of the stability and instability
of ΣL against the dynamic perturbation w = ∆NLz. An
approach to the robustness analysis is based on small-gain
stability/instability theorems (Zames [1966], Zhou et al.
[1996], Takeda & Bergen [1973], Desoer & Vidyasagar
[1975], Inoue et al. [2013a,b,c]). For this, we give the
conditional L2 gain (Takeda & Bergen [1973], Desoer &
Vidyasagar [1975]) as

µ(S) := inf{µ > 0 : ∥Sw∥ ≤ µ∥w∥, ∀w ∈ M(S) },
where M(S) in L2 is a linear manifold defined by

M(S) := {w ∈ L2 : Sw ∈ L2}.
The manifold M(S) is the class of all inputs that cancel
all unstable modes in S. We can define the linear manifold
M(S) in the L2 space and have the conditional L2 gain
µ(S). When the system S is L2 stable, M(S) is equivalent
to the L2 space itself and µ(S) is equal to the L2 gain.

Remark 1. When a system S is finite-dimensional and
linear time-invariant, we can show that the gain µ(S) is
equivalent to the L∞ norm of S (see e.g., Zhou et al.
[1996]). Suppose that S is represented by ΣL with the
Jacobian matrix A having no eigenvalue on the imaginary
axis. Then, the L∞ norm of ΣL is defined by

∥ΣL∥L∞ ≜ sup
ω∈R

σmax{C(jωIn −A)−1B +D},

where σmax{·} is the maximum singular value of a matrix.

We consider the following assumptions on the external
controller ∆NL and the feedback system (ΣL,∆NL).

A1) The external controller ∆NL has the unique stable
equilibrium ξe and its L2 gain µ(∆NL) is finite.
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A2) The feedback system (ΣL,∆NL) is well-posed and its
equilibrium is uniquely determined as [ 0, ξe ]T.

The last part of Assumption A2 implies that the equilib-
rium xe in ΣNL on which we focus is independent of ∆NL,
and conversely δe of ∆NL is independent of ΣNL. Under
Assumptions A1 and A2, we obtain the following theorem
(Takeda & Bergen [1973], Inoue et al. [2013a,c]).

Theorem 2. Suppose that ΣL is hyperbolic and its origin
is stable (unstable). Then, the equilibrium [ 0, ξe ]T of the
feedback system (ΣL,∆NL) is stable (unstable) if

µ(ΣL)µ(∆NL) < 1 (3)

holds.

Remark 3. The condition of the theorem is only a suffi-
cient condition for the stability/instability of the feedback
system (ΣL,∆NL). However, in the following sense, the
theorem provides a necessary and sufficient condition. Sup-
pose that ΣL is hyperbolic and the number of unstable
poles is P ≥ 0. Then, the number of unstable poles for
the linearization of the feedback system (ΣL,∆NL) at the
equilibrium [ 0, ξe ]T is P if and only if (3) holds (see Inoue
et al. [2013b] for details).

Remark 4. In assumption A1, the uniqueness of equilibria
looks severe for large-scale bio-molecular systems. How-
ever, in this paper, we focus only on a bottom-up con-
struction of a bio-molecular system by assembling smaller-
scale circuits. We consider that ΣNL is small-scale, for
example it is module-level or part-level circuit. Therefore,
we assume A1 in this paper. In addition, we can relax
Assumption A2. The robustness analysis methods for the
uncertain system (ΣNL,∆NL) with uncertain-independent
equilibria are extended into that for an uncertain system
with uncertain-dependent equilibria using the information
on the steady state gain of ∆NL (Inoue et al. [2014]). The
details are omitted in this paper.

The inequality (3) is represented by µ(∆NL) < 1/µ(ΣL).
Therefore, the value 1/µ(ΣL) implies the maximum al-
lowable gain of ∆NL such that the stability or instability
of ΣL is preserved in the feedback system. In this sense,
the reciprocal number of the conditional L2 gain µ(ΣL) is
regarded as the robustness measure for the preservation of
stability and instability of an equilibrium.

Remark 5. The conditional L2 gain µ(S) of a nonlinear
dynamical system can be evaluated by the combinations
or multiplications of the gains of nonlinear static functions
and linear time-invariant systems. This fact is illustrated
by the external circuit ∆1 of (2) as follows. The input-
output relation w1 = ∆1α is supposed to be decomposed
to

S1 : u =
tiδαα

1 + α
,

S2 :
diδα
dt

= −iδα + u,

S3 : w1 =
tδαδ

1 + δ + λδαiδα
Then, the gain µ(∆1) of the nonlinear dynamical system
∆1 can be evaluated by the multiplication µ(S1)µ(S2)µ(S3).

The gain of a nonlinear static function y = h(z) such as
S1 and S3 is given by the derivative as sup |dh/dz|. In
addition, the gain of a linear time-invariant system is given
by the L∞ norm. Therefore, we can evaluate the gain of a
nonlinear dynamical system.

Remark 6. Further, for the analysis above, µ(ΣL) can be
replaced by the structured singular value, which is used
in robustness analysis and robust controller synthesis of
feedback systems (Doyle [1982], Packard & Doyle [1993],
Balas et al. [1993]). In the value we can consider the
information of the block-diagonal structure on ∆NL to
obtain more precise evaluation on the dynamic robustness
of ΣL. Although it is difficult to compute the value directly,
we can obtain its upper bound as infM µ(MΣLM

−1) by
using scaling technique with the matrix M that includes
the structure on ∆NL (see the papers by Doyle [1982],
Packard & Doyle [1993], Balas et al. [1993] for details).

3.2 Robustness against activator/inhibitor connection

In the above, we assume that there is no a priori in-
formation on ∆NL except for its gain. For additional
information that ∆NL is activator or inhibitor, that is,
the feedback connection behaves as positive feedback or
negative feedback, we can obtain more precise analysis
results on the robustness. Suppose that ∆NL behaves
as an activator and it is represented as ∆NL = γ(I −
∆scaled), where γ > 0 and ∆scaled is the operator satisfying
∆scaled ∈ U(1) := {D |µ(D) ≤ 1 and A1, A2 hold}. Then,
the feedback system composed of ΣL and such a ∆NL

can be equivalently rewritten as another feedback system
composed of the linear dynamical system

Σ̂L :

{
˙̂x = {A+ γB(I − γD)−1C}x̂+B(I − γD)−1ŵ

ẑ = (I − γD)−1(Cx̂+Dŵ)

and the perturbation

ŵ = ∆γ ẑ, ∆γ := −γ∆scaled ∈ U(γ).
Then, by utilizing the analysis method discussed above,
we can evaluate the robustness against the connection of
activators. Conversely, the uncertain inhibitor w̃ = ∆NLz̃
is represented by w̃ = −γ(I−∆scaled)z̃. In a similar way, we
can obtain the following system equivalently transformed
from the feedback system composed of ΣL and such a
∆NL:

Σ̂L :

{
˙̂x = {A− γB(I + γD)−1C}x̂+B(I + γD)−1ŵ

ẑ = (I + γD)−1(Cx̂+Dŵ)

and ŵ = ∆γ ẑ, ∆γ ∈ U(γ) in order to evaluate the
robustness against the connection of inhibitors.

4. ROBUSTNESS ANALYSIS OF SWITCHABLE
MEMORY

4.1 Robust bifurcation analysis

We perform the robustness analysis of the switchable
memory (Σ,∆) of (1) and (2) to guarantee the validity
of the bottom-up construction. Suppose that γ < 1. Then,
we have the three equilibria xe

0 = 0 and
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xe
1(tα, γ) =

[
−1 + tα + γ

1− γ
0 0

3(−1 + tα + γ)

10tα

]T
,

xe
2(tβ , γ) =

[
0

−1 + tβ + γ

1− γ

3(−1 + tβ + γ)

10tβ
0

]T
,

which are determined by the core module Σ and the
external circuits ∆i : wi = ±γ(1−∆i,scaled)z, ∆i,scaled ∈
U(1), i = 1, 2. We analyze the robustness of the stability
of xe

1(tα, γ) and xe
2(tβ , γ) against connecting ∆ and the

parametric variations in the core module which relates to
the cell heterogeneity in order to characterize the class
of the external controller ∆ such that the bi-stability
is preserved. To this end, we evaluate the robustness of
the stability and instability against both dynamic and
parametric perturbations using Theorem 2, Remark 6, and
the discussion in Subsection 3.2.

The analysis results are illustrated in Fig. 5. The diagrams
are called robust bifurcation diagrams (see Inoue et al.
[2013c] for details). In the diagrams, we compute the
maximum value of infM µ(MΣLM

−1) defined for the three
equilibrium points and check the inequality condition
maxxe infM µ(MΣLM

−1) < 1/γ at each parameter point
in P = {(tα, tβ) | tα, tβ ∈ [1, 30]}. The bi-stability is robust
against dynamic uncertainty when the color is red, while
the mono-stability has high robustness when the color is
blue. Both bi-stability and mono-stability are fragile and
easily broken on the white region.

Fig. 5 (a) and (b) indicate that the connected circuits
∆i,scaled, i = 1, 2 activate α and β with the gain γ = 0.3
and 0.5, respectively. The robust bi-stability regions are
shrunk or completely broken compared with the nomi-
nal bi-stability region of Fig. 3 (a). Therefore, it is not
guaranteed that the bi-stability is preserved in the entire
system, if the external controller behaves as an activator.
In addition, even though the bi-stability can be preserved,
it is fragile for parametric perturbations of tα and tβ .
Fig. 5 (c) and (d) indicate that the connected circuits
inhibit α and β with the gain γ = 0.3 and 0.5, respectively.
The robust bi-stability regions in the inhibition cases are
almost equivalent to the bi-stability region in for the non-
perturbation case illustrated in Fig. 3 (a).

We can see from the figures that there are some parameter
points that the bi-stability is robust against both dynamic
and parametric perturbations. In addition, the core circuit
is robust for self-feedback-type inhibitions of α and β,
although it is fragile for self-feedback-type activations of α
and β. Since the external controller considered in Padirac
et al. [2012] behaves as an inhibitor for the core circuit,
the switchable memory is reasonable and we can support
its validity theoretically. In Fig. 5, we choose the specific
values of γ with no experimental evidence. However, from
the analysis, we reveal the class of controllers that can be
connected into the core circuit with bi-stability preserved.
In addition, the analysis provides us a design guideline,
e.g., the candidates of adequate parameter values for the
core circuit.

4.2 Bottom-up strategy for further circuit construction

Based on the above discussion, we propose a construction
strategy of system-level biomolecular circuits.
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Fig. 5. Robust bi-stability region.

Step 1. Design a module-level circuit Σ that has a desired
property that need to be controlled, such as bi-stability or
oscillation.

Step 2. Evaluate the dynamic robustness of the module
Σ. First, determine the connection port for the external
controller. Then, perform bifurcation analysis including
the evaluation of the dynamic robustness 1/µ(Σ) against
dynamic perturbations, which express dynamics caused by
connecting the controller that is not known in this step.
We can obtain the maximum allowable gain µ(∆) of the
controller such that the property of the core module is
preserved in the entire system (Σ,∆).

Step 3. Design an external controller and tune its parame-
ters such that the gain is less than the threshold evaluated
in Step 2. Then, assemble the controller and the core
module to construct a system-level circuit that realizes
desired programmable functions.

5. CONCLUSION

We analyzed the switchable memory constructed by
Padirac et al. [2012] and evaluates the reasonability of
the bottom-up construction strategy. Furthermore, we pro-
posed a novel bottom-up construction strategy for system-
level circuits by assembling modules-level circuits with
high dynamic robustness.

The construction procedure can be further employed for
a variety of system-level biomolecular circuits by assem-
bling modules-level circuits. For example, we expect the
construction of a controllable oscillator by evaluating the
robustness of the instability of an equilibrium.
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