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Abstract: This paper presents a two-phase clustering algorithm for machine-cell and part-
family formation in the design of cellular manufacturing systems. The proposed algorithm begins
with the determination of initial cluster centers via a linear assignment method using the least
similar group representatives in its first phase. A fuzzy C-means clustering method is followed
in its second phase for part-family and machine-cell formation using the obtained initial cluster
centers. The two-phase algorithm can remedy the problem of clustering inconsistency resulting
from the fuzzy C-means method with random initializations. Experimental results on many
benchmark data sets based on multiple performance criteria substantiate the effectiveness of
the proposed algorithm.
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1. INTRODUCTION

Cellular manufacturing is a notion for workplace design
which can greatly increase productivity and reduce ma-
terial handling cost (Singh, 1993). One of the important
steps in the design of cellular manufacturing system is
machine-cell and part-family formation, which seeks to
group parts with similar processing features or require-
ments into part families and bring dissimilar machines
together to form machine cells. The machine-cell and part-
family formation problem has been widely studied for
decades (e.g., see Selim et al. (1998), Ghosh et al. (2011))
and various approaches have been proposed, such as the
K-means algorithm (Unler and Gungor, 2009), the linear
assignment algorithm (Wang, 2003), the neural network
approach (Pandian and Mahapatra, 2009), the genetic
approach (Mahdavi et al., 2009), and the fuzzy C-means
algorithm (Chu and Hayya, 1991). Due to the complex
nature of machine-part features, there may exist cases
where the cluster boundaries are not crisp. Therefore, it
is desirable to further develop or apply fuzzy clustering
algorithms to deal with the problem efficiently and reliably.

The fuzzy C-means algorithm is a well-known fuzzy clus-
tering algorithm which provides a degree of membership
for a datum pattern associated with each cluster (Bezdek,
1981). A distinctive advantage of fuzzy C-means clustering
is that it can flexibly and robustly handle natural data
with vagueness uncertainty. Fuzzy C-means algorithm has
been successfully applied in many areas such as image
segmentation, speech enhancement, and edge detection
(Miyamoto et al., 2008). One major weakness of fuzzy
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C-means clustering is its sensitivity to the initial guess.
Different initial setting can potentially result in different
local optima or different partitions, and can affect the
convergence speed as well.

In this paper, a linear assignment method is applied for
providing the initial cluster centers for fuzzy C-means
clustering. As the linear assignment itself is a clustering
algorithm, the present approach can be regarded as a two-
phase algorithm. The algorithm is applied for solving the
machine-cell and part-family formation problem in cellular
manufacturing. In the first phase, a set of the least similar
parts or machines are identified as group representatives
by means of comparing dissimilarity coefficients. A linear
assignment model is then formulated based on the least
similar group representatives, which computes an initial
C-partition. In the second phase, fuzzy C-means algorithm
iteratively converges each partition to a local optima. The
two-phase algorithm is evaluated on many benchmark data
sets and is demonstrated to be effective and efficient.

The rest of this paper is organized as follows. Some
preliminaries on machine-cell and part-family formation
problem and fuzzy C-means clustering are discussed in
Section II. The proposed two-phase algorithm is described
in Section III. Illustrative examples are provided in Section
IV. Experimental results on benchmark data sets are
provided in Section V. Finally, Section VI concludes the
paper.

2. PRELIMINARIES

2.1 Machine-cell and part-family formation

In machine-cell and part-family formation problems, a
manufacturing system is represented as a binary machine-
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part incidence matrix A = {aij} ∈ ℜm×p where p is
the number of parts and m is the number of machines.
Element aki = 1 denotes machine k processes part i and
aki = 0 denotes otherwise. The machine-cell and part-
family formation aims at rearranging rows and columns
in A to form a block-diagonal matrix. In this paper, the
number of machine cells or part families C is assumed to
be known in advance.

2.2 Dissimilarity coefficients

A dissimilarity coefficient quantifies the degree of differ-
ence between two datum patterns; i.e., between a pair of
machines or parts. Various definitions of dissimilarity co-
efficients are available in the literature (Sarker and Islam,
1999). Some of commonly used dissimilarity measures are
presented below.

A typical dissimilarity coefficient between parts i and j
in terms of machine processing requirements is defined by
the Minkowski metric

dij = (
m∑

k=1

|aki − akj |)1/r, (1)

where r > 0. Specifically, dij is the Euclidean distance
measure when r = 2, and dij is the Manhattan or city
block distance measure when r = 1. Another measure that
can be derived from the Minkowski distance is weighted
Minkowski distance measure which can be expressed as

dij = (
m∑

k=1

wk|aki − akj |)1/r, (2)

where wk is a weighting factor on machine k. The weighted
Minkowski distance measure can employ a special pref-
erence for processing some jobs with special priority on
certain machines.

The Bray-Curtis coefficient is another dissimilarity coeffi-
cient obtained by entrapping the range dij of the Manhat-
tan distance measure within [0 1]:

dij =
m∑

k=1

|aki − akj |
aki + akj

. (3)

The Canberra metric coefficient is similar to the Bray-
Curtis coefficient in sense that both coefficients lie in the
range of [0 1]. It is defined as

dij =
1

m

m∑
k=1

|aki − akj |
aki + akj

. (4)

The Hamming distance measure is a binary dissimilarity
coefficient which is defined as

dij =

m∑
k=1

δ(aki, akj), (5)

where

δ =

{
1, aki = akj ;
0, aki ̸= akj .

Without loss of generality, the symmetry of dissimilarity
coefficients is commonly assumed; i.e., dij = dji. In
addition, a dissimilarity coefficient dij can be correlated
with a normalized similarity coefficient sij by the relation
dij = (1− sij)/sij (Sarker and Islam, 1999).

2.3 Fuzzy C-means clustering

For the convenience of later discussions, we briefly recall
fuzzy C-means algorithm (FCM). Let p be the total
number of data and m be dimension of data. FCM aims
at grouping data into C (C ∈ 2, · · · , p − 1) clusters. It is
based on minimization of the following objective function:

Jq(U, V ) =

p∑
k=1

C∑
i=1

uq
ik ∥xk − vi∥2 , (6)

where q > 1 is a weighting exponent controlling the
amount of clustering fuzzy, uik is the membership degree of
data xk belonging to cluster i, vi is the center of the cluster
i, U and V are respectively the membership degree matrix
and cluster center matrix, and ∥·∥ is a norm measuring the
distance between any data and the center. FCM is carried
out through iteratively optimizing the objective function
(6) subject to the following constrains

p∑
k=1

uik > 0,
C∑
i=1

uik = 1, 0 ≤ uik ≤ 1;

i = 1, · · · , C, k = 1, · · · , p. (7)

It can be derived (Bezdek, 1981) that the objective func-
tion Jq reaches a minimum value for a given cluster center
matrix V when uik is

uik =
C∑

j=1

(
∥xk − vi∥
∥xk − vj∥

)−
2

q−1 , i = 1, · · · , C, k = 1, · · · , p.

(8)
Accordingly, the cluster center vi can be updated as follows

vi =

∑p
k=1 u

q
ikxk∑p

k=1 u
q
ik

, i = 1, · · · , C. (9)

In view of (8) and (9), the objective function Jq may con-
verge to a local optima by applying an iterative optimiza-
tion procedure. The iteration will stop when max(|ul

ik −
ul−1
ik |) ≤ ε, where 0 < ε < 1 is a termination criterion

defined by user and l is the iteration step. It is worth
pointing out that the solution quality of FCM is highly
dependent on the initial cluster center V 0.

2.4 Performance criteria

The formation quality provided by FCM needs to be
evaluated based on certain performance criteria. Specially
for the machine-cell and part-family formation problem
in cellular manufacturing, there are various performance
indexes available in the literature (Agarwal and Sarkis,
1998).

Formation results often contain exceptional elements that
indicate discrepancies. Element aij is an exceptional el-
ement if aij = 1 and ∃k xjk ̸= yik, where xjk is the
binary decision variable defined as xjk = 1 if part j is
assigned to family k or xjk = 0 otherwise, yik is the
binary decision variable defined as yik = 1 if machine i
is assigned to machine-cell k or yik = 0 otherwise. The
number of exceptional element (EE) can be quantitatively
determined by

EE =
1

2

C∑
k=1

m∑
i=1

p∑
j=1

aij |xik − yjk|, (10)
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where C is the number of machine-cells/part-families, m
is the number of machines, and p is the number of parts.

The percentage of exceptional elements (PE) is defined as
the ratio of EE to the number of unity elements in the
incidence matrix (UE):

PE =
EE

UE
, (11)

where UE =
∑m

i=1

∑p
j=1 aij .

The bond energy (BE) measures the compactness of a
permuted matrix:

BE =
m−1∑
i=1

p∑
j=1

aijai+1,j +
m∑
i=1

p−1∑
j=1

aijai,j+1. (12)

The machine utilization (MU) is defined as the frequency
of visits to machines within cells:

MU =
UE − EE∑C

k=1 mkpk
, (13)

where mk and pk denote the number of machines in cell k
and number of parts in family k, respectively.

Group efficiency (GE) is another widely used performance
criteria which is defined as

GE = ρ
UE − EE∑C

k=1 mkpk
+(1−ρ)(1− EE

mp−
∑C

k=1 mkpk
), (14)

where ρ ∈ [0, 1] is a weighting parameter. When ρ = 1,
GE = MU . Normally ρ = 0.5.

3. ALGORITHM DESCRIPTION

3.1 Linear assignment initialization

The essence of the present algorithm lies in the deter-
mination of initial cluster center. Several methods have
been developed for solving the initialization problem (Kim
et al., 2004; Li et al., 2007). As clustering aims at group-
ing similar data into the same cluster as well separating
dissimilar data into different clusters, it is reasonable to
conclude that C least similar data belongs to C different
partitions. Hence the C least similar data can be identified
as C cluster representatives, and each data represents
a cluster. A recursive approach to determining cluster
centers using dissimilar coefficients can be expressed as

{v1, v2} =argmax
i,j

dij , (15)

vk =arg max
i=1,··· ,p−k+1

min
{
div1 , · · · , divC−1

}
, (16)

k = 3, · · · , C,

where divj denotes the dissimilarity between data xi and
the cluster center vj . Cheng et al. (2012) showed that the
determination of cluster representatives by using (15) and
(16) takes a polynomial time of p.

A linear assignment model can be formulated as follows
based on the determined cluster representatives:

min
C∑
i=1

p∑
k=1

dikuik

s.t.

p∑
k=1

uik > 0,
C∑
i=1

uik = 1, 0 ≤ uik ≤ 1;

i = 1, · · · , C, k = 1, · · · , p. (17)

The advantages of the linear assignment model (17) is
twofold. First, it is a linear program instead of a linear
integer program entailed in some optimization-based clus-
tering approaches (e.g., p-median models (Wang and Roze,
1997)). Second, the number of decision variables is reduced
compared with some existing linear program models (pC
versus p2) (Wang, 1999).

3.2 Two-phase clustering algorithm

By applying the linear assignment initialization, an initial
cluster center matrix V 0 = [v1, v2, · · · , vC ]T is obtained
for the followed fuzzy C-means clustering. The overall
clustering algorithm for formation of machine cells and
part families in cellular manufacturing can be described
as follows:

(1) Input the clustering number C, the fuzzy exponent
q, the maximal iteration number Loop, and stopping
criteria ε.

(2) Import the machine-part incidence matrix data Am×p

where A(i, j) = aij .
(3) Load or compute the dissimilarity coefficients be-

tween each pair of data dij .
(4) Compute the initial cluster centers using the linear

assignment model in Eq. (15) and (16).
(5) Apply FCM for iteratively minimizing the objective

function (6) using the following updating rules

ul
ik =

C∑
j=1

(

∥∥xk − vli

∥∥∥∥xk − vlj

∥∥ )
− 2

q−1 , i = 1, · · · , C, k = 1, · · · , p,

(18)

vl+1
i =

xi

∑p

k=1
(ul

ik)
q∑p

k=1
(ul

ik
)q

, i = 1, · · · , C. (19)

where l the current iteration step. The FCM iteration
steps are illustrated in Fig. 1.

(6) Evaluate the clustering results using one or more
performance criteria.

4. ILLUSTRATIVE EXAMPLES

Consider an incidence matrix A as presented in Chan-
drasekharan and Rajagopalan (1987):

A = {aij} =

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8



1 1
1 1 1 1 1

1 1 1 1
1 1 1

1 1 1 1
1 1

1 1 1 1
1 1 1 1


,

(20)
where 0 elements are left blank. In this case, there are
8 machines and 10 parts (i.e., m = 8 and p = 10).
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Fig. 1. FCM flow chart

The objective is to form 3 machine-cells and part-families
(C = 3). Let us first group similar parts into families.
The part dissimilar coefficients are first computed and
evaluated, then the linear assignment model is applied
for computing the initial cluster centers. The resulting
deterministic initial center matrix is

V 0
p =

1 2 3 4 5 6 7 8 9 10

1
2
3

[
1 1 1 1

1 1 1 1
1 1

]
. (21)

After that, FCM is applied for part-family formation.
The resulting part families are {1, 4, 6, 8}, {2, 5, 9, 10},
and {3, 7}. Thereafter, corresponding machine cells are
deduced based on the resulting part families using similar
procedures. The initial cluster center computed by the
linear assignment method is

V 0
m =

[
1 1 1

1 1 1 1
1 1 1

]
. (22)

The resulting machine cells are {1, 6}, {2, 5, 7}, and
{3, 4, 8}. Finally, the initial incidence matrix A is rear-
ranged according to the formation results. The final inci-
dence matrix Ã is given by

Ã =

1 4 6 8 2 5 9 10 3 7

2
5
7
3
4
8
1
6



1 1 1 1
1 1 1
1 1 1 1

1 1
1 1
1 1 1 1 1

1 1 1 1
1 1 1 1 1


. (23)

There are two exceptional elements in the final incidence
matrix.

Consider a problem of 40 machines, 100 parts, and 10
groups (i.e., m = 40, p = 100, and C = 10) given

0 20 40 60 80 100

0

10

20

30

40

a

0 20 40 60 80 100

0

10

20

30

40

b

0 20 40 60 80 100

0

10

20

30

40

c

Fig. 2. (a) Initial machine-part incidence matrix. (b)
Permuted incidence matrix based on FCM clustering.
(c) Permuted incidence matrix based on two-phase
clustering.

in Chandrasekharan and Rajagopalan (1987). The initial
machine-part incidence matrix and the permuted block-
diagonalized incidence matrices using the original FCM
and the two-phase clustering algorithm are shown in
Fig. 2 where 1 elements are represented by dots and 0
elements are left blank. Compared to original FCM, the
two-phase clustering algorithm significantly improved the
performance. The resulting BE, PE, MU , and GE are
all equivalent to the best-known results in literature (see
Table 1).

5. EXPERIMENTAL RESULTS

Results of a comparative study on many benchmark data
sets are summarized in Table 1 where the performance
criteria with asterisks on the right denote the best known
results in the literature. The comparative study consists
of 18 benchmark problems with 4 performance criteria
for each one. Among the total 75 performance indexes,
51 are equal to, 12 are better than, and 9 are almost
equivalent to the best known results. Particularly, the two-
phase clustering algorithm is effectual in terms of PE.
The results of the comparative study substantiate that the
two-phase clustering algorithm is efficient and effective for
solving machine-cell and part-family formation problems.

6. CONCLUSIONS

In this paper, an efficient two-phase clustering algorithm
is presented for part-family and machine-cell formation
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no. m× p C PE PE∗ BE BE∗ MU MU∗ GE GE∗ Reference

1 5× 7 2 0.0000 0.0000 14 14 0.8235 0.8235 0.9118 0.9118 King and Nakornchai (1982)

2 5× 7 2 0.1250 0.1250 15 15 0.8235 0.8235 0.8256 0.8256 Waghodekar and Sahu (1984)

3 5× 7 2 0.1250 0.1250 15 16 0.8235 0.8235 0.8256 0.8256 Waghodekar and Sahu (1984)

4 10× 10 3 0.0000 0.0000 21 21 0.7059 0.7059 0.8029 0.8029 Mosier and Taube (1985)

5 7× 11 2 0.1304 0.1304 18 18 0.5263 0.5263 0.7247 0.7247 Kusiak and Chow (1987)

6 8× 20 3 0.1475 0.1475 81 84 1.0000 1.0000 0.9583 0.9583 Chandrasekharan and Rajagopalan (1986)

7 10× 20 4 0.0000 0.0000 68 68 1.0000 1.0000 1.0000 1.0000 Srinivasan et al. (1990)

8 23× 20 2 0.1140 0.1140 78 78 0.4280 0.4000 0.6850 0.6667 Kumar et al. (1986)

9 14× 24 4 0.0328 0.0328 67 68 0.6860 0.6860 0.8390 0.8390 King (1980)

10 24× 40 7 0.0000 0.0000 198 198 1.0000 1.0000 1.0000 1.0000 Chandrasekharan and Rajagopalan (1989)

11 24× 40 7 0.0769 0.0769 163 163 0.9160 0.9160 0.9520 0.9520 Chandrasekharan and Rajagopalan (1989)

12 24× 40 7 0.1450 0.1527 140 143 0.8550 0.9116 0.9160 0.9409 Chandrasekharan and Rajagopalan (1989)

13 24× 40 7 0.1450 0.1527 144 142 0.8550 0.8473 0.9160 0.9116 Chandrasekharan and Rajagopalan (1989)

14 24× 40 7 0.3664 0.3664 95 91 0.6434 0.5971 0.7928 0.7693 Chandrasekharan and Rajagopalan (1989)

15 24× 40 7 0.4046 0.4046 76 79 0.5909 0.5909 0.7635 0.7635 Chandrasekharan and Rajagopalan (1989)

16 24× 40 7 0.4351 0.4427 68 68 0.5248 0.5290 0.7276 0.7292 Chandrasekharan and Rajagopalan (1989)

17 30× 41 2 0.0234 0.0234 67 64 0.1836 0.1836 0.5990 0.5990 Kumar and Vannelli (1987)

18 40× 100 10 0.0857 0.0857 577 577 0.9121 0.9121 0.9510 0.9510 Chandrasekharan and Rajagopalan (1987)

Table 1. Summary of clustering results in comparison with the best known results on benchmark
problems

in the design of cellular manufacturing systems. The ap-
proach utilizes the combination of a linear assignment
program and a fuzzy C-means algorithm. One distinctive
advantage of the two-phase clustering algorithm is that
it is deterministic with constant clustering results. The
present algorithm is demonstrated to be effective and effi-
cient according to the experimental results of an extensive
comparative study.
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