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Abstract: Two decades ago, a predictive PI controller was introduced for regulation of dead time
dominated linear time-invariant first-order processes. The introduction involved a simple tuning rule with
consideration on easy implementation and good performance. Later, the predictive PI controller has been
improved by having an additional low-order filter in the controller structure against high-order modeling
uncertainties. Also, several publications have been released with a detailed analysis on performance and
robustness in particular with comparison of predictive and conventional PI(D) controllers. However,
there have not been tuning rules with a design parameter for fine-tuning performance and dealing with
robustness. In this paper, stability and robustness of a predictive PI without an additional filter for any
time-invariant system is considered resulting in tuning rules for an optimal performance with a targeted
robustness against model mismatch. Consequently, simple controller tuning rules are given for a first-
order plus dead time and integrating plus dead time systems.
Keywords: Robust, predictive, PI controller, tuning, dead time.

1. INTRODUCTION

The  Smith  predictor  by  O.J.M  Smith  (1957)  served  as  a
starting point for Hägglund’s innovation (1992, 1996) on a
predictive PI controller (PPI) for processes with long dead
times.  Later,  robustness  of  the  PPI  has  been  improved  by
Normey-Rico et. al (1997) and studied by Ingimundarson &
Hägglund (2001). Recently, some PPI controller variants and
an event-based PPI controller for event-triggered control has
been proposed by Airikka (2012) and, also, expansion of the
PPI to a PPID controller for integrating dead time dominated
systems (Airikka, 2013b).

Stability of a PPI controller was not studied by Hägglund
(1992, 1996) originally. A detailed Nyquist stability analysis
for the PPI controller was given by Airikka (2013a). The
stability analysis applies to any linear time-invariant single-
input single-output process expressed by its frequency
response. The same frequency response based approach has
been  used  as  a  basis  for  robust  and  optimal  PPI  controller
tuning presented in this paper. A cornerstone for the approach
lies  on  the  work  done  for  the  PI  controller  by  Åström et.  al
(1998).

The  paper  is  outlined  as  follow.  Section  2  introduces  a  PPI
controller, section 3 gives insight to PPI controller stability,
section 4 introduces existing PPI controller tuning rules and
section 5 proposes a new optimal and robust frequency
response -based tuning method with simplifications to
FOPDT (First-Order Plus Dead Time) and IPDT (Integrator
Plus Dead Time) systems. Finally, section 6 concludes the
paper.

2. PPI CONTROLLER

A closed loop system with a predictive PI controller (PPI)
built on a PI controller is illustrated in figure 1. The PPI
controller output, control, )(tu is generated by

t

Lt

pred

t

ip dukdektektu )()()()(
0

(1)

where )(te  is a control error at time t . Process dead time
estimate L  and predictive gain predk  are PPI controller

parameters whereas proportional gain pk  and integral gain ik
are PI controller parameters. Optionally, the integral gain can
be given using an integral time it for ipi tkk / . The PPI

controller (1) has four tuning parameters: pk , ik , predk  and L .

Figure 1. Predictive PI controller (PPI).

In Laplace domain, the PPI controller  can be expressed as a
series connection of a PI controller skksk ippi /)( and a
prediction filter )(sf  (see fig. 2) for allowing prediction with

)()()()()()( sesksesfsksu PPIpi where
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The prediction filter includes both predictive gain predk  and
the dead time estimate L  as  design  parameters.  Figure  3
illustrates the amplitude of the prediction filter for different
predictive gains and dead time estimates.

Figure 2. Predictive PI controller (PPI) represented in a
series connection of PI controller and prediction filter f(s).

Figure 3. Amplitude responses for a prediction filter f(s).
Upper: kpred = 0, 0.1, 0.2, 0.3, 0.4, 0.5 with L = 4. Lower: L =
0, 2, 4, 6, 8, 10 with predk = 0.1.

Compared to the PI controller, the PPI allows larger
controller gains resulting in a better setpoint following and
load disturbance compensation. Compared to other dead time
compensation techniques, the PPI is computationally simple
to implement, easier to tune and, most of all, it is capable of
regulating integrating processes without requiring any
structural modifications like e.g. Smith predictors do.

Figure 4. Setpoint and load disturbance responses (upper)
with control signals (lower) for PI (dotted) and PPI (solid)
controlled FOPDT system when k = 1, T = 1 and L = 2, 5, 7.

Figure 5. Setpoint and load disturbance responses (upper)
with control signals (lower) for PI (dotted) and PPI (solid)
controlled IPTD system when k = 1 and L = 2, 5, 7.

3. PPI CONTROLLER STABILITY

Given any linear time-invariant process using its frequency
response )( jg  with gain )(r and phase )(

)()()( jerjg         (3)

and a PPI controller consisting of a PI controller )( jk pi

and a prediction filter )( jf  with predk  and L

i
ppi

k
jkjk )(         (4)

)()(
)1(

)( fer
ekj

jjf fjL
pred

         (5)

where > 0 is frequency (rad/sec), the Nyquist stability
criterion is expressed as

0)()()(1)(1 jfjkjgjl pi         (6)

with the loop transfer function being fgkl pi . After solving

(6) for proportional gain pk  and integral gain ik , the
following equations in terms of frequency  are obtained

)()(
))()(cos(

)(
f

f
p rr

k         (7)

)()(
))()(sin(

)(
f

f
i rr

k         (8)

Note that the formulas (7-8) are much simpler to compute
than those presented in Airikka (2013a). The parameters

)(pk and )(ik  define a closed stability region on (kp, ki)
plane for the PPI controller as illustrated in figure 6. Any
value taken outside the region results in an unstable closed
PPI control loop. By setting either 0predk  or 0L , the
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prediction filter reduces to a unit gain 1)( jf  with
1)(fr  and 0)(f  and the formulas (7-8) are

simplified to

)(/)(cos)( rk p         (9)

)(/)(sin)( rki       (10)

representing the stability region for a PI controller as given in
Åström et. al (1998). The PI controller stability regions by (9-
10) are plotted in figure 6 for comparison (dotted line).

Figure 6. PPI controller stability regions for FOPDT (left)
and IPDT (right) systems with  predictive gains predk  = 2/T,
1/T and 0.5/T for FOPDT (k = 1, T = 1, from top to bottom

TL / = 2, 5, 7) and predk  = 2/L, 1/L and 0.5/L for IPDT (k
= 1, from top to bottom L = 2, 5, 7).

A PPI controller stability region (fig. 6) increases with the
increased predictive gain predk  and decreases to the stability

region of a PI controller (fig. 6, dotted) for 0predk  or
0L . All the stability regions shrink as a function of

increasing dead time.

4. EXISTING TUNING RULES

In his paper, Hägglund (1992) gave an interesting PPI
controller tuning rule for a FOPDT process by suggesting

ipredip tkTtkk /1,,/1       (11)

The tuning rule is a direct consequence of placing closed loop
poles of a PPI controlled FOPDT process to its open loop
process poles. The selected criterion makes the practical
tuning rather easy but it does not involve a design parameter.
Later, Airikka (2013a) proposed a PPI tuning

)/( kTTk clp , Tti , clpred Tk /1       (12)

where clT  is a design parameter for adjusting the closed loop
time constant for setpoint response. The closed loop time
constant clT  affects not only the predictive gain predk  but also

the proportional gain pk . Nevertheless, both of the tuning
rules apply only to FOPDT systems (18) with a time constant
T. To the knowledge of the author, there are no other reported
PPI controller tuning rules other than above for linear time-
invariant processes.

Basically, the dead time compensation using a PPI controller
allows tuning of the proportional and integral part like the
process was having no dead time. But apparently this holds
only if the process model is accurate with no model
mismatch. In practise, this assumption must be relaxed to
allow model uncertainties and, therefore, robustness and
optimality are considered when proposing a new tuning
method.

5. ROBUST AND OPTIMAL TUNING

It was Schei (1994) and, later, Åström et. al (1998) who first
proposed an appealing PI control design strategy. The
objective was to minimise the integrated control error (IE)
over infinity for a step load disturbance affecting process
input. To guarantee robustness against model uncertainties,
the maximum sensitivity sM  (1.2 – 2.0) was used as an
optimisation constraint as the inverse of the maximum
sensitivity sM  is the shortest distance between the critical
point (-1,0) and the loop transfer function on Nyquist plane

)(min)(1min1 fjl
M s

      (13)

After solving the necessary condition of (13) for the PPI
controller’s proportional and integral gain, the following is
obtained

)()(
))()(cos(
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f

f
p rr

k       (14)
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)()(
/
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f

sf

f

s
ii

rr
M

rr
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kk

      (15)

For completed and elegant computation, the sufficient
conditions 0/)( ddf  and 0/)( 22 dfd  could be
solved resulting in an implicit equation for  similar to that
reported for a PI controller by Åström et. al (1998). For
practicality, here it is proposed to compute the gains (14-15)
for > 0 up to the frequency for -270° phase. Then, the
maximum integral gain )(max *

ik  with its frequency and

the corresponding proportional gain is selected.

Figure 7 illustrates sM -curves for a FOPDT system (left)
with k = 1, T =  1  and TL / = 2, 5, 7 for sM = 1.2, 1.4,
1.6, 1.8 and 2.0 and the same sM -curves for an IPDT system
(right) with k = 1 and L = 2, 5, 7.   Selection of the maximum
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integral gain out of each sM -curve satisfies the optimal
criterion of min(IE) with a design constraint sM .  For  a  PI
controller, the formulas (14-15) reduce to

)(/)(cos)(* rk p       (16)

))(/()()(* rMkk sii       (17)

as shown by Åström et. al (1998).

Figure 7. PPI controller’s sM -  curves  for  FOPDT  with

predk  = 0.5/T (left) and for IPDT with predk  = 0.5/L  (right)
with the stability boundaries (dotted) when delay L increases
from top to bottom.

Figure 8. Sensitivity functions (left) and Ms circles with loop
transfer function (right) for a PPI controller for FOPDT with
k = 1, T = 1 and TL / = 2, 5, 7 (top to bottom).

Figure 9. Sensitivity functions (left) and Ms circles with loop
transfer function (right) for a PPI controller for IPDT with k
= 1 and L 2, 5, 7 (top to bottom).

Figure 10. PPI controller setpoint and load disturbance
responses (left: output, right: control) for FOPDT with k = 1,
T = 1 and TL / = 2, 5, 7 (top to bottom).

Figure 11. PPI controller setpoint and load disturbance
responses (left: output, right: control) for IPDT with k =  1
and L 2, 5, 7 (top to bottom).
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Robust and optimal tuning (14-15) assumes the predictive
gain predk  to be given, particularly requiring consideration on
how to select the predictive gain. Intuitively, )/(1 Tk pred

is proposed for a FOPDT system and )/(1 Lk pred  for  an
IPDT system with 55.0 . However, to come up with
easy memorable, yet robust tuning rules, FOPDT and IPDT
systems are in particular next considered using (12) with clT
as a design parameter for adjusting both the closed loop
speed and robustness to modelling uncertainties.

5.1 FOPDT systems

Consider a FOPDT (First-Order Plus Dead Time) system

0,0,
1

)( kLe
Ts

ksg Ls

       (18)

First, using a pole placement design with a pole cancellation
(Panagopoulos et. al, 1997) with dead time set to L = 0, the
following with an addition of clpred Tk /1  is obtained

Tt
kTTkTLTk

i

clclp /))/((
       (19)

Note that the tuning rule (19) equals to (12). Next, using the
pole placement design without pole cancellation
(Panagopoulos et. al, 1997) with L = 0, the following with an
addition of clpred Tk /1  is resulted

22

)/()2(

clcli

clclp

TTTt

kTTTk
      (20)

Third, the improved SIMC method (Skogestad, 2012)
suggests the following tuning rules for L = 0 and, once again,
with an addition of clpred Tk /1

cli

clp

TTt
kTk
4,min

)/(1
      (21)

Figures 12-14 show results obtained for a FOPDT system
with a normalized dead time ratio 7,5,2 . The results
show PPI controller parameters in upper figures (from left to
right: proportional, integral and predictive gain) and
performance indexes in lower figures (from left to right:
maximum sensitivity, IAE for setpoint, IAE for load
disturbance). All the figures have a closed loop time ratio

LTcl / = 0.5 – 3 as horizontal axis and curves with 7,5,2
going from top to bottom. The results show that increasing

clT  decreases the maximum sensitivity but increases IAE or
both setpoint and load disturbance responses. The fastest
performance can be found within LLTcl ...5.0  and more
conservative performance by setting LTcl . Note that when
using tuning (20), the controller parameter get non-positive
for TTcl 2 limiting the usability of the tuning rules.

Figure 12. PPI controller performance for FOPDT with pole
placement design (19) having pole cancellation for L = 0.

Figure 13. PPI controller performance for FOPDT with pole
placement design (20) without pole cancellation for L = 0.

Figure 14. PPI  controller  performance  for  FOPDT  with
improved SIMC method design (21) for L = 0.

5.2 IPDT systems

Consider an IPDT system (Integrator Plus Dead Time)

0,0,)( kLe
s
ksg Ls

             (22)
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The pole placement design (Panagopoulos et. al, 1997) with
an addition of kpred = 1/Tcl  results in the following tuning rule

clcli

clcl

cl
p

TTLt
kTTLk

TL
k

22

2
)(

2
2       (23)

Second, the improved SIMC method with L = 0 suggests

cli

clp

Tt
kTk

4

)/(1
      (24)

Figure 15. PPI controller performance for IPDT with pole
placement design (23) for L = 0.

Figure 16. PPI  controller  performance  for  IPDT  with
improved SIMC method design (24) for L = 0.

The pole placement based design results in the best IAE
performance for LLTcl 7.1...2.1  but  at  the  huge  cost  of  the
robustness with the maximum sensitivity being much larger
than 3. All in all,   the aggressive tuning causes a robustness
issue for LTcl 5.2 . The recommended range is thus only for

LTcl 5.2 . The SIMC method provides fast but robust tuning
for LLTcl 5.1... and more conservative tuning for LTcl 5.1 .

6. CONCLUSION

In industrial process control, quite many processes with
relatively long dead times can be encountered. Among known
dead time compensation methods, a predictive PI (PPI)
controller is one of the simplest but yet rather effective.
Methods for tuning the PPI controller are still rather few, and,
therefore, this paper proposed a new frequency response
based PPI controller tuning method where the integrated
control error for the step load disturbance is minimised while
robustness is secured using a maximum sensitivity as an
optimisation constraint. However, as the predictive gain is no
involved in optimisation, some guidelines for its selection
were  also  given  using  a  closed  loop  time  constant  as  a
criterion. Finally, simplified tuning rules for FOPDT and
IPDT systems were given and compared.
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