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Abstract: In this paper, an on-line identification method for a precision positioning stage with 
piezoactuator is proposed. In the proposed method, a sandwich model with embedded Duhem hysteresis 
submodel is utilized to describe the behavior of stage. In this modeling scheme, the nonlinear Duhem 
model is transformed to a pseudo linear model. Afterwards, all the parameters of the model are separated 
to constitute a linear combination of coefficients and nonlinear variables. Then, an extended recursive 
identification algorithm is proposed to estimate the corresponding parameters of the sandwich model. 
Finally, the experimental results of on-line identification of a stage with piezoactuator are illustrated. 


1. INTRODUCTION 

In precision mechatronic systems, such as atomic force 
microscopes, diamond turning machines and mask aligner 
(Zhang and Fang et. al., 2009; Huang and Lin, 2004; Lin and 
Yang, 2005), positioning stages with piezoactuator are 
usually used as actuating mechanisms since piezoactuator 
have high stiffness, nano-meter displacement resolution, 
large bandwidth, and fast frequency response. However, the 
existence of hysteresis in piezoactuator may have significant 
influence on the performance of stage. As hysteresis has the 
characteristic of non-smoothness and multi-valued mapping 
(Bhikkaji and Moheimani, 2008; Xu and Li, 2010, 2012; 
Janaideh, Rakheja and Su, 2011; Xie, Tan and Dong, 2013; 
Ge, 1996), moreover, it may cause unexpected positioning 
error and vibration which may deteriorate the performance of 
the stage. Usually, the influence of hysteresis should be 
compensated and model based compensation strategies are 
one of the option. For model based control or compensation 
methods (Xie, Tan and Dong, 2013; Ge, 1996), it is necessary 
to build the corresponding model with hysteretic behaviour to 
describe the positioning stage with piezoactuator.  
  
For modelling of hysteresis, there have been some methods 
have proposed, e.g. Preisach models or modified Preisach 
models (Ge, 1996; Mayergoyz, 1991), Duhem models (Oh 
and Bernstein, 2005; Jayawardhana, Ouyang and Andrieu, 
2012; Meurer, Qu, Jacobs, 2002), Bou-Wen models (Wang, 
Zhang and Mao, 2012), Prandtl-Ishlinskii (PI) models 
(Visintin, 1994; Janaideh, Rakheja and Su, 2011), and neural 
networks models based on expanded input space (Zhao and 
Tan, 2008; Dong, Tan and Chen, 2008). It is noticed that, in 
many precision mechatronics systems, a piezoactuator does 
not exist solitarily but is often connected with some other 
devices or equipments. In a precision positioning stage, the 
power supply to piezoactuator is usually provided by 
electronic amplifier with filtering circuit. On the other hand, 
the flexible hinge with load is driven by the piezoactuator. In 
the case of adaptive control, on-line identification only based 
on the input and output data of positioning stage is one of the 
key issues which should be investigated. In this situation, 

both input and output of the piezoactuator are not measurable 
directly. Moreover, the piezoactuator in the stage has the 
characteristics of multi-valued mapping, non-smoothness and 
rate-dependence. All those mentioned factors have become 
severe challenges to on-line identification for positioning 
stage with piezoactuator.  
  
In this paper, a so called sandwich model is proposed to 
describe the positioning stage with piezoactuator. In this 
model, both amplifier with filtering circuit to supply power to 
the actuator and the flexible hinge with load are described by 
two linear dynamic submodels, respectively; while a 
hysteresis submodel is employed to describe the performance 
of piezoactuator sandwiched between the two linear dynamic 
submodels. For the identification of sandwich models  
Boutayeb and Darouach (1995), Tan and Godfrey (2002), 
Crama and Schoukens (2005), as well as Kibangou and 
Favier (2006) have proposed approaches for sandwich 
models embedded with smooth nonlinear functions but those 
methods can not be used directly for non-smooth sandwich 
models, especially for the case that the embedded nonlinear 
function is hysteresis which has multi-valued mapping and 
non-smoothness. Although Xie, Tan and Dong (2013) 
proposed a two-stage method for identification of sandwich 
models with hysteresis, the method can only be implemented 
off-line.  
  
Therefore, in this paper, a recursive identification algorithm 
is proposed to identify the sandwich model to describe 
positioning stage with piezoactuator. The consideration of the 
rate-dependent property of hysteresis leads to the use of a 
Duhem model to describe the characteristic of piezoactuator 
with rate-dependent behaviour in the stage. Then, a simple 
transform based on key terms separation (Voros, 1995) is 
implemented to transform the Duhem function a pseudo 
linear function. Thus, we can obtain a linear combination 
between the coefficients and nonlinear variables of the model. 
Afterwards, an extended recursive identification algorithm 
(ERIA) is implemented to estimate the coefficients of the 
sandwich model on-line.  
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Fig.1. Structure of sandwich model with hysteresis 
   

2. SANDWICH MODEL WITH HYSTERESIS  
The architecture of the proposed sandwich model is shown in 
Fig.1. In Fig.1, 1( )L  and 2 ( )L   are input and output linear 

dynamic submodels, respectively; while ( )H  is a hysteresis 

submodel. In this model, neither input 1( )w k nor 

output 2 ( )w k of ( )H  can be measured, directly. The 
corresponding descriptions of the linear dynamic submodels 
are : 

1( )L  ： 
1 1

1 1 1 10 1 1 1
1 1

( ) ( )+ ( ) ( )
b an n

j i
j i

w k b u k q j b u k q a w k i
 

       ,     (1) 

and 

2 ( )L  ： 
2 2

2 2 2 20 2 2 2
1 1

( ) ( )+ ( ) ( )
b an n

j i
j i

y k b w k q j b w k q a y k i
 

       ,  (2) 

respectively, where 1q and 2q are the delays of 

1( )L  and 2 ( )L  ; 1ia , 2ia , 1 jb and 2 jb are coefficients of linear 

dynamic submodels, 1an , 1bn , 2an and 2bn are the orders.  
    
Assumption 1:  
Both linear dynamic submodels 1( )L  and 2 ( )L  are subject to 
the following conditions 
1) stable and minimum phase; 
2) 1( )L  and 2 ( )L  are coprime. 
For the uniqueness of the model, it is assumed 
that 10 1b  and 20 1b  . 

For the submodel ( )H  , the Duhem model  (Zhao, 2003) is 
employed to describe the rate-dependent hysteresis, i.e. 

2 2 1 2 1

1 1

( ) ( 1)+ [ ( ( 1)) ( 1)] | ( ) |

        ( ( 1)) ( )

     
  

w k w k f w k w k w k

g w k w k
,    (3) 

where 1 1 1( )= ( )- ( 1) w k w k w k , is a positive bounded real 

number, both ( )f  as well as ( )g  are real-valued functions of 

1( )w k . In (3), ( )f  and ( )g   are non-smooth nonlinear 
functions, and satisfy the following assumptions (Zhao, 
2003) : 
   
 Assumption 2:                                                                                                                                                                                                    
1) function ( )f  is odd, monotone increasing and piece-wise 
continuously differentiable with a finite limit for its first 
order derivative at positive infinity; 
2) function ( )g  is even, piecewise continuous and at infinity 
of such a finite value that 

( )
lim lim ( )
s s

df s
g s

ds 
 ;                                                           (4) 

3) functions ( )f  and ( )g  satisfy that  

( )
( ) ,

df s
g s s

ds
     

and 
( )

( ) ( ) ,s

s

df
e g e d g s s

d
   


  

     
 

 . 

   
Here, based on Assumption 2, a pseudo linearization 
transform is performed to select ( )f  and ( )g   as: 

1 0 1 1 1( ( )) sgn( ( 1)) ( 1)f w k f w k f w k                                (5) 
and 

1 0( ( ))g w k g                                                                        (6) 

where 0 1,f f and 0g are the coefficients of ( )f   and ( )g  , 
respectively, and 

1

1 1

1

1, ( 1) 0

sgn( ( 1)) 0, ( 1) 0

1, ( 1) 0

w k

w k w k

w k

 
   
  

. 

Substituting (5) and (6) into (3) leads to 

2 2 0 1 1 1

2 1 0 1

( ) ( 1)+ [ sgn( ( 1)) ( 1)

        ( 1)] | ( ) | [ ( )]

    

    

w k w k f w k f w k

w k w k g w k
.                 (7) 

Thus, Eqs. (1), (2) and (7) constitute the sandwich model 
with rate-dependent hysteresis.  
By considering the stability of Duhem model, the parameters 
of Duhem model should satisfy the following condition, i.e.  

1 10 | ( ) ( 1) | 2   w k w k  .                                           (8) 
   

3. IDENTIFICATION ALGORITHM 
For convenience to separate the key terms and estimate the 
parameters of the model shown-above, the following 
incremental models are utilized: 

1 1

1 1 1 1 1 1
1 1

( ) ( )+ ( ) ( )
b an n

j i
j i

w k b u k q j u k q a w k i
 

             (9) 

2 0 1 1 1

2 1 0 1

( ) [ sgn( ( 1)) ( 1)

         ( 1)] | ( ) | ( )

    
    

w k f w k f w k

w k w k g w k
,                         (10) 

and 
2

2

2 2 2 2 2
1

2
1

( ) ( )+ ( )

        ( )





      

  





b

a

n

j
j

n

i
i

y k b w k q j w k q

a y k i

,                      (11) 

where 2 2 2( ) ( ) ( 1)w k w k w k    ; ( ) ( ) ( 1)y k y k y k    ;

( ) ( ) ( 1)u k u k u k    . 
  
Considering (1), and (9) -(11) based on the key term principle 
yields 
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2

1

2 2 2 1 2 2 2
1

0 1 2 1 2

1 1 2 1 2

1 1 1 2 0 1 2
1

0 1 2

( ) ( ) | ( ) | ( 1 )

         + | ( ) | sgn( ( 1))

        | ( ) | ( 1)

       [ ( 1) ( )]

        + ( )










         

   

     

         

   





b

b

n

j
j

n

j
j

y k b w k q j w k q w k q

f w k q w k q

f w k q u k q q

b f u k q j q g u k q j q

g u k q q a
1

2

1 1 1 2 1 2
1

0 1 2 2
1

[ | ( ) | ( 1)

       ( )] ( )






    

      





a

a

n

i
i

n

i
i

f w k q w k i q

g w k i q a y k i

.   (12) 

Hence, Eq.(12) can be formed as: 
( ) ( | )Ty k k h θ θ,                                                                  (13) 

where data vector ( | )k h and parameter vectorθ are defined 
as: 

2 2 2 2 2

1 2 2 2 1 2 1 2

1 2 1 2 1 1 2

0 1 2 1 1 1 2

0 1 1 2 1 2

( | ) [ ( 1), , ( ),

| ( ) | ( 1 ), | ( ) | sgn( ( 1)),

| ( ) | ( ),{ ( 2 )

( 1 )}, ,{ ( 1)

( )}, ( ),

{




      
        
      

         
      







T
b

b

b

k w k q w k q n

w k q w k q w k q w k q

w k q u k q q f u k q q

g u k q q f u k q n q

g u k q n q u k q q

h θ

1 1 2 1 2 0 1 2

1 1 2 1 1 2

0 1 1 2 2

| ( ) | ( 2 ) ( 1 )}, ,

{ | ( ) | ( 1 )

( )}, ( 1), , ( )]




       
     

       




a

T
a a

f w k q w k q g w k q

f w k q w k n q

g w k n q y k y k n

 

and  

2 1

1 2

21 2 0 1 11 1

0 11 1 21 2

[ , , , , , , , , ,

      , , , , , , ]

  

 
b b

a a

n n

T
n n

b b f f b b

g a a a a

θ
 

respectively. 
  
Thus, the parameters can be estimated based on the cost 
function as follows. 

2

1

ˆ ˆ ˆˆ( ) arg min ( )[ ( ) ( | ( 1)) ( 1)]
n

T

k

k k y k k k k


     
θ

θ h θ θ ,  (14) 

where ( ) 0k  is a weighted factor. Moreover, 
ˆˆ ( | ( 1))k k h θ  and ˆ( 1)k θ  are represented by 

2 2 2 2 2

1 2 2 2 1 2 1 2

1 2 1 2 1 1 2

0 1 2 1 1 1

ˆ ˆ ˆ( | ( 1)) [ ( 1), , ( ),

ˆˆ ˆ ˆ ˆ| ( ) | ( 1 ), ( 1)| ( ) | sgn( ( )),

ˆˆ ˆ( 1)| ( ) | ( ),{ ( 1) ( 2 )

ˆˆ ( 1) ( 1 )}, ,{ ( 1) (





       

        

        

        





T
bk k w k q w k q n

w k q w k q k w k q w k q

k w k q u k q q f k u k q q

g k u k q q f k u k q n

h θ

2

0 1 1 2 1 2

1 1 2 1 2 0 1 2

1 1 2 1 1 2

0 1 1 2 2

1 )

ˆ ( 1) ( )}, ( ),

ˆ ˆ ˆ ˆ ˆ ˆ{ ( 1) ( 1)| ( ) | ( 2 ) ( 1) ( 1 )}, ,

ˆ ˆ ˆ ˆ{ ( 1) ( 1)| ( ) | ( 1)

ˆ ˆ( 1) ( )}, ( 1), , ( )





  

       

           

       

        





b

b

a

a a

q

g k u k q n q u k q q

f k k w k q w k q g k w k q

f k k w k q w k n q

g k w k n q y k y k n ]T

and 

2

1

1 2

21 2 0

1 11 1 0

11 1 21 2

ˆ ˆ ˆˆ ˆ( 1) [ ( 1), , ( 1), ( 1), ( 1),

ˆ ˆ ˆ ˆ( 1), ( 1), , ( 1), ( 1),

ˆ ˆ ˆ ˆ( 1), , ( 1), ( 1), , ( 1)]

     

   

   





 

b

b

a a

n

n

T
n n

k b k b k k f k

f k b k b k g k

a k a k a k a k

θ

 

Note that data vector ˆˆ ( | ( 1))T k kh θ can be calculated based 

on the estimated parameters at the previous step. 
Therefore, 1ŵ , 2ŵ , 1ŵ and 2ŵ can be computed based on Eqs. 

(1)-(2) and (7)-(11) with the coefficient vector ˆ( 1)k θ . 

  
Based on what stated-above, an extended recursive algorithm 
is used to estimate the parameters of the model on-line, i.e. 

ˆ ˆˆ( ) ( ) ( | ( 1)) ( 1)Te k y k k k k    h θ θ ,                              (15) 

ˆ ˆ( ) ( 1) ( ) ( )k k k e k  θ θ K ,                                                (16) 

1

ˆˆ( 1) ( | ( 1))
( )

ˆ ˆˆ ˆ( | ( 1)) ( 1) ( | ( 1)) ( ) ( )T

k k k
k

k k k k k k k 

 


    
P h θ

K
h θ P h θ

   (17) 

1

1 ˆˆ( ) ( ) ( | ( 1)) ( 1) [
( )

ˆˆ     ( ) ( | ( 1))] ( ) ( ) ( )




         

     

T

T T T

k k k k k
k

k k k k k k

P I K h θ P I

K h θ K K

,            (18) 

1 1 2 1( ) ( ) ( )[ ( ) ( )]k k k e k k        ,                          (19) 

where e(k), K(k), P(k) and 1( )k are the modelling error, 
gain vector, covariance matrix and estimation value of the 
correlation of model error. Moreover, ρ(k)∈(0, 1) and 
μ(k)∈(0, 1) are the convergence and forgetting factors, 

respectively; and  ( 1)
( ) 1 ( )

( )

k
k k

k

 



  (Zhang, 2004). 

Lemma 1:  
Suppose the input fed to the system is bounded. If 
Assumption 1 is held, for a given 0M , we have   

ˆ ˆˆ ˆ( | ( 1)) ( | ( 1))T k t k t M  h θ h θ . 

Proof: As the input fed to the system is bounded and 

conditions 1)-3) in Assumption 1 are held, 1
ˆˆ ( | ( 1))w k k θ is 

also bounded. Based on (8), 2
ˆˆ ( | ( 1))w k k θ  is bounded either. 

Thus, for the given 0M , all the elements of 
ˆˆ ( | ( 1))k t h θ are bounded, and namely, 

ˆ ˆˆ ˆ( | ( 1)) ( | ( 1))T k t k t M  h θ h θ . 

  
Assume that the bounded input signal is selected to make the 
sandwich system with hysteresis to be fully excited in all the 
operation zones. That means the input excitation will cover 
all the equilibrium points of the system and satisfy the 
persistently exciting conditions at the equilibrium point of 
each operation zone. We have the following theorem: 
  
Theorem 1:  
Suppose input u(k) is bounded and can fully excite all the 
operation zones of the sandwich system with hysteresis 
described by (1), (2), (7), and (9)-(11). Moreover, assume 
that the algorithm described by (15)-(19) is used to estimate 
the parameters of the system model. If 1( ) ( )k k P  is a 
positive definite matrix; as well as   

maxlim [ ( )] 0
k

k


P  ;                                                           (20) 

max

min

[ ( )]
lim sup

[ ( )]k

k

k




 
P

P
;                                                       (21) 

and 

1 11 ( ) ( ) 1 ( )k k k                                                (22) 

are held, it will lead to: 
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ˆlim ( )
k

k


θ θ                                                             

where θ  is the local equivalent truth value of the parameter 
vector of the system, and 

1 1

ˆ ˆˆ ˆ( | ( 1)) ( 1) ( | ( 1))
( ) 1

ˆ ˆˆ ˆ( | ( 1)) ( 1) ( | ( 1)) ( ) ( )

T

T

k k k k k
k

k k k k k k k 

  
  

    
h θ P h θ

h θ P h θ

, ( )k in (22) denotes the ratio between 
ˆ ˆˆ ( | ( 1))( ( 1))T k k k h θ θ θ and modelling error ( )e k .  

 Proof: Omitted due to limited space. 
   
Remark 1: In the recursive identification, the data vector 

ˆˆ ( | ( 1))T k k h θ is calculated by the estimated parameter 

vector ˆ( 1)k θ at the previous step. ( )k  implies that the 

identification is affected by the estimated errors of the 
internal variables, and ( )k  will be equal to unity if the 
internal variables are equal to the truth values.  
   
Remark 2: If the estimated parameters are far from the their 
corresponding truth values, the estimation error of 

ˆˆ ( | ( 1))T k k h θ may be larger, and it may make ( )e k  larger, 

which does harm to parameters convergence, and even leads 
to divergence of estimation for ( )k can not satisfy the 
condition described by (22), especially at the initial period of 
identification. Hence, if the bounded input can fully excite all 
the operation zones of the system, the amplitude of the input 
should be selected as relatively small as possible. 
    

4. EXPERIMENTAL RESULTS 
In this section, both proposed non-smooth sandwich model 
and the extended recursive identification algorithm are 
applied to the identification of precision positioning stage 
with piezoactuator. The corresponding system architecture is  
shown in Fig. 2. 
   
In the positioning system, the piezoactuator is employed to 
drive the load which is a flexible hinge with work platform, 
and  a capacitive sensor is used to measure the displacement 
of the load. The variation range of the stage displacement is 
between 0 m and10 m . An amplifier with filtering circuit 
supplies voltage between 0v and 10v to the piezoactuator. In 
the experiment, the sampling frequency is chosen as 30KHz. 
In this case, only the displacement of the load can be 
measured by the capacitive sensor, of course, the excitation 
signal generated by the computer to the amplifier can also be 
known. 
   
In the identification, both amplifier + filtering circuit and the 
flexible hinge + load are described by linear dynamic 
submodels, respectively, whilst the Duhem model is 
employed to describe the behavior of the piezoactuator. Thus, 
the architecture of the corresponding sandwich model can be 
described as 

1( )L  , for amplifier + filtering circuit: 

1 11 1 10( ) ( 1) ( 1)w k a w k b u k     ,                                      (23) 

( )H  , for piezoactuator: 

2 2 1 1

2 1 0 1

( ) ( 1)+ [ ( 1)

       ( 1)] | ( ) | ( ( ))

  
    

w k w k f w k

w k w k g w k
,                            (24) 

2 ( )L  , for flexible hinge + load: 

21 22 20 2( ) ( 1) ( 2) ( )y k a y k a y k b w k      .                      (25) 

where both 10b and 20b are set to unity for assuring the 
uniqueness of the identified model. 
   
In the experiment, the excitation signal used to excite the 
stage is a modulated signal constituted by a PRBS sequence 
and a sinusoidal signal with attenuated amplitude and 
frequency. The amplitude of the PRBS sequence varies from 
0.4v to 0.6v. On the other hand, the maximum value of the 
frequency of the sine signal is 500Hz.  
  
For on-line estimation, we set convergence factor 

9
13( ) ( 1)  k k , and the initial value of covariance matrix 

as 6( ) 10k  P I . The initial values of the parameters are all 
set to 0.01. The up-bound of the index to stop iteration is set 
as 41 10   . 
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+load
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Filtering Circuit
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Sensor

PCI-1716L
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D/A

Computer

 

Fig. 2. Experimental setup of the positioning stage 
   
After 400 steps, all the parameters converge. Fig.3 illustrates 
the convergence procedure of all the estimated parameters of 
the model to describe the positioning stage. Based on the 
estimated parameters, we obtain the correspondingly 
estimated sandwich model, i.e. 

1 1ˆ ˆ( ) 0.529 ( 1) ( 1)w k w k u k    ,                                      (26) 

2 2 1

2 1 1

ˆ ˆ ˆ( ) ( 1)+0.8365[0.1354 ( 1)

ˆ ˆ ˆ       ( 1)] | ( ) | 0.0042 ( )

  
    

w k w k w k

w k w k w k
,                          (27) 

and 

2ˆ ˆ ˆ ˆ( ) 1.6049 ( 1) 0.9226 ( 2) ( )    y k y k y k w k .               (28) 
The corresponding model validation result is shown in Fig.4. 
The beginning output on the duration from 0.00 sec to 0.0017 
sec is removed due to the large error induced by the influence 
of initial values. In Fig.4, it can be seen that the range of 
output variation is from 3.7 m to 6 m , while the 
corresponding variation of modelling error is 
from 0.059 m to 0.089 m . 
  
For comparison, a sandwich model with Prandtl-Ishlinskii (PI) 
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hysteresis submodel is also used to describe the positioning 
stage. The structure of the model is shown as follows： 

1 1 11 1 12 1 11 12( ) : ( ) ( 1) ( 2) ( 1) ( 2)L w k a w k a w k b u k b u k          (29) 

2 1 1
0 0

( ) :

( ) ( ) {max{ ( ) , min[ ( ) , ( 1)]}}
N N

i i i i i i
i i

H

w k p k w k r w k r p k 
 



        (30) 

  

2 21 22 21 2 22 2( ) : ( ) ( 1) ( 2) ( 1) ( 2)L y k a y k a y k b w k b w k          (31) 
where N is the number of backlash operators in the PI 
hysteresis submodel, in this experiment, N=40; ir is the 
threshold of backlash operator.  
  
In the experiment, the signals used for model identification 
and validation are the same as what we used in the proposed 
method. In the identification, 6(0) 10 P I is the initial 

value of covariance matrix, and (0) [0.001, ,0.001]T   is 
the initial value of the parameters  vector. The index to stop 
identification is also set as 41 10   .  
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Fig.3. Convergence procedure of the estimated parameters (The 
proposed method) 
  
After 2698 steps, all the estimated parameters almost 
converge. The corresponding convergent procedure of the 
parameters in linear submodels is shown in Fig.5. The 
convergence of the weights in the PI hysteresis submodel is 
omitted due to limited space. The corresponding model 
validation result is shown in Fig.6. From Fig.6, variation of 
modelling error is from 0.162 m to 0.198 m . From Figs.3 
and 5, it is known that the proposed method has achieved 
faster convergence than that of the sandwich model with PI 
hysteresis submodel. From Figs.4 and 6, we also can see that 
the model validation error of the proposed modelling method 
is smaller than that of the sandwich model with PI hysteresis 
submodel. Moreover, the proposed method has simper model 
structure and less parameters needed to be estimated 
compared with the sandwich model with PI hysteresis 
submodel.  
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Fig.4. Model validation of the estimated sandwich model for 
positioning stage with piezoactuator 
   
From the experiment, it is also known that the proposed 
sandwich model with hysteresis estimated by the ERIA is 
rather promising to describe the precision positioning stage 
with piezoactuator. 
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Fig.5. Convergence procedure of the estimated linear parameters of 
the stage (used by sandwich model with PI hysteresis submodel) 
  

6.  CONCLUSIONS 
In this paper, a sandwich model with rate-dependent 
hysteresis is proposed to describe precision positioning stage 
with piezoactuator. In the modelling scheme, both amplifier + 
filtering circuit and flexible hinge + load are described by 
linear dynamic submodels, and the piezoactuator is described 
by a Duhem model. Based on a pseudo linearization 
transformation, the sandwich model can be formed as a linear 
combination of coefficients and the nonlinear variables. For 
on-line identification of the stage with non-smooth 
nonlinearity, an extended-recursive identification is 
developed to estimate the parameters of the non-smooth 
sandwich model with hysteresis on-line. Moreover, the 
convergence conditions of the identification algorithm are 
provided. The experiment on a positioning stage with 
piezoactuator has illustrated the promising potential of the 
proposed method to theoretical research and practical 
modelling of positioning stage.  
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Fig.6. Model validation of the estimated sandwich model with PI 
hysteresis submodel for positioning stage with piezoactuator 
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