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Abstract: We develop a method of constructing trivariate optimal smoothing splines using
normalized uniform B-spline as the basis functions. Such splines are useful particularly for
modeling dynamic shape of 3-dimensional deformable object by using two variables for 3D shape
and one for time evolution. The trivariate splines are constructed as a tensor product of three
B-splines, and an optimal smoothing spline problem is solved together with typical examples of
constraints as periodicity. The problem is formulated as convex quadratic programming (QP)
problem in such a way that 3D array of control points is vectorized and a MATLAB QP solver is
readily applicable for numerical solutions. We demonstrate usefulness of the method by dynamic
shape modeling of red blood cell, where we will see that relatively small number of observation
data yield satisfactory results.
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1. INTRODUCTION

We consider optimal trivariate splines and develop prac-
tical algorithm for numerical computations. There have
been numerous studies on splines in single variable and
their theories and algorithms as interpolation and approx-
imation or smoothing, have been extended to splines in
two variables (bivariate splines). They have been shown
very useful in various fields of science and engineering as
computer graphics, numerical analysis, image processing,
trajectory planning, statistical data analysis, etc. Obvi-
ously, one is interested in extending those theories and
algorithms to the case of three variables and moreover to
the general case of n-variate splines. Such extensions are
desired in many applications as aforementioned area in
general, and here we consider modeling of 3D shape of
deformable objects.

Typical objects with such deformable motions may be
wet material object – such as jellyfish, red blood cell and
amoeba, etc. One of important issues in their studies is
to analyze and understand the motions of such objects
from the observational data, e.g. image frames in a movie
file. The contour modeling of objects then plays key roles
and have been studied in the field of image processing,
and various techniques, e.g. active contour model (Blake
[2000], Brigger [2000]), have been developed. The approach
in these studies is to treat the contours independently at
each sampling time and hence is not suitable to analyze
and understand a whole motion of the deformable objects
continuously in time.

Another applications related to our present study are the
spline-based solid modeling of the human organs from

a set of tomograph data obtained, for instance, by the
magnetic range imaging (MRI) (Amini [2001], Ameur
[2007]). Human lungs are modeled by periodic smoothing
spline surface (Jaillet [1997]), where a set of contours are
designed first from tomograph data and then a spline
surface (bivariate spline) is designed from the contours.
The design method of smoothing spline surfaces is thus
viewed as a two step procedure, and we may point out that
the whole set of tomograph data is not used effectively to
construct the spline surface. Also, a similar idea has been
applied to the 3-dimensional shape modeling of cell nucleus
(Peng [2011]).

As for the theories and algorithms of multi-variable splines,
there are some literatures: Trivariate splines are used to
model 3D shapes using triangle mesh of geometric shapes
as the input data (Martin [2009]). Also an interpolation
problem is considered for multi-dimensional splines re-
stricting to only cubic splines (Habermann [2007]). An-
other approach to splines is by the so-called dynamic
splines, where linear control systems are used as spline
generator. The book (Egerstedt [2010]) contains the state
of the art of dynamic splines, and the authors developed a
theory of periodic splines based on Hilbert space optimiza-
tion (Kano [2008]). This method has the advantage in that
various types of functions can be used as basis functions
as exponential functions, trigonometric functions, poly-
nomials, and their combinations by choosing appropriate
system matrix. However, extension to multi-variable case
is not easy by this approach.

Here we develop a method for constructing optimal trivari-
ate smoothing splines using tensor product of three B-
splines as the basis elements. In particular, normalized uni-
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form B-splines (Kano [2005a]) are used, which enable us to
derive concise representation of optimal smoothing splines
and to incorporate various types of constraints more easily.
Included in the constraints are periodicity as treated in
this paper as well as the so-called shape preserving splines
as monotone splines, convex splines, constraints on integral
values, and so forth (Kano [2011], Fujioka [2011]). This pa-
per extends our B-spline based studies on optimal splines,
in particular those in (Kano [2005b], Fujioka [2009]), and
the theories and algorithms are developed so that the n-
variate case is deduced. The splines treated are of arbitrary
degree. The problem is formulated as convex quadratic
programming (QP) problem in such a way that 3D array
of control points is vectorized and a MATLAB QP solver
is readily applicable for numerical solutions. Trivariate
smoothing splines are useful to dynamic shape modeling of
deforming objects, where two variables are used to model
the 3D shape imposing periodicity and the other to repre-
sent time evolution. Here we consider modeling red blood
cell (Karlsson [2005], Pozrikidis [2003]), and we will see
that relatively small number of observation data consisting
of time sequence of 2D data sets yield satisfactory results.

Note that, by restricting to tensor product construction
of B-splines with uniform knot point distribution (cf.
(Lai [2007], Anderson [1993]), we could derive concise
expressions for trivariate smoothing splines with various
constraints, readily implementable as computational al-
gorithms. Moreover, they can be used systematically and
effectively in problems as dynamic 3D shape modeling,
which is novel to the authors knowledge.

This paper is organized as follows. In Section 2, we
formulate and solve the problems of optimal design of
trivariate smoothing splines. Periodicity is considered in
Section 3. In Section 4, the results are applied to dynamic
shape modeling of red blood cell, and concluding remarks
are given in Section 5.

2. TRIVARIATE OPTIMAL SMOOTHING SPLINES

We describe a problem of optimal design of trivariate
smoothing splines and derive the solution.

2.1 Trivariate Spline by B-Splines

For designing trivariate splines x(t), t = (t1, t2, t3), we
employ normalized, uniform B-spline function Bk(s) of
degree k as the basis functions,

x(t) =

m1−1∑
i1=−k

m2−1∑
i2=−k

m3−1∑
i3=−k

τi1,i2,i3B
[1]
k,i1

(t1)B
[2]
k,i2

(t2)B
[3]
k,i3

(t3),

(1)
where mi(> 2) are integers, τi1,i2,i3 are the control points,

and B
[j]
k,i(·) are the scaled and shifted B-splines of degree

k with knot points u
[j]
i defined by

B
[j]
k,i(s) = Bk(αj(s− u

[j]
i )), j = 1, 2, 3. (2)

Here αj(> 0) are the scaling factors, and specify the
intervals of equally spaced knot points as

u
[j]
i+1 − u

[j]
i =

1

αj
. (3)

Note that, here and hereafter, the superscript [j] is used
to refer j-th variable tj for j = 1, 2, 3.

For convenience, the definition of normalized, uniform B-
spline functions Bk(s) used in above is given.

Bk(s) =

{
Nk−j,k(s− j) j ≤ s < j + 1 j = 0, · · · , k

0 s < 0, k + 1 ≤ s.
(4)

Here the basis elements Nj,k(s) (j = 0, 1, · · · , k) are
obtained recursively by the following algorithm (Boor
[2001]). Let N0,0(s) ≡ 1 and, for i = 1, 2, · · · , k, compute

N0,i(s) =
1− s

i
N0,i−1(s)

Nj,i(s) =
i− j + s

i
Nj−1,i−1(s)

+
1 + j − s

i
Nj,i−1(s), j = 1, · · · , i− 1

Ni,i(s) =
s

i
Ni−1,i−1(s).

(5)

Thus, Bk(s) is a piece-wise polynomial of degree k with
integer knot points and is k − 1 times continuously differ-

entiable, and it holds that
∑k

j=0 Nj,k(s) = 1, 0 ≤ s ≤ 1.

2.2 Optimal Smoothing Splines

First we formulate a problem of trivariate optimal smooth-
ing splines and then present its solution. Note that the
problem described in this section is usually solved in con-
junction with the constraints as given in Section 3.

By choosing appropriate control points τi1,i2,i3 , the func-
tion x(t) in (1) represents trivariate spline of degree k on

the domain S = I1 × I2 × I3 ⊂ R3 where Ij = [u
[j]
0 , u

[j]
mj ].

Now suppose that a set of data

D=
{
(vi; di) : vi = (v

[1]
i , v

[2]
i , v

[3]
i ) ∈ S, di ∈ R,

i = 1, 2, · · · , N} (6)

is given, and let τ ∈ RM1×M2×M3 with Mi = mi + k.

Then, a standard problem of designing optimal trivariate
smoothing splines is to find a function x(t), or equivalently
an array τ ∈ RM1×M2×M3 , minimizing the following cost
function consisting of a smoothness term and approxima-
tion error term.

Problem 1. Construct the spline x(t) in (1) such that

min
τ∈RM1×M2×M3

J(τ),

where

J(τ) = λ

∫
S

(
∇2x(t)

)2
dt+

N∑
i=1

wi(x(vi)− di)
2. (7)

In (7), λ(> 0) is a smoothing parameter, ∇2 = ∂2

∂t21
+ ∂2

∂t22
+

∂2

∂t23
and wi (0 < wi ≤ 1) denotes weights for approximation

errors.

This problem can be solved as follows. First, we express
the right hand side of (7) in terms of τ . Let bj(s) ∈ RMj

(j = 1, 2, 3) be
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bj(s) =
[
B

[j]
k,−k(s) B

[j]
k,−k+1(s) · · · B

[j]
k,mj−1(s)

]T
=
[
Bk(αj(s− u

[j]
−k)) Bk(αj(s− u

[j]
−k+1))

· · · Bk(αj(s− u
[j]
mj−1))

]T
. (8)

Moreover, the three dimensional array τ ∈ RM1×M2×M3

is reshaped into a one dimensional, column vector form
τ̂ ∈ RM with M = M1M2M3 according to the following
rule.

Procedure 1. Three-dimensional array A = [ai1,i2,i3 ] ∈
RM1×M2×M3 is vectorized as Â ∈ RM (M = M1M2M3)

so that the j-th element Âj of Â is defined by

j = 0

for i3 = 1 : M3

for i2 = 1 : M2

for i1 = 1 : M1

j = j + 1

Âj = ai1,i2,i3

end

end

end

We denote this construction of vector Â from the array A
as Â = vec A, and the control point vector τ̂ is obtained
as

τ̂ = vec τ. (9)

Remark 1. This definition of ’vec’ operation may be re-
garded as a natural extension of the well-known definition
of vec-function for matrices (see e.g. Lancaster [1985]).
Namely, for a matrix A = [a1 a2 · · · aM2 ] ∈ RM1×M2

with ai ∈ RM1 , the vector vec A is defined as vec A =[
aT1 aT2 · · · aTM2

]T ∈ RM1M2 , and this vectorization pro-
cess agrees with that in Procedure 1 when the outer loop
on i3 is deleted for two dimensional array.

Remark 2. Using MATLAB function ’reshape’, the vector
τ̂ is obtained from the array τ by τ̂ = reshape(τ,M, 1),
and conversely τ = reshape(τ̂ ,M1,M2,M3).

Now we get the following formula for x(t), where ⊗ denotes
Kronecker product.

Proposition 1. Trivariate spline x(t) in (1) is expressed as

x(t) = bT (t)τ̂ , (10)

where b(t) ∈ RM is defined by

b(t) = b3(t3)⊗ b2(t2)⊗ b1(t1). (11)

The cost function in (7) is then obtained in terms of τ̂ as

J(τ̂) = λτ̂TQτ̂ +
(
BT τ̂ − d

)T
W

(
BT τ̂ − d

)
. (12)

Here, Q ∈ RM×M is a Gram matrix defined by

Q =

∫
S

(
∇2b(t))

) (
∇2b(t)

)T
dt, (13)

and obviously Q = QT ≥ 0. The Laplace operator ∇2

on vector b(t) should be understood as operating on each
element of the vector. Moreover, in (12), matrix B ∈
RM×N is defined by

B = [ b(v1) b(v2) · · · b(vN ) ]

=
[
b3(v

[3]
1 )⊗ b2(v

[2]
1 )⊗ b1(v

[1]
1 )

· · · b3(v
[3]
N )⊗ b2(v

[2]
N )⊗ b1(v

[1]
N )

]
, (14)

and W ∈ RN×N and d ∈ RN by

W =diag {w1 w2 · · · wN }

d= [ d1 d2 · · · dN ]
T
. (15)

Thus, the cost function in (12) is expressed as

J(τ̂) = τ̂TGτ̂ − 2gT τ̂ + c, (16)

where

G = λQ+BWBT , g = BWd, c = dTWd, (17)

and the optimal smoothing spline is obtained as a solution
of

Gτ̂ = g. (18)

Finally in this section, we consider the Gram matrix Q in
(13) from its computational point of view. Noting that

∇2b(t) =

(
∂2

∂t21
+

∂2

∂t22
+

∂2

∂t23

)
(b3(t3)⊗ b2(t2)⊗ b1(t1))

(19)
and using the properties of Kronecker products (A⊗B ⊗
C)T = AT ⊗BT ⊗CT , (A⊗B⊗C)(A′⊗B′⊗C ′) = (AA′)⊗
(BB′)⊗ (CC ′) for matrices of compatible dimensions, we
obtain

Q=Q
(22)
3 ⊗Q

(00)
2 ⊗Q

(00)
1 +Q

(20)
3 ⊗Q

(02)
2 ⊗Q

(00)
1

+Q
(20)
3 ⊗Q

(00)
2 ⊗Q

(02)
1 +Q

(02)
3 ⊗Q

(20)
2 ⊗Q

(00)
1

+Q
(00)
3 ⊗Q

(22)
2 ⊗Q

(00)
1 +Q

(00)
3 ⊗Q

(20)
2 ⊗Q

(02)
1

+Q
(02)
3 ⊗Q

(00)
2 ⊗Q

(20)
1 +Q

(00)
3 ⊗Q

(02)
2 ⊗Q

(20)
1

+Q
(00)
3 ⊗Q

(00)
2 ⊗Q

(22)
1 . (20)

Here Q
(ij)
l ∈ RMl×Ml (l = 1, 2, 3; i, j = 0, 1, 2) are defined

by

Q
(ij)
l =

∫
Il

dibl(s)

dsi
djbTl (s)

dsj
ds (21)

and hence Q
(ji)
l = (Q

(ij)
l )T holds. The elements of Q

(ij)
l

can be precomputed from the B-splines once the parame-
ters k and ml are determined (see Fujioka [2005] for the
cubic spline case k = 3).

3. PERIODICITY

There are various types of constraints that we would like
to impose on smoothing splines x(t). Here we consider the
case of periodicity.

3.1 t3-periodicity

For convenience of description, we start with the spline
x(t1, t2, t3) which is periodic in the third variable t3,
referring it as t3-periodic. Specifically, recalling that the

spline x(t1, t2, t3) is defined for tj ∈ Ij = [u
[j]
0 , u

[j]
mj ] (j =
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1, 2, 3), the spline x(t1, t2, t3) is t3-periodic if it satisfies
the constraint

∂l

∂tl3
x(t1, t2, u

[3]
0 ) =

∂l

∂tl3
x(t1, t2, u

[3]
m3

) (22)

for ∀t1 ∈ I1, ∀t2 ∈ I2 and ∀l = 0, 1, · · · , k − 1. This t3-
periodicity of x(t1, t2, t3) should be understood as that it

is periodic in t3 with the period u
[3]
m3 − u

[3]
0 if its domain

I1 × I2 × I3 is extended in the entire t3-axis, namely in
I1 × I2 × (−∞,+∞).

By introducing a matrix Ti ∈ RM1×M2

Ti = [τi1,i2,i]
m1−1,m2−1
i1,i2=−k (23)

for i = −k,−k + 1, · · · ,m3 − 1 and its column vector
expression τ̂i ∈ RM12 (M12 = M1M2) (see Remark 1),
i.e.

τ̂i = vec Ti, (24)

the following relation holds for τ̂ ∈ RM given by (9)

τ̂ =


τ̂−k

τ̂−k+1

...
τ̂m3−1

 =


vec T−k

vec T−k+1

...
vec Tm3−1

 . (25)

We then get the following result.

Proposition 2. The spline x(t1, t2, t3) is t3-periodic if and
only if

τ̂i = τ̂m3+i, ∀i = −k,−k + 1, · · · ,−1 (26)

holds for vectors τ̂i defined in (24).

Note that, in terms of the entire vector τ̂ ∈ RM , the
condition (26) is expressed from (25) as

C3τ̂ = 0 (27)

where C3 ∈ RkM12×M (M12 = M1M2) is defined by

C3 = [ IkM12 OkM12,M−2kM12 −IkM12 ] . (28)

Thus t3-periodic optimal smoothing spline is obtained by
minimizing the cost (16) under the constraint (27).

3.2 t2- and t1-periodicity

For two vectors p ∈ Rm and q ∈ Rn, we define a
permutation matrix Kn,m ∈ Rnm×nm such that

Kn,m(p⊗ q) = q ⊗ p. (29)

Then it holds that KT
n,m = K−1

n,m = Km,n (see e.g. Magnus
[1999]).

Now, t2- and t1-periodicity are defined similarly as in (22),
and we get the following conditions. The latter case is put
in parentheses.

Proposition 3. The spline x(t1, t2, t3) is t2-periodic (t1-
periodic) if and only if

τ̂ ′i = τ̂ ′m2+i (τ̂ ′′i = τ̂ ′′m1+i) ∀i = −k,−k + 1, · · · ,−1 (30)

holds, where the vectors τ̂ ′i ∈ RM13 with M13 = M1M3

(the vectors τ̂ ′′i ∈ RM23 with M23 = M2M3) are defined
by partitioning a permuted τ̂ vector as

τ̂ ′ = KM12,M3 τ̂ =


τ̂ ′−k

τ̂ ′−k+1

..

.
τ̂ ′m2−1


τ̂ ′′ = KM1,M23 τ̂ =


τ̂ ′′−k

τ̂ ′′−k+1

..

.
τ̂ ′′m1−1


 .

(31)

In terms of the vector τ̂ , the condition (30) for t2-
periodicity (t1-periodicity) is given as

C2τ̂ = 0 (C1τ̂ = 0) (32)

where C2 ∈ RkM13×M (C1 ∈ RkM23×M ) is defined by

C2 = [ IkM13 OkM13,M−2kM13 −IkM13 ]KM12,M3

(C1 = [ IkM23 OkM23,M−2kM23 −IkM23 ]KM1,M23)(33)

Remark 3. From Proposition 2 and (25), we see that
the condition for t3-periodicity may be stated as Ti =
Tm3+i ∀i (−k ≤ i ≤ −1). Likewise we can verify that
t2- and t1-periodicity are equivalent to T ′

i = T ′
m2+i and

T ′′
i = T ′′

m1+i ∀i (−k ≤ i ≤ −1), respectively, where

T ′
i = [τi1,i,i3 ]

m1−1,m3−1
i1,i3=−k , T ′′

i = [τi,i2,i3 ]
m2−1,m3−1
i2,i3=−k . (34)

In other words, the tj-periodicity is achieved by equating
the first and last k matrices constructed from τi1,i2,i3 with
the j-th parameter fixed. Propositions 2 and 3, or (27)
and (32), are employed so that the conditions can be used
directly in connection with the cost J(τ̂) in (16).

4. NUMERICAL EXPERIMENTS

We examine the performances of trivariate optimal smooth-
ing splines numerically by modeling deformation of red
blood cell.

First we summarize the numerical procedure for construct-
ing the splines. The problem of optimal smoothing splines
is formulated as a convex quadratic programming (QP)
problem with the cost function given in the form

J(τ̂) = τ̂TGτ̂ − 2gT τ̂ + c, (35)

together with the constraints

Cτ̂ = 0. (36)

This constraint contains all the necessary equality con-
straints such as the periodicity as developed in the pre-
vious sections, and it can be assumed without loss of
generality that the constraint matrix C is of row full rank.
Efficient numerical tool is available for such a QP problem
and here we use MATLAB function ’quadprog’.

In the following experiments, we use cubic splines (k =
3) and the so-called generalized cross validation (GCV)
method (Wahba [1990]) for determining the smoothing
parameter λ.

4.1 Deformation of Red Blood Cell

We examine 3D deformation motion of red blood cells by
trivariate smoothing splines. The data D is obtained by
sampling the following function

f(θ, ϕ, t) =
√
h2
1(θ, ϕ, t) + h2

2(θ, ϕ, t) + h2
3(θ, ϕ, t) (37)

where θ ∈ I1 = [0, 2π] and ϕ ∈ I2 = [0, 2π] and t ∈ I3 =
[0, T ] with T = 10 denotes time, and

h1(θ, ϕ, t) = (a+ 0.5 cos(ωt))α sin θ cosϕ

h2(θ, ϕ, t) = aα sin θ sinϕ

h3(θ, ϕ, t) = (a+ 0.5 cos(ωt))
α

2
(0.207 + 2.003 sin2 θ

−1.123 sin4 θ) cos θ (38)

where a = 2.8, α = 1.38581894 and ω = π/5. This model
is taken from (Pozrikidis [2003]), which we modified so as
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to include the additional parameter t in order to generate
deforming motion. Note that f(θ, ϕ, t) is periodic in all the
three variables. In Figure 1 (a), the function f(θ, ϕ, t) at
time t = 0 is plotted, and the corresponding 3D shape of
red blood cell in O − XY Z space is constructed by the
following transformation of polar coordinate system

X(θ, ϕ, t) = f(θ, ϕ, t) sin θ sinϕ

Y (θ, ϕ, t) = f(θ, ϕ, t) sin θ cosϕ

Z(θ, ϕ, t) = f(θ, ϕ, t) cos θ. (39)

The data points vi = (v
[1]
i , v

[2]
i , v

[3]
i ) are taken as 3-

dimensional lattice points, equally spaced in each axis with
the number N1 = 5, N2 = 5, N3 = 10 in θ, ϕ, t axes
respectively. Hence the total number of data is N = 250,
and the function is sampled to generate the data di =
f(vi)+ϵi with ϵi being 10% additive white Gaussian noise.

A trivariate optimal smoothing spline x(θ, ϕ, t) is con-
structed under the periodicity constraints on all the vari-
ables θ, ϕ, t with the periods 2π, 2π and T (= 10) respec-
tively, where the method described in Section 3 is used.
The number of control points are set as m1 = 10,m2 =
10,m3 = 15, hence the knot point intervals along the θ, ϕ, t
axes are 2π/m1 ≈ 0.628(= 1/α1), 2π/m2 ≈ 0.628(= 1/α2)
and 10/m3 ≈ 0.667(= 1/α3), respectively. The weights wi

for approximation errors are set as wi = 1/N ∀i.
By generalized cross validation method, the optimal value
of the smoothing parameter is obtained as λ∗ = 6.3096×
10−6. We constructed trivariate optimal smoothing spline
x(θ, ϕ, t). The results are shown in Figure 2 as the 3D
shapes of the red blood cell reconstructed in the O −
XY Z space by a polar coordinate transformation defined
similarly as in (39). The shapes are plotted at the four
time instants of continuous, periodic deforming motion
reconstructed from x(θ, ϕ, t).

We examined the approximation errors. Figure 3 (a) shows
the error between the original function and constructed
spline function f(θ, ϕ, t) − x(θ, ϕ, t) at time t = 0, and
error norms ∥f(θ, ϕ, t)−x(θ, ϕ, t)∥ computed for each t are
plotted in (b) (blue line), where matrix 2-norm is used.
Also shown in (b) are the error norms for the case of
increased number of data points with N1 = N2 = 10, N3 =
20 (N = 2000, green line) and N1 = N2 = 20, N3 = 40
(N = 32000, red line), and the norm of original function
f(θ, ϕ, t) (dotted line, right scale). Clearly increasing the
number of data decreases approximation errors.

Figure 4 shows XY -plane profiles of 3D shapes of the red
blood cell plotted at four time instants t = 0, T/4, 2T/4
and t = 3T/4 for two cases of data points: (a) N1 = N2 =
5, N3 = 10 and (b) N1 = N2 = 20, N3 = 40. The profiles
obtained from the optimal spline x(θ, ϕ, t) are shown in
solid lines and those by original function f(θ, ϕ, t) in dotted
lines. We see that the profiles by splines agree quite well
in (a) although the number of sampled data is relatively
small, and agree very well in (b).

5. CONCLUDING REMARKS

We developed a method of constructing trivariate optimal
smoothing splines using normalized uniform B-spline as
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Fig. 2. Sample plots of 3D shapes of deforming red
blood cell reconstructed by optimal periodic smooth-
ing spline x(θ, ϕ, t).
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Fig. 4. XY -plane profile of constructed 3D shape of the
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The case of N1 = N2 = 5, N3 = 10 (left) and
N1 = N2 = 20, N3 = 40 (right).

the basis functions. Such splines are useful particularly for
modeling dynamic shape of deformable objects by using
two variables for 3D shape and one for time evolution. The
trivariate splines are constructed as a tensor product of
three B-splines, and an optimal smoothing spline problem
is solved together with typical examples of constraints as
periodicity.

Note that the splines are optimized for fixed knot points
but the smoothing parameter will be adjusted by employ-
ing the generalized cross validation method. The problem
is formulated as convex QP problem in such a way that a
MATLAB QP solver is applicable for numerical solutions
by converting 3D control point array to a vector.

The overall process of QP problem formulation is derived
so that the general n-variate case,

x(t) =

m1−1∑
i1=−k

· · ·
mn−1∑
in=−k

τi1,i2,··· ,in

n∏
j=1

B
[j]
k,ij

(tj)

is easily deduced. We demonstrated the usefulness of the
method by dynamic shape modeling of red blood cell,
where we see that relatively small number of observation
data yield satisfactory results. Further studies are needed
to derive algorithms for shape preserving splines and
splines incorporating various types of other constraints.
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