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Abstract: In this paper, we develop a tube-based economic MPC framework for nonlinear systems
subject to unknown but bounded disturbances. We show that just transferring the design procedure of
tube-based stabilizing MPC to an economic MPC framework might not be the optimal choice in terms
of the achievable asymptotic average performance. Instead, the asymptotic average performance can
possibly be improved by considering the influence of the disturbance explicitly within the design of the
control input. This will be done by using a specifically defined integral stage cost, which is the key
feature of our proposed robust economic MPC algorithm. Furthermore, we show that for this algorithm,
similar results as in nominal economic MPC (i.e., without disturbances) can be established, in particular
with respect to bounds on the asymptotic average performance of the resulting closed-loop system as
well as stability.

1. INTRODUCTION

Over the last decades, Model Predictive Control (MPC) has
become a widely used control method, in theory as well as in
practice (Rawlings and Mayne [2009]). Reasons for that are the
possibility to handle not only a certain performance criterion
(or cost), but also since MPC can deal with hard input and state
constraints.

Most of the available MPC approaches in the literature are
formulated within a stabilizing framework (see, e.g., Mayne
et al. [2000]), which means that the control objective is to
stabilize a given setpoint or trajectory to be tracked. In such
a setting, the employed stage cost is usually assumed to be
positive definite with respect to the considered steady state. On
the other hand, driven by applications in the process industry,
the idea of using a stage cost which is economically related
to the problem has evolved more and more in the last five
years. This economic relation can, for example, include aspects
like maximization of an output or minimization of energy
consumption, and hence the stage cost is not necessarily related
to (and hence in particular also not positive definite with respect
to) any specific setpoint, which is the major difference to
stabilizing (or tracking) MPC. Such a framework has been
presented by the name of economic MPC (see Angeli et al.
[2012]), and various aspects and different settings have recently
been studied (see, e.g., Angeli et al. [2012], Amrit et al. [2011],
Heidarinejad et al. [2012], Grüne [2013], Müller et al. [2013]).

Since most real systems are affected by disturbances and since
the models might be inaccurate, a wide number of literature
within the framework of stabilizing MPC deals with such
disturbed or uncertain systems (see, e.g., Chisci et al. [2001],
Mayne et al. [2005]). In the following, we refer to this robust
stabilizing (or tracking) MPC as robust MPC. Most of these
approaches aim to find an invariant set for either the disturbed
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system or for the difference between the disturbed system and
an - artificially introduced - nominal system, which is not
affected by the disturbance. Robust MPC approaches of the
second kind, especially in the framework of linear systems,
are usually referred to as “Tube MPC”, since the real system
state is kept in a set around the nominal system state. On the
other hand, only few publications can be found for disturbed
systems in the context of economic MPC. In this respect,
a stability result for robust economic MPC is presented in
Huang et al. [2012]; these results are, however, obtained in
a formulation related to tracking MPC. In Hovgaard et al.
[2011], a scenario based approach is used for uncertain systems
to minimize the energy consumption taking also probabilistic
constraints into account. The authors focus on the special
class of linear cost functions, and within their application
driven approach, they do not provide any stability or optimality
results. Another idea is presented in Müller and Allgöwer
[2012], where the robustness of steady state optimality under
disturbed constraints is considered. In this reference, however,
no disturbances are considered within the system dynamics, but
the constraints are assumed to be uncertain.

In this paper, we develop a tube-based economic MPC frame-
work for nonlinear systems subject to unknown but bounded
disturbances. Our first contribution (see Section 2.2) is to
demonstrate that just transferring the design procedure of tube-
based stabilizing MPC to an economic MPC framework, i.e.,
calculating the control input by predicting the cost for the
nominal system and then applying an additional error feedback,
might not be the optimal choice in terms of the achievable
asymptotic average performance. Instead, the asymptotic aver-
age performance can possibly be improved by considering the
influence of the disturbance explicitly within the design of the
control input. This will be done by using a specifically defined
integral stage cost (see Section 2.3 for a detailed description),
which is the key feature of our proposed robust economic MPC
algorithm. Furthermore, we show that for this algorithm, sim-
ilar results as in nominal economic MPC (i.e., without distur-
bances) can be established, in particular with respect to bounds
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on the asymptotic average performance of the resulting closed-
loop system as well as stability.

The remainder of this paper is structured as follows. In Section
2, the problem setup, the determination of invariant error sets,
and a motivating example introducing our proposed algorithm
are given. A stability analysis for the proposed algorithm is
provided in Section 3. A further example is presented and
discussed in Section 4. Finally, some open problems are stated
and a conclusion is given in Section 5.

Notation: The distance of a point x ∈ R
n to a set Ω ⊆ R

n is
defined by |x|Ω = infy∈Ω|x − y|. We denote by I≥0 the set of
all non-negative integers, and by I[a,b] the set of all integers in
the interval [a, b] ⊆ R.

2. PROBLEM SETUP AND MOTIVATION

We want to control the time-invariant disturbance-affected
discrete-time system

x(t+ 1) = f(x(t), u(t), w(t)), x(0) = x0, (1)

where f : Rn×R
m×R

q → R
n is continuous, x(t) ∈ X ⊂ R

n

is the system state, u(t) ∈ U ⊂ R
m is the input to the system,

and w(t) ∈ W ⊂ R
q is a disturbance acting on the system. We

assume possibly coupled state and input constraints, that is,

(x(t), u(t)) ∈ Z ⊆ X× U

for all t ∈ I≥0, where the set Z is compact. Moreover, W is a
compact set containing zero.

Our objective is to find an input sequence such that the system
remains feasible and such that the asymptotic average perfor-
mance

lim
T→∞

1

T

T−1
∑

k=0

ℓ(x(k), u(k)) (2)

is minimized, where ℓ : Rn ×R
m → R is the continuous stage

cost function. In stabilizing MPC, one usually assumes that
the stage cost ℓ is positive definite with respect to the setpoint
(xs, us) to be stabilized, i.e., 0 = ℓ(xs, us) < ℓ(x, u) for
all (x, u) ∈ Z. In the following considerations, the stage cost
function does not need to satisfy any conditions of this kind, but
can be chosen arbitrary. This is one of the key features within
economic MPC (Angeli and Rawlings [2010]).

2.1 Invariant Error Sets

Due to the unknown disturbances in the system dynamics (1),
it is impossible to predict the exact system states at future time
instants. Thus, one wants to determine possibilities to keep the
influence of the disturbance on the real system state within
known bounds. One of the most widely used approaches it to
determine an invariant set for the error between the real system
and the associated nominal system

z(t+ 1) = f(z(t), v(t), 0), z(0) = z0. (3)

Here, z is the state of the nominal system, whereas v is the
nominal input. We introduce the error by e(t) = x(t) − z(t)
and the error dynamics by

e(t+ 1) = f(x(t), u(t), w(t))− f(z(t), v(t), 0). (4)

The following definition from set based control can be used to
derive bounds on the error.

Definition 1. (Kerrigan [2000], Yu et al. [2013]) A set Ω ⊆
R

n is robust control invariant (RCI) for the error system (4)

if and only if there exists a feedback control law u(t) =
ϕ(v(t), x(t), z(t)) such that for all x(t), z(t) ∈ X resulting
in e(t) ∈ Ω, all v(t) ∈ U, and all w(t) ∈ W, it holds that
e(t+ 1) ∈ Ω.

In case of linear systems with additive disturbance, a broad
literature is available to provide RCI sets, see, e.g., Chisci et al.
[2001] and Raković et al. [2005]. Namely, given a linear system
of the form

x(t+ 1) = Ax(t) +Bu(t) + w(t)

and using the control law

u(t) = ϕ(v(t), x(t), z(t)) = v(t) +K(x(t)− z(t)), (5)

where K is chosen such that A + BK is Hurwitz, the error
dynamics results in

e(t+ 1) = (A+BK)e(t) + w(t). (6)

This means that by considering the special error feedback (5),
an RCI set as in Definition 1 is given by a robustly positively
invariant (RPI) set for system (6) (see, e.g., Kerrigan [2000]). In
the literature, many methods exist determining approximations
of the minimal RPI set (see, e.g., Raković et al. [2005]). Within
the framework of robust MPC, the open-loop optimization will
be performed for the nominal system and the sequence of
nominal inputs v(·) is the optimization variable. Accordingly,
by means of the input chosen in (5), we can guarantee that the
state x of the “real” system will always be within a compact
set Ω around the state z of the nominal system. However,
when optimizing over the nominal system, one still wants to
guarantee the constraints for the real system. Thus, we must
tighten the constraints for the nominal system according to
(z(t), v(t)) ∈ Z, for all t ∈ I≥0, where Z := Z⊖ (Ω×KΩ).

For general nonlinear systems, it is rather difficult to find invari-
ant sets. Thus, most of the approaches available in the literature
rely on a special class of systems (see, e.g., Limon et al. [2002],
Yu et al. [2013], and Bayer et al. [2013]), since an appro-
priate feedback of the form u(t) = ϕ(v(t), x(t), z(t)) must
be provided and, additionally, a possibility to determine the
reasonably tightened set Z = {(z, v) ∈ Z : (x, ϕ(v, x, z)) ∈
Z for all x ∈ {z} ⊕ Ω} for the nominal states and inputs.

2.2 Motivating Example

The disturbances acting on the system can - as we will see in
the following - have an influence on the asymptotic average per-
formance (2), and hence, should be considered within the setup
of the economic MPC approach. To understand the influence,
let us have a look at the following motivating example, a non-
symmetric, but positive definite, quadratic cost

ℓ(x, u) =

{

4x2 for x < 0
1

4
x2 for x ≥ 0,

with a scalar linear system

x(k + 1) = 0.9x(k) + u(k) + w(k).

For the constraints, we state Z = {(x, u) ∈ R
2| |x| ≤ 10, |u| ≤

1} and W = {w ∈ R||w| ≤ 0.1}. Since we deal with a linear
system, we can apply a control as given in (5) with K = −0.9.
For the associated error system, the minimal RPI set is given
by Ω = W. The most simple idea to control this system would
be to apply an economic MPC scheme to the nominal system
(3), and the then use the error feedback (5) to keep the nominal
system in a tube around the nominal closed-loop system as, for
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Fig. 1. Cost function of the motivating example in Section 2.2
together with two RPI sets of same cross section but with
different center points.

example, introduced in Chisci et al. [2001]. This corresponds to
solving the following optimization problem.

(Pclass)
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

min
v(t)

N+t−1
∑

k=t

ℓ(z(k|t), v(k|t))

s.t. z(k + 1|t) = f(z(k|t), v(k|t), 0),

(z(k|t), v(k|t)) ∈ Z ∀k ∈ I[t,N+t−1],

z(N + t|t) = z̄s,

z(t|t) = z(t).

Here, N > 0 is the prediction horizon, and z̄s is the optimal
steady state of the nominal system, i.e.

(z̄s, v̄s) = argmin
(z,v)∈Z,z=f(z,v,0)

ℓ(z, v).

which is usually used as a terminal constraint in economic
MPC (Angeli and Rawlings [2010]). In the present example,
(zs, vs) = (0, 0) and the nominal closed-loop system resulting
from (Pclass) is asymptotically stable at zs = 0. Thus, the real
system will stay within an RPI set centered at the origin. Yet,
due to the disturbance, one cannot determine a priori the exact
state of the system at future iterations. In other words, it may
lay everywhere within the RPI set.

In Figure 1, the borders of the associated RPI set are denoted
in red. One can see that by driving the nominal system to the
origin, the disturbances may result the real system to end up
in a point with significantly high cost. As we do not assume
any a priori knowledge about the distribution of the disturbance,
with respect to the asymptotic average performance (2) it would
instead be much more beneficial to drive the nominal system to
the middle of the green (dashed) RPI set. Obviously, the cost
for the nominal state is higher in this case, however, the overall
performance might be better, since larger parts of the green RPI
set are on the “cheaper” right half side.

Let us have a look at some numbers from simulating this exam-
ple. We compare the asymptotic average performance (2) de-
termined with a robust MPC based on the optimization (Pclass)
to an approach which will be presented later that provides the
real system to stay within the green, “shifted” RPI set. This
approach will take the disturbance into account within the op-
timization. The average performance ( 1

T

∑T

k=0 ℓ(x(k), u(k)))
of the real closed-loop system is given averaged over 10 simu-
lations with T = 1000, with w being a random number in W

(uniformly distributed) and with the initial state x(0) = 0.

MPC with (Pclass) “Shifted approach”
0.0072 0.0022

For this simple example, it is highly beneficial to keep the RPI
set - and hence the real system states - not around the origin,
but around another nominal state.

Note that there might exists some special specifications of the
disturbance, for example w(k) ≡ 0 for all k, where the MPC
approach with (Pclass) provides a better average performance;
however, as shown above, on average the latter approach will
results in a better average performance. Hence, as we assume
that the disturbance is unknown a priori, we propse to explicitly
incorporate the disturbance into the economic MPC algorithm,
which will be formalized in the following section.

2.3 The Robust Economic MPC Algorithm

We now formally introduce the economic MPC algorithm used
in the “shifted approach” in the motivating example. To this
end, let u = ϕ(v, x, z) be an appropriate control law providing
an RCI set Ω for the error system (4), as described in Sec-
tion 2.1, and consider the following definition.
Definition 2. The robust optimal steady state (zs, vs) of a
disturbance-affected system (1) for a given cost function ℓ(x, u)
is introduced as

(zs, vs) = argmin
(z,v)∈Z,z=f(z,v,0)

∫

x∈{z}⊕Ω

ℓ(x, ϕ(v, x, z))dx.

As shown in Section 2.1, for a linear system the control law (5)
can be used, i.e., ϕ(v, x, z) = v+K(z−x). For the motivating
example, the robust optimal steady state is located at (zs, vs) =
(0.0602, 0.0060)

As could be seen in the motivating example, it was beneficial to
center the RPI set around the robust optimal steady state. This
means that some knowledge of the disturbance is incorporated
into the cost function. To formalize this idea, the integrated cost
function ℓint is defined as

ℓint(z, v) =

∫

x∈{z}⊕Ω

ℓ(x, ϕ(v, x, z))dx, (7)

where Ω is the associated RCI set. We now propose to use
this cost function within the following robust economic MPC
algorithm.

(PREMPC)
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




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
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
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
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



min
v(t)

V int(z(t),v(t))

s.t. z(k + 1|t) = f(z(k|t), v(k|t), 0),

(z(k|t), v(k|t)) ∈ Z ∀k ∈ I[t,N+t−1],

z(N + t|t) = zs,

z(t|t) = z(t),

where V int(z(t),v(t)) =

N+t−1
∑

k=t

ℓint(z(k|t), v(k|t)).

Algorithm 1 Robust Economic MPC Algorithm

given: initial state x(0)
for t = 0, 1, 2, . . . do

solve (PREMPC)
apply u(t) = ϕ(v∗(t|t), x(t), z(t)) to (1)
apply v(t) = v∗(t|t) to (3)

end for

Applying Algorithm 1 leads to the nominal closed-loop system
z(t+ 1) = f(z(t), v∗(t|t), 0) (8)

and real (disturbed) closed-loop system
x(t+ 1) = f(x(t), ϕ(v∗(t|t), x(t), z(t)), w(t)). (9)

Here, v∗ = {v∗(t|t), . . . , v∗(N + t− 1|t)} denotes the optimal
input sequence determined by (PREMPC).
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Remark 3. In contrast to the robust MPC approach in Mayne
et al. [2005], we will not optimize over the nominal initial
condition after each iteration, but determine the initial nominal
state z(t+1) at next iteration according to the prediction z∗(t+
1|t) at time t (see, e.g., Chisci et al. [2001]). By means of this
constraint, the sequence of initial nominal states {z(t), z(t +
1), . . . } is an actual trajectory of the nominal system. For the
initial nominal state z(0) at time t = 0, one can think of
different possibilities. This initial nominal state only needs to
satisfy x(0) ∈ z(0) ⊕ Ω. One could, e.g., take z(0) = x(0) or
one could allow to optimize over z(0).

The presented optimization problem (PREMPC) applied within
Algorithm 1 has two main features. First, the cost function
consists of the sum of the stage cost functions integrated
over the RCI set. Thus, we consider all possible states which
are within the RCI set around the predicted nominal state
and robustness is introduced within the economic framework.
Second, the “real” input ϕ, which is actually applied to the
system, is taken into consideration within the cost function ℓint,
i.e., instead of only considering the nominal input v, we also
take into account the cost of the input needed to keep the error
within the RCI set. This is in contrast to the aforementioned set-
based robust MPC approaches, where usually only the nominal
input is considered within the cost functional.

We can now state the following asymptotic average perfor-
mance result, which is based on a similar result for nominal
economic MPC in Angeli et al. [2012].

Theorem 4. Assume that the optimization problem (PREMPC) is
feasible at time t = 0 for a given initial condition x(0). Then,
the MPC Algorithm 1 is recursively feasible and the solution
of the resulting closed-loop system (9) has a robust asymptotic
average performance which is no worse than that of the robust
optimal steady state, i.e.,

ℓint(zs, vs) ≥ lim sup
T→∞

∑T−1
t=0 ℓint(z(t), v∗(t|t))

T
. (10)

Remark 5. The statement (10) means that the average integral
cost along the closed-loop nominal system (8) is at least as good
as the integral cost at the robust optimal steady state. As the real
closed-loop system (9) lies in the RCI set around the nominal
closed-loop system (8), this can be interpreted as an average
performance result for the real closed-loop system (9), averaged
over all possible disturbances by integrating over the RCI set.

Proof. The proof for recursive feasibility follows from the
appropriate tightening of the sets introduced in Section 2.1,
the fact that Ω is an RCI set for the error system (4) and
by feasibility of the terminal constraint. Thus, following the
standard argumentation in MPC, the input sequence {v∗(t +
1|t), . . . , v∗(N + t − 1|t), vs}, where the steady state input vs
is added, can be used as a new admissible input generating a
feasible solution at the next iteration (see, e.g., Chisci et al.
[2001]).

Concerning average performance, the proof follows along the
lines of Angeli et al. [2012]. We denote the solution of the op-
timization problem (PREMPC) by V int∗(z(t)). Due to recursive
feasibility and because of the terminal constraint, we can derive

V int∗(z(t+1))−V int∗(z(t)) ≤ ℓint(zs, vs)− ℓint(z(t), v∗(t|t))

Taking the average at both sides leads to

lim inf
T→∞

∑T−1
t=0 V int∗(z(t+ 1))− V int∗(z(t))

T

≤ lim inf
T→∞

∑T−1
t=0 ℓint(zs, vs)− ℓint(z(t), v∗(t|t))

T

(11)

The left hand side is a telescoping series, i.e.,

lim inf
T→∞

∑T−1
t=0 V int∗(z(t+ 1))− V int∗(z(t))

T

= lim inf
T→∞

V int∗(z(T ))− V int∗(z(0))

T
= 0

(12)

where the last equality holds due to compactness of Z and
continuity of ℓ. For the right hand side of (11), we can derive

lim inf
T→∞

∑T−1
t=0 ℓint(zs, vs)− ℓint(z(t), v∗(t|t))

T

= ℓint(zs, vs)− lim sup
T→∞

∑T−1
t=0 ℓint(z(t), v∗(t|t))

T
.

(13)

Combining (12) and (13), we can see that

ℓint(zs, vs) ≥ lim sup
T→∞

∑T−1
t=0 ℓint(z(t), v∗(t|t))

T
.

Hence, the asymptotic average performance is no worse than
that of the robust optimal steady state. �

Up to now, for ease of presentation, we limited the problem
setup to consider terminal equality constraints. However, it is
can be shown that a setting with a terminal cost and terminal
set can be used as well, analogous to the setting developed by
Amrit et al. [2011] for the nominal case.

Remark 6. In the proposed robust economic MPC formulation
((PREMPC) + Algorithm 1), all errors in the RCI set Ω are
weighted equally within the integral. Of course, if there is more
information about the distribution of the errors available, it
would be beneficial to use this information within the optimiza-
tion. One possible way would be to optimize over the expected
value of the cost, such that the distribution is taken into account.
This would lead to a formulation similar to the idea in stochas-
tic MPC (see, e.g., Cannon et al. [2007]). Of interest in this
framework would be to determine the distribution over the RCI
set with a known distribution of the disturbance. However, these
approaches are beyond the scope of this paper and are content
of ongoing research.

3. STABILITY ANALYSIS

In the following, we want to investigate stability (and conver-
gence) of the proposed Robust Economic MPC algorithm.

Since the cost does not need to satisfy any definiteness as-
sumptions, we cannot rely on the stability proof in standard
Robust MPC, where the (possibly quadratic) cost is used as a
Lyapunov candidate function, similar to the approach in stabi-
lizing MPC (Mayne et al. [2000]). In economic MPC, due to
the general structure of the cost, there may exist some closed-
loop sequences of the nominal inputs and states providing a
better asymptotic average performance for the disturbed system
than operation at the robust optimal steady state. On the other
hand, for nominal economic MPC, it was shown in Angeli
et al. [2012] that convergence of the closed-loop system can be
established under a certain dissipativity assumption. We show
now that a similar result can be established in our setting with
disturbances.
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We introduce the admissible set ZN as the set of all (z, ṽ)
pairs, with ṽ = {ṽ(0), ṽ(1), . . . , ṽ(N − 1)}, which satisfy all
constraints, i.e.,

ZN = {(z, ṽ) | ∃ z(1), . . . , z(N) :

z(k + 1) = f(z(k), ṽ(k), 0), (z(k), ṽ(k)) ∈ Z,

∀k ∈ I[0,...,N−1], z(N) = zs, z(0) = z}.

The set of admissible states ZN is given by the projection of
ZN onto R

n, i.e.,
ZN = {z ∈ R

n|∃ ṽ such that (z, ṽ) ∈ ZN}.

We assume the following form of weak controllability (see
Diehl et al. [2011])
Assumption 7. (Weak controllability). There exists a function
α : R≥0 → R≥0 of class K∞such that for each z ∈ ZN ,
there exists a ṽ such that (z, ṽ) ∈ ZN and

N−1
∑

k=0

|ṽ(k)− vs| ≤ α(|z − zs|).

We use the following definition, based on the definition in
Angeli et al. [2012]. To this end, denote by X the projection
of Z on R

n.
Definition 8. The nominal system z(k + 1) = f(z(k), v(k), 0)
is dissipative with respect to the supply rate s : Z → R if there
exists a storage function λ : X → R such that

λ(f(z, v, 0))− λ(z) ≤ s(z, v)

for all (z, v) ∈ Z. If in addition ρ : X → R≥0 continuous and
positive definite 1 exists such that

λ(f(z, v, 0))− λ(z) ≤ s(z, v)− ρ(z)

then the nominal system is said to be strictly dissipative.

By means of this definition, we can state the following theorem
which is based on the result in Angeli et al. [2012] without
disturbances.
Theorem 9. Let system (1) be given together with an RCI set
Ω for the associated error dynamics (4), and suppose that
Assumption 7 is satisfied. If the nominal system (3) is strictly
dissipative with respect to the supply rate

s(z, v) = ℓint(z, v)− ℓint(zs, vs), (14)
then, under application of Algorithm 1, A := {zs} × {zs} ⊕Ω
is asymptotically stable for the closed-loop composite system
(8) and (9) with region of attraction ZN × (ZN ⊕ Ω).

Proof. The proof for the asymptotic stability of the nominal
system follows along the lines of the proof for the nominal case
in Angeli et al. [2012]. We introduce the rotated stage cost

Lint(z(k|t), v(k|t)) = ℓint(z(k|t), v(k|t))

+ λ(z(k|t))− λ(f(z(k|t), v(k|t), 0)).

With this, let us consider the auxiliary objective

Ṽ int(z(t),v(t)) =

N+t−1
∑

k=t

Lint(z(k|t), v(k|t))

= V int(z(t),v(·)) + λ(z(t))− λ(zs).

Moreover, we introduce the optimization problem

Ṽ int∗(z(t)) = min
v(·)

Ṽ int(z(t),v(·))

1 A function ρ(z) is said to be positive definite with respect to some z∗, if
ρ(z∗) = 0 and ρ(z) > 0 for all z 6= z∗. In the following, when speaking of
strict dissipativity, we assume that ρ is positive definite with respect to z∗ = zs.

subject to the same constraints as given in (PREMPC). Compar-
ing this optimization problem with (PREMPC) one can see that
these two problems are exactly the same except for two con-
stant terms λ(z(t)) and λ(zs). Hence, solving this optimization
problem provides the same solution as solving (PREMPC). The
idea within this proof is to use Ṽ int∗ as a Lyapunov function.
Thus, we first have to show that Ṽ int∗ is positive definite with
respect the robust optimal steady state (zs, vs). Using the fact
that the nominal system is strictly dissipative with supply rate
given by (14), we can see that

Lint(zs, vs) = ℓint(zs, vs)

≤ ℓint(z, v)− λ(f(z, v, 0)) + λ(z)− ρ(z)=Lint(z, v)− ρ(z)

for all (z, v) ∈ Z. Without loss of generality, we can assume
ℓint(zs, vs) being zero, and thus, as ρ(·) is positive definite with
respect to zs, there exists a class K∞ function α1(·) such that
Ṽ int∗(z(t)) ≥ Lint(z(t), v∗(t|t)) ≥ ρ(z(t)) ≥ α1(|z(t) − zs|).
By means of Assumption 7, one can show that Ṽ int∗(z(t)) ≤
α2(|z(t)− zs|), where α2(·) is a class K∞ function (see Diehl
et al. [2011] for a detailed discussion). Using the dissipativity
in Definition 8, we can state

Ṽ int∗(z(t+ 1)) ≤ Ṽ int∗(z(t)) + Lint(zs, vs)− Lint(z(t), v(t))

≤ Ṽ int∗(z(t))− ρ(z(t)).

From here, it follows that the robust optimal steady state is an
asymptotically stable equilibrium of the closed-loop nominal
system (8).

Concerning the stability of the composite system (8) and (9),
we can follow the proof in [Rawlings and Mayne, 2009, Propo-
sition 3.15]. As x(t) = z(t)+e(t) and e(t) ∈ Ω for all t ∈ I≥0,
it follows that |x(t)|{zs⊕Ω} ≤ |z(t) − zs| ≤ β(|z(0) − zs|, t),
where β is a class KL function. Thus,

|(z(t), x(t))|A ≤ 2β(|z(0)− zs|, t) ≤ 2β(|(z(0), x(0))|A, t),

and hence, A is asymptotically stable for the composite system
with region of attraction ZN × (ZN ⊕ Ω). �

Remark 10. In order to show that the optimization problems
(PREMPC) and the one using Lint instead of ℓint are equivalent,
we made use of the fact that z(t|t), and hence also λ(z(t|t)) is
a constant. If z(t|t) was an optimization variable, as is the case
in various robust MPC approaches (compare the discussion
in Remark 3), the two optimization problems would not be
equivalent anymore and hence the result would not follow.

4. MOTIVATING EXAMPLE REVISITED

In this section, we revisit the motivating example,

x(k + 1) = 0.9x(k) + u(k) + w(k),

and assume the same constraints, namely Z = {(x, u) ∈
R

2| |x| ≤ 10, |u| ≤ 1} and W = {w ∈ R||w| ≤ 0.1}, and
we use K = −0.9 within the linear control law, such that the
minimal RPI set for the associated error system is given by
Ω = W. The prediction horizon is chosen to be N = 20. In
the following, we consider a different cost function:

ℓ(x, u) =



























80x2 for x < 0

0.5(−2x+ 3)x2 for 0 ≤ x < 1

0.499(−2x+ 5)(x− 1)2 + 0.5 for 1 ≤ x < 2

0.001 for 2 ≤ x < 3

(x− 3)2 + 0.001 for 3 ≤ x

The cost is independent of the input u. In Figure 2, the cost
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Fig. 2. Cost function of the example in Section 4 with the RPI
set Ω centered at the optimal steady state of the nominal
system z̄s = 0 (red, solid) and at the robust optimal steady
state zs = 2.1 (green, dashed).

function is plotted over x. As in the motivating example, this
cost function is positive definite with respect to the origin, i.e.,
the optimal steady state of the nominal system is z̄s = 0.
This example does not have one single robust optimal steady
state, but in fact all steady states of the nominal system with
2.1 ≤ zs ≤ 2.9 are robust optimal steady states, with the same
associated cost ℓint(zs, vs). The cost ℓint(z, v) is positive definite
in z with respect to the set of robust optimal steady states zs and
constant in v. This means that the nominal system is dissipative
with supply rate (14) and λ = 0 but not strictly dissipative. We
choose as a terminal constraint z(T ) = 2.1 and consider the
asymptotic average performance averaged over 10 simulations.
This leads to the following asymptotic average performances:

MPC with (Pclass) MPC with (PREMPC)
0.1354 0.001

These numbers provide that when considering the disturbances
within the optimization it is on average “cheaper” not to operate
the disturbed system at the origin, but rather within an RPI set
around a robust optimal steady-state, similar to the motivating
example in Section 2.2.

5. CONCLUSION AND OPEN QUESTIONS

We have presented an economic MPC algorithm for distur-
bance affected systems. Using the key idea of integrating the
economic stage cost over the RCI set, robustness against the
disturbances is taken into account within the economic MPC
optimization. We have shown that - as in the nominal case - the
stability result of the closed loop is connected to the concept
of dissipativity. We have also presented examples, where the
average performance can be improved.

Within this framework, there are several open questions. First, it
would be interesting to consider optimal steady-state operations
as presented in Angeli et al. [2012] for the nominal case. Sec-
ond, referring to the concept in Mayne et al. [2005], the initial
state of the nominal trajectory could be used as an additional
optimization variable. However, as discussed in Remark 10 this
gives rise to several difficulties in proving stability. Third, as
mentioned in Remark 6, it might be interesting to consider the
case when some a priori knowledge on the distribution of the
disturbance is available. Finally, using the proposed algorithm
in application related examples is also content of our current
research.
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