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Abstract: With increased market competition and advances in modern manufacturing technologies, 

requirements on customer orders and manufacturing conditions have become more diversified. This paper 

addresses a dynamic production planning problem for a steel plate fabrication plant with practical 

flexibility of both customers and manufacturing, such as steel slab-plate matching rules, plate substitution 

options, production line assignment. These flexibility factors can provide the decision maker with auxiliary 

options to satisfy customer requirements through realizable production planning. The steel slab-plate 

matching rules combined with plate substitution options are visualized by a networked graph and 

formulated by a set based design. A mixed-integer nonlinear programming (MINLP) model that 

incorporates various manufacturing constraints and the flexibility is proposed to simultaneously optimize 

production strategy and provide practical managerial information such as backlogging/inventory level, 

capacity availability, and also steel slab demand. Linearization methods are used to transform the original 

MINLP problem into mixed integer linear programming (MILP) model resulting in easier and quicker 

solutions. A real industrial steel plate fabrication plant is used as a case and illustrates the effectiveness and 

applicability of the proposed method. 



1. INTRODUCTION 

Rapid changes in manufacturing industry and global market 

competition increase the requirement of developing effective 

and reliable operations management strategies. The aim of 

the operation management strategies is to assure that 

production is done in the best way possible. Finding the 

optimal production planning is not a trivial problem since the 

production operation environment is very flexible, and is 

subject to both varying customer requirements and varying 

manufacturing conditions.  In this paper, the focus is on 

exploring how these flexibility factors and variations, 

encountered in many steel plate fabrication plants, can be 

translated into a production planning problem. The solution 

to the production planning problem can then be used to 

assure that the production is done in an optimized way.  

The flexibility to be addressed can act at different levels or on 

different objects at different time scales. In the perspective of 

orders, customer requirements are not always fixed, as they 

may accept a list of steel plates (end-items) rather than a 

specific one. Therefore, the decision maker has some 

flexibility in choosing a preferred product to satisfy the 

customer orders, which can be optionally substituted by 

certain alternative en-items. This paper considers substitution 

among steel plates that can either take place by directly 

replacing a specific steel plate by that of higher grade (better 

quality) or by re-manufacturing steel plate with specific 

dimensions so that it can fulfil the requirements. In addition, 

variations in the steel fabrication environments complicate 

the operations and bring more flexible conditions, such as 

flexibility in steel slab matching, production routing 

assignment, capacity allocation and even supplies of steel 

slabs. Under these varying conditions, a systematic approach 

is required when designing an effective production planning 

strategy that should operate both reliably and economically.  

In the past decades, several researchers have drawn attention 

to improving the steel production and management. Zanoni 

and Zavanella (2005) studied the production-inventory 

system with finite capacity for steel fabrication, where just-

in-time (JIT) environments are considered to find the optimal 

production scheduling and available warehouse space. 

Neureuther et al. (2004) presented a three-tiered hierarchical 

production plan (HPP) model in which an aggregated linear 

programming (LP) model, a non-linear programming (NLP) 

disaggregated model and a master production schedule (MPS) 

model were comprised in a make-to-order (MTO) steel plant. 

Spengler et al. (2007) developed a revenue management 

approach through formulating a multi-dimensional knapsack 

problem to provide decision support in order promising. Liu 

et al. (2006) established an order-planning strategy to assign 

finish time of each process based on due date, capacity and 

other constraints.  

However, the above researches address the production 

planning problem only under fixed production and service 

scenarios. Very little research has focused on the existing 

flexibility that is presented in production planning for iron 
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and steel enterprises. Balakrishnan and Geunes (2003) 

considered the product-specification flexibility in a MTO 

specialty steel plate industry. In this article, customers are 

willing to accept steel plates within a certain range of sizes 

where the operations manager must decide the size of the 

finished item. As’ad and Demirli (2010) addressed downward 

substitution between the two different grades of steel bars 

which is applied to rolling horizon implementation of MPS in 

steel rolling mills. The above two approaches address the 

flexibility of sizes and grades of the steel end-item 

respectively. 

In this paper, based on the studies of production planning 

strategies and production characteristics in steel fabrication 

plant, a production planning model for steel plates is 

presented. The production planning model will optimize 

production-inventory system, which incorporates the flexible 

operations including steel slab-plate matching, steel plate 

substitution, production routing assignment and capacity 

allocation. A networked graph and a set based approach are 

proposed to depict and formulate the steel slab-plate 

matching rules and plate substitution options. The design and 

optimization of the proposed model lead to a complex 

MINLP problem which might result in massive 

computational efforts. Therefore, linearization techniques are 

developed to transform the original MINLP model into an 

MILP model. Finally, the proposed approach is applied to a 

case study, in order to illustrate its effectiveness and potential. 

2. FLEXIBILITY FOR STEEL PLATE FABRICATION 

In steel plate fabrication plant, products of the primary steel-

making process called as steel slabs are cooled and stored in 

semi-product warehouse for steel plates and defined by their 

steel grade and dimensions. The selected slabs are firstly 

heated up to high temperatures in the furnace with a limited 

capacity, then taken to the corresponding rolling production 

lines. Via several rolling procedures, such as roughing mill 

and finishing mill, the slabs are processed into thick and long 

plates, and then placed on cooling bed for some time, where 

the thickness of a plate is determined. The dimensions of the 

slabs are specified in terms of thickness, width, and length, 

which changes in a certain range depending on slab design. 

Therefore, slabs with the same grade and similar dimensions 

are grouped as steel ladle. 

In practice, the external or internal requirements of the 

customers may be somewhat vague, so that decision maker 

has flexibility in choosing the steel plates to satisfy the orders. 

In another word, a certain quantity of one steel plate can be 

fulfilled using another one. Due to the thickness of steel 

plates is unchangeable, substitution may either occur by 

replacing plates of lower grade by that of higher grade or by 

appropriate pruning so as to be compatible with the 

requirements. We refer to these two kinds of flexibility as 

grade substitution and conversion substitution respectively. 

When the dimensions are the same, grade substitution can 

fulfil the steel plate shortage of lower grade directly with a 

substitution ratio of 1:1, which means one quantity unit of 

plate can substitute exactly one quantity unit of the specific 

plate. The conversion substitution ratio in this case should be 

more than 1, where cutting or pruning will result in an extra 

scraps. Fig. 1 explains the grade and conversion substitution. 

Here, we present four kinds of steel plates with the same 

thickness, of which P1, P2 are the same size while P3, P4 are 

smaller in width and length. Case 1 and 2 represent grade 

substitution and conversion substitution respectively. For 

case 3, P1 is first used to replace P4 acted as low grade, then 

cut or pruned to the required dimension of P4. To formulate 

the substitution options, a set S  is used to represent the 

feasible substitution, where (i,i’) S means plate i’ can be 

substituted by plate i.  ' | ( , ')iP i i i S   is set of plates 

which can be substituted by plates i.   ' | ',iQ i i i S   is set 

of plates which can substitute plates i. 

P1 P2

High Grade Low Grade

P1 P3

High Grade High Grade

P1 P4

High Grade Low Grade

Case 1 Case 2

Case 3  

Fig. 1. Steel plate substitution options 
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Fig. 2. Matching cases from steel slabs to plates considering 

plate substitution 

Moreover, since steel slabs and plates are both categorized as 

different alloys and dimensions, all plates matched to a slab 

must contain the same alloy; each kind of slab can be rolled 

into several plates with pre-specified thickness, and also cut 

within certain width and length. The feasible one-to-many 

relationship is called slab-to-plate matching rule. When the 

substitution options combine with the slab-to-plate matching 

rule, the relationship between steel slabs and plates is 

constructed as a network. The complexity increases as a 

certain steel plate may substitute or be substitute in according 

to the above three cases, and under restrictions of the 

matching rule. Fig. 2 illustrates how substitution options 
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work when considering slab-to-plate matching rule, in which 

cuboids and circles represent the steel slabs and plates 

respectively. We assume that grade A is higher than grade B, 

and A1, A2 differ in their dimensions. Solid arrows give the 

matching relationship between steel slabs and plates, while 

dotted arrows indicate the three kinds of substitution as 

shown in Fig. 2, where P2-to-P8 maps case 1, P5-to-P2 maps 

case 2, P5-to-P8 maps case 3. Then P2 is able to substitute P8, 

and is permitted to be substituted by P5 in the meantime. 

Demand for P8 can be satisfied through three approaches 

now: B1-to-P8, A1-via-P2-to-P8, and A2-via-P5-to-P8. 

Similarly, a set R  is used to present the feasible matching 

rules.   | ,jB i i j R   presents set of plates which can be 

matched by slabs j. Therefore, we find that multipath strategy 

from steel slabs to plates provides more flexible routings. 

The steel plate fabrication plant mainly consists of several 

separated rolling production lines with walking beam reheat 

furnaces and rolling mills. The rolling production lines 

mentioned above differ in their production efficiency, 

capacity and location. Operation specification only allows 

each kind of steel plate assigning one of the production lines 

during a period. The production lines involve several process 

stages, where the rhythm or capacity is determined by 

bottleneck operation. In order to avoid a structural under-use 

of the available capacity, Vanhoucke and Debels (2009) 

introduced an unused capacity of the previous period to the 

capacity of current period. We refer to this capacity 

flexibility as capacity shift. The capacity for the next period 

is allocated based on both the capacity usage amount for the 

current period and the quantity of steel plates required to be 

produced for the next period. Therefore, the capacity 

allocation for each production line is also flexible. 

3. MATHEMATICAL MODELING APPROACH 

Considering the actual operation situations in an iron and 

steel enterprise in China, in this paper, both the objective 

function and various constraints are set up that incorporates 

the flexible conditions. More precisely, the objective of the 

optimal production planning problem is to achieve the 

minimum operating cost as a sum of seven different cost 

functions: machine assignment cost, setup cost, production 

cost, inventory holding cost, substitution cost, capacity 

utilization penalty cost and backlogging penalty cost. Besides, 

the problem is subject to several different constraints 

involving machine assignment, capacity, setup, slab-plate 

matching, inventory and other auxiliary constraints. 

3.1  Objective Function 

The objective function for the proposed optimization problem 

is chosen to be minimizing operating costs as follows: 

 assign setup prod inv blance back subsC C C C C C C C         (1) 

assign jm jmd

m M j J d

C ca y
 

                       (2) 

setup md md

d m M

C cmi z


                       (3) 

prod ijmd ijmd

d m M j J i I

C cp mx
  

                 (4) 

inv jd jd id id

d j J i I

C cib Ib cif Ip
 

 
  

 
               (5) 

 1balance md md md md md

d m M

C ta ta z tu 



        (6) 

back id id

d i I

C cba mba


                     (7) 

. ' ' '

' i

subs ii d ii ii d

d i I i P

C cr ms
 

                 (8) 

where 
jmdy  is binary variable to couple each slab j to rolling 

mill m; 
jmca  is the  cost of unit quantity of slabs to be 

assigned to each production line; 
mdz  is binary variable that 

indicates if initialized setup occurred at the beginning of each 

period; 
mdcmi  is the cost of initialized setup; 

ijmdmx  is the 

quantity of plate i to be produced from slab j; 
ijmdcp  is unit 

production cost; jdIb  and 
idIp  are steel slab and plate 

inventory level; 
jdcib  and 

idcif  are unit holding cost of the 

two inventory respectively; 
md  is penalty cost of unit 

surplus capacity; 
mdta  is capacity to be allocated; 

1mdta   

unused capacity of previous period; 
mdtu  is capacity to be 

occupied; 
idmba  is quantity of backlogging plates to be 

produced; 
idcba  is cost of unit backlogging quantity; 

'ii dms  is 

substitution quantity of plate i used to fulfil demand of plate 

i’; 
'ii  is substitution ratio; 

'ii dcr  is unit substitution cost.  

Eq.(2) refers to the assignment cost of steel slab coupled to 

production line. Eq.(3) and (4) refer to the setup and 

production cost. Eq.(5) refers to the inventory holding cost 

associated with raw material and end-item inventory.  Eq.(6) 

and (7) present the penalty cost of surplus capacity in 

proportion to the quantity of unused capacity, and 

backlogging cases respectively. Eq. (8) presents the 

substitution cost involves those of steel grades substitution 

and conversion substitution 

3.2  Assignment Constraints 

In order to process all operations all at once, each plate order 

must select a unique production line. Under the backlogging 

case, the order may not be assigned to any of production lines. 

Therefore, the assignment constraints are presented by: 

 1 ,imd

m M

x i d


    (9) 

where imdx  is binary variable to couple each plate to each 

production line. 
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3.3  Capacity Constraints 

Each production line has a limited capacity expressed in 

hours, which may not be exceeded by all assigned steel plate 

orders as eq.(10). In order to avoid a structural under-use of 

the available capacity, unused capacity of the previous period 

1mdta   is added (Vanhoucke and Debels 2009). The capacity 

to be allocated should be limited by upper and lower bound 

as eq.(11). Setup occurred at the beginning of each period as 

initialization or inspection as eq. (12) 

 
1 ,md md md mdta ta z tu m d     (10) 

 ,md md mdta ta ta m d     (11) 

,md md mdts z tmi m d                          (12) 

where 
mdta  and mdta  are upper and lower bound of the 

available capacity; 
mdtmi  is initialization time if setup 

occurred; 
mdts  is setup time. 

The available capacity would be pre-allocated based on 

quantity of steel plates to be produced for the next and the 

utilization situation for the current period. Capacity pre-

allocation constraints are shown in eq.(13). Capacity 

utilization situation is presented in eq.(14), which involves 

capacity occupied by both production and setup. Relationship 

of production quantity and the occupied capacity is presented 

is eq.(15). The unused capacity equals to difference between 

allocated available capacity and utilized capacity as eq.(16). 

Continuous variables related to production quantity and 

capacity should not be negative as eq.(17). 

  1 1md md md d md

m M m M

ta ta z tu d 

 

      (13) 

 ,md md mdtu tp ts m d     (14) 

 ,
jmd

md

j J jmd

my
tp m d



    (15) 

 ,md md mdta tu ts m d      (16) 

, , , , , , 0 , , ,ijmd jmd md md md md mdmx my ta tu tp ts ta i j m d    (17) 

3.4 Slab-plate Matching Constraints 

To address corresponding relation between steel slabs and 

plates, yield ratio is introduced. All plates based on slab-plate 

matching rules can be mapped to specific steel slabs. The 

slab-plate matching constraints are shown as following: 

 , ,
j

ijmd

jmd

i B ijmd

mx
my j m d



    (18) 

 , ,jmd jd jmdmy mb nb j m d    (19) 

where 
ijmd  is yield rate of steel plate i produced from slab j; 

jdmb  is weight of one piece of slab. 
jmdnb  is the number of 

slabs to be assigned. 

3.5 Inventory  Constraints 

In practice, steel slabs and plates are stored in different 

warehouse, so the two inventory balance equations are 

formulated separately. Backlogging cases and plate 

substitution are incorporated in the equations. These two 

inventory constraints are presented by eq.(20) and (21). 

 
1 ,jd jd jd jmd

m M

Ib Ib mp my j d



      (20) 

 

1 1

' '

' '' '

,
i i

id id id id ijmd

m M j J

i id ii d

id

i Q i Pii i i

Ip mba Ip mba mx

ms ms
md i d

 

 

 

 

   

   



 
  (21) 

where 
jdmp  is quantity of slabs supplied at the beginning of 

period d; 
idmd  is steel plates demand at the end of period d. 

Safety inventory level is often set relative to the distribution 

of demand over some common situations. The two inventory 

levels must limited by the safety levels as presented by eq.(22) 

and (23). Substitution quantity and backlogging level must 

not be negative as shown in (24)~(26). 

 ,jd jdIb Ibs j d    (22) 

 ,id idIp Ips i d    (23) 

 
' 0 , 'ii d ims i I i P       (24) 

 
' 0 , 'i id ims i I i Q       (25) 

 0 ,idmba i d    (26) 

where jdIbs  and idIps  are steel slab and plate safety 

inventory level respectively. 

3.6 Logic  Constraints 

With general binary variables
imdx , jmdy  and

mdz , the 

relationships between these binary variables and continuous 

decision variables are: 

 1 0 , ,imd ijmd

j J

x mx i m d


      (27) 

 0 0 , ,imd ijmd

j J

x mx i m d


      (28) 

 1 0 , ,jmd ijmd

i I

y mx j m d


      (29) 

 0 0 , ,jmd ijmd

i I

y mx j m d


      (30) 
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 1 0 ,md mdz ta m d      (31) 

 0 0 ,md mdz ta m d      (32) 

  , , 0,1 , , ,imd jmd mdx y z i j m d    (33) 

3.7 Initialization  Constraints 

Without loss of generality, the initial two inventories are set 

to the corresponding safety inventory level by eq.(34) and 

(35). The initial value of surplus capacity and backlogging 

level are set to be zero by eq.(36) and (37) 

 
0 0j jIb Ibs j    (34) 

 
0 0i iIf Ifs i    (35) 

 
0 0mta m     (36) 

 
0 0imba i    (37) 

4. MODEL SIMPLIFICATION AND SOLUTION 

The equations or inequations described in the above 

optimization model contain nonlinear terms in eq. (6), (10), 

(13) and (27) ~ (32). The presence of integer variables along 

with nonlinear terms makes the designed model a MINLP 

problem. However, solving such MINLP problem will 

require large computational efforts and may result in 

inconsistency in solution quality. So it is necessary to check 

and simplify the characteristic of the model before starting 

optimization procedure. 

Binary variables in the above optimization model are 

employed to express the utilization of steel slabs and 

assignment, or production status of steel plates. Considering 

the relationship between binary and continuous variables, eq. 

(27) ~ (32) can be replaced by linear inequations as follows. 

 , ,imd imd ijmd imd imd

j J

x Lmx mx x Umx i m d


     (38) 

 , ,jmd jmd ijmd jmd jmd

i I

y Lmy mx y Umy j m d


     (39) 

 ,md md md md mdz Lta ta z Uta m d     (40) 

where imdUmx , jmdUmy  and mdUta  represent the respective 

upper bounds on variables and terms ijmd

j J

mx


 , ijmd

i I

mx


  

and mdta , while imdLmx , jmdLmy  and mdLta  indicate the 

corresponding lower bounds. 

The nonlinear terms in eq.(6), (10) and (13) are bilinearity to 

describe the usage of surplus capacity where binary variable 

mdz  is multiplied by continuous variables 1mdta  . Some 

linearization approaches were proposed in literatures to 

address the bilinear terms (Glover 1975, Sherali and 

Alameddine 1992). In this paper, based on the linearization 

formulation technique for mixed 0-1 nonlinearity by Glover 

(1975), the bilinear terms in the model are replaced by new 

continuous variables and relaxed by lower and upper bound. 

Therefore, the bilinear terms in eq.(6), (10) and (13) can be 

replaced by continuous variable 
mdV and reformulated as 

follows: 

 ,md md md md mdL ta z V U ta z m d       (41) 

 
1 1(1 )

(1 ) ,

md md md md md

md md

ta U ta z V ta

L ta z m d

       

   
  (42) 

where 
mdU ta  and 

mdL ta  represent the upper and lower 

bounds of the term 
1mdta  . 

Based on the above simplification strategy, the original 

MINLP optimization problem is now transferred to the 

following MILP problem (Floudas 1995). LINGO system 

provides the access to MILP solvers (Schrage 2006). 

5.  CASE STUDY 

A case study is presented to demonstrate the applicability and 

effectiveness of the proposed method. The data for the case 

study were obtained from a large iron and steel enterprise in 

south China, where two production lines are set in its steel 

plate fabrication plant. The planning horizon is tested in days. 

Fig. 3 presents the steel slab-plate matching rules and plate 

substitution options under consideration, where solid lines 

represent the steel slab-to-plate matching rules, the dash lines 

represent the plate-to-plate substitution options with 

substitution ratio of 1, and dash-dotted lines represent the 

plate-to-plate substitution options with substitution ratio 

larger than 1. A1, A2 and B1 are three specifications of steel 

slabs. A1 are thicker than A2, but both are of the same alloy. 

B1 differs with A1 and A2 both in dimension and alloy. 

P1~P8 are eight specifications of steel plates, where grade 

substitution and conversion substitution may occur 

independently or simultaneously. Table 1 gives steel plate 

demand during each period based on customer orders. 

Table 1. Steel plate demand data for each period 

Steel plate 

specification 

Demand/t 

 d=1 d=2 d=3 d=4 

j=1 135 130 160 140 

j=2 120 0 0 0 

j=3 130 130 160 165 

j=4 110 125 155 140 

j=5 125 120 0 0 

j=6 0 135 170 165 

j=7 130 140 150 170 

j=8 125 140 170 140 

The optimal production quantity of steel plates for each 

period is presented in Table 2. It can be seen that the optimal 

strategy can satisfy the order requirements in most cases. For 

the first period, the production quantity of each steel plate is 

equal or larger than the demand, so that the surplus inventory 

can be used to fulfil the demand when production quantity is 

not enough. 
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Fig. 3. Steel slab-to-plate and plate-to-plate network for the 

case study 

Table 2. Optimal Production Strategy for each period 

Steel plate 

specification 

Production quantity/t 

 d=1 d=2 d=3 d=4 

j=1 144 148 132 130 

j=2 120 0 50 0 

j=3 130 130 160 165 

j=4 110 125 155 140 

j=5 125 120 0 0 

j=6 73 70 162 165 

j=7 136 134 150 110 

j=8 145 148 90 140 

 

Table 3. Cost comparison between flexible and deterministic 

scenarios 

Cost ($) Model A Model B 

Inventory  6102 5853 

Backlogging penalty 17214 9120 

Production 423580 426639 

Total  474225 470068 

To present the effectiveness of the flexibility considered in 

this paper, computational results of the model under single 

deterministic scenario (Model A) are compared with that of 

the proposed model (Model B), as shown in Table 3. The 

proposed approach considering the flexibility has a total 

operation cost of $470.068×10
3
 over the planning horizon 

and results in a saving of 0.88% compared to an existing 

operation strategy under deterministic scenario. 

6.  CONCLUSION 

In this work, flexibility issues are taken into account for the 

optimal design of production planning in steel plate 

fabrication plant to obtain realistic solutions. Most previous 

approaches neglect these concerns. Steel slab-plate matching 

rules, plate substitution options and unused capacity re-

allocation are incorporated in the planning scheme. A 

networked graph and set based approach are used to 

formulate the matching rules and substitution. The 

corresponding production planning problem is 

mathematically formulated into a MINLP problem. To obtain 

the solutions with less computational efforts but acceptable 

accuracy, linearization methods are used to simplify the 

model and transform the original MINLP formulation to a 

MILP model. Using a case study based on industrial 

application, it is shown that the proposed approaches can 

operate with a higher flexibility and lower total costs, 

compared with the existing method. The proposed optimal 

production planning strategy can provide important operation 

and management information for decision makers in iron and 

steel enterprises. 
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