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Abstract: We present a Monte Carlo solution to the distributed data fusion problem and
apply it to distributed particle filtering. The consensus-based fusion algorithm is iterative and it
involves the exchange and fusion of empirical posterior densities between neighbouring agents.
As the fusion method is Monte Carlo based it is naturally applicable to distributed particle
filtering. Furthermore, the fusion method is applicable to a large class of networks including
networks with cycles and dynamic topologies. We demonstrate both distributed fusion and
distributed particle filtering by simulating the algorithms on randomly generated graphs.

1. INTRODUCTION

As modern sensor systems move towards distributed archi-
tectures it is important to consider the design of practical
algorithms for data estimation and fusion. Such algorithms
should be robust and promote network scalability.

In this paper we develop a distributed method for data
fusion over networks and apply the algorithm to dis-
tributed particle filtering. Our approach to this problem
is consensus-based and involves the local exchange of
posterior densities. The posteriors are exchanged via sets
of unweighted particles. The algorithm converges to the
optimal (centralised) solution if the likelihood functions
are conditionally independent. If they are dependent then
our algorithm can be modified to return a posterior that
is guaranteed to be consistent [Bailey et al. (2012)].

There are many attractive aspects to our approach. (i)
the method is distributed: the agents share and compute
with local knowledge. (ii) the fusion scheme is robust to
networks containing cycles and networks with time varying
topologies. (iii) the algorithm has a guaranteed speed of
convergence. (iv) the resulting posterior distribution is
guaranteed to be consistent as long as the dependence
between the agents is understood.

The algorithm we present is falls under the category of
consensus-based distributed particle filtering. An alterna-
tive to consensus is message passing (or routing) based
information sharing. The following is a short review of
some of the literature in this space.

The distributed fusion method of Hlinka et al. (2012) (see
also Hlinka et al. (2011) and Hlinka et al. (2010)) relies on
the individual agent’s likelihood functions belonging to the
exponential family of distributions. They apply a consen-
sus scheme to approximations of the exponential family
and arrive at a joint likelihood function. The consensus

1 The authors were supported by NICTA and A.N. Bishop is also
supported by the Australian Research Council via a Discovery
Early Career Researcher Award (DE-120102873) and by the US Air
Force via the Asian Office of Aerospace Research and Development
(AOARD) and contract USAF-AOARD-144042.

method of Gu (2007) involves sharing the parameters of
Gaussian mixture models. The approaches of Sheng et al.
(2005) and Hlinka et al. (2009) also transmit the param-
eters of a Gaussian mixture model. However their fusion
schemes are not based upon consensus, but rather message
passing. Gu et al. (2008), another consensus-based fusion
scheme, simplifies the parameter exchange by transmitting
only the mean and covariance. Consequently this supports
Gaussian dynamic systems, however they propose its use
for systems with higher order moments by applying the
unscented transform. Mohammadi and Asif (2011a) also
take advantage of the unscented transform and propose its
use to incorporate distributed Kalman filters into networks
of distributed particle filters.

Mohammadi and Asif (2011b) propose another consensus
scheme where each node runs two particle filters: a local
particle filter, and a fusion filter, where the fusion filter
computes the global distribution. Üstebay et al. (2011) use
a selective gossip procedure to arrive at a consensus about
the likelihoods of particles. The selective gossip procedure
shares particles based upon weights. This focuses commu-
nication on the particles that contain the most informa-
tion. Oreshkin and Coates (2010) also use a gossip con-
sensus approach to share Gaussian approximations of the
posterior. Recent work by Lee and West (2013) proposes a
Markov Chain Distributed Particle Filter (see additionally
Lee and West (2009) and Lee and West (2010)) in which
neighbours exchange particles and weights using a Markov
chain random walk.

Further approaches to distributed particle filtering are
outlined in Bashi et al. (2003), Sheng and Hu (2005), Bolić
et al. (2005), Mohammadi and Asif (2009), Farahmand
et al. (2011), and Savic et al. (2012). In addition, the
review by Hlinka et al. (2013) is an excellent resource for
comparing methods of distributed particle filtering.

This paper is organised as follows. Section 2 briefly dis-
cuses the distributed data fusion problem, then details the
proposed Monte Carlo based fusion algorithm. The algo-
rithm is supported by two simulations. Section 3 considers
the application of the previously derived distributed Monte
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Carlo fusion algorithm to the problem of distributed par-
ticle filtering. In Section 4 we offer conclusions.

2. DISTRIBUTED MONTE CARLO DATA FUSION

Consider a group of agents indexed in V = {1, . . . , n} and a
set of possible time-varying undirected links E(k) ⊂ V ×V
defining a network graph G(V, E(k)). The neighbor set at
agent i is denoted by Ni(k) = {j ∈ V : (i, j) ∈ E(k)} and
j ∈ Ni(k)⇔ i ∈ Nj(k) for undirected topologies. We often
drop the network’s dependence on k for brevity.

Each agent constructs an initial local posterior of the form

p(x|yi) =
g(yi|x)p(x)∫
g(yi|x)p(x)dx

∝ g(yi|x)p(x) (1)

from given measurements yi ∈ Rmyi and where g(yi|x) is
the likelihood function at agent i conditioned on some un-
derlying event x ∈ Rmx . Here, p(x) is the prior information
common to all agents. The goal of distributed data fusion
in this case is to compute

p(x|{yi}i∈V ) ∝ p(x)
∏
i∈V

g(yi|x) (2)

locally at each agent i under the constraint that agent
i can only share p(x|yi) with its neighbours in Ni(t). In
other words, each agent is constrained to computations
involving local posteriors, p(x|yi) and p(x|yj) where j ∈
Ni. Obviously, an iterative procedure is required to reach
p(x|{yi}i∈V ) at each agent in an incomplete network.

The following theorem is a slight modification of the main
result in Olfati-Saber et al. (2006).

Theorem 1. Consider a network G(t) as described above
where each agent exchanges πik with πik=0 = p(x|yi). Here

πik and πjk are not conditionally independent. Suppose
p(x) > 0 and g(yi|x) > 0 for all i ∈ V. Then the following
statements hold:

i The agents are capable of asymptotically reaching a
consensus on Q ∝ p(x)

∏
j∈V g(yj |x)1/n.

ii The consensus algorithm for agreement in the value Q
takes the form

πik = (πik−1)1−|Ni|γ
∏
j∈Ni

(πjk−1)γ . (3)

where 0 < γ < 1/max({|Ni| : i ∈ V}) 2 .

Proof. It is shown in Olfati-Saber et al. (2006) that

πik →
∏
j∈V(πj0)1/n as k → ∞. In other words, log(πik) →

(
∑
j∈V log(πj0))/n as k →∞.

Note then in this case πik=0 = p(x|yi) ∝ g(yi|x)p(x) and

log(πik)→
∑
j∈V log(πj0)

n

∝ n log(p(x))

n
+

∑
j∈V log(g(yj |x))

n
(4)

2 The restriction that γ is less than the inverse of the maximum
degree in the network is sufficient for each agent to converge to Q.
See Olfati-Saber et al. (2006) or Olfati-Saber and Murray (2004).

Taking the exponential gives

Q ∝ p(x)g(yi|x)1/n (5)

which completes the proof. 2

Note that despite the fact each agent is sharing its local
posterior the consensus-based distributed fusion algorithm
just depicted converges to p(x)

∏
j∈V g(yj |x)1/n and not

p(x)n
∏
j∈V g(yj |x)1/n or p(x)1/n

∏
j∈V g(yj |x)1/n. Thus it

is not ‘double counting’ the common prior information
p(x) and nor is it conservative in this common prior
information. The algorithm is actually conservative in∏
j∈V g(yj |x)1/n which may be important for consistency

as discussed in Bailey et al. (2012). In particular, if yi
and yj were correlated (i.e. g(yi|x) and g(yj |x) were not
conditionally independent) and this dependence was not
considered then over-confident results may be obtained
if one simply computes

∏
j∈V g(yj |x). Similarly, if p(x)

was counted multiple times then over-confident results are
clearly obtained. The proposed algorithm converges to the
log-linear opinion pool [see Abbas (2009); Bailey et al.
(2012)] on the likelihoods multiplied by the common prior
which is guaranteed consistent. It converges to this value in
a distributed manner which generalises Bailey et al. (2012).

Corollary 2. Suppose that g(yi|x) and g(yj |x) are con-
ditionally independent for all i, j ∈ V. Define πik=0 ∝
p(x)g(yi|x)n. The proposed consensus-based distributed
fusion algorithm converges to Q′ ∝ p(x)

∏
i∈V g(yi|x) as

k → ∞. This is exactly the optimal centralised Bayesian
result given p(x|yi) ∝ g(yi|x)p(x) where g(yi|x) and
g(yj |x) are conditionally independent and p(x) is the com-
mon prior information among all agents.

The algorithm can be rewritten in the form

πik = πik−1
∏
j∈Ni

(
πjk−1
πik−1

)γ
(6)

which shows that when consensus is reached the iterations
reduce to πik = πik−1.

This algorithm has many appealing points. Firstly, it is
distributed: the agents only share and compute with local
knowledge. Secondly, this distributed fusion algorithm can
deal with cycles and time-varying topologies (where, for
example, the network may be disconnected for many time
steps). Thirdly, the algorithm has a guaranteed speed of
convergence that is characterised by the network’s alge-
braic connectivity; see Olfati-Saber et al. (2006). Finally,
as noted above, the proposed algorithm converges to the
log-linear opinion pool multiplied by the common prior in-
formation (which is a conservative, guaranteed consistent,
version of the optimal Bayesian result regardless of the
dependence between g(yi|x) and g(yj |x)). Moreover, with
a slight modification to the initially shared data we can
also achieve distributed convergence to the true optimal
Bayesian fusion result as noted in the corollary (and this
result is obviously the most desired when it is known
g(yi|x) and g(yj |x) are conditionally independent).
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2.1 A Monte Carlo Implementation of the Distributed
Fusion Algorithm

Given the desirable nature of the proposed data fusion
algorithm it remains to establish a Monte Carlo version
which allows one to begin with an empirical estimate of
πik=0 ∝ p(x)g(yi|x)n or πik=0 ∝ p(x)g(yi|x) given by

πik=0(x) =
1

Ns

Ns∑
`=1

δ(x− x`) (7)

where x` ∈ Rmx are a set of independent and identically
distributed samples of p(x)g(yi|x)n or p(x)g(yi|x) etc.

The main contribution of this section is a Monte Carlo ver-
sion of the algorithm outlined in the previous subsection
that allows one to begin with πik=0. This is desirable when
dealing with complex estimation problems and/or when
πik=0 is sourced from alternative Monte Carlo estimations
as in Doucet et al. (2001).

So given πjk−1, ∀j ∈ Ni ∪ {i} we want to compute πik at

each agent i in the sense that πik should be an empirical
version of

πik = πik−1
∏
j∈Ni

(
πjk−1
πik−1

)γ
(8)

where 0 < γ < 1/max({|Ni| : i ∈ V}).

If the supports of πjk−1, ∀j ∈ Ni ∪ {i} were totally
overlapping (i.e. if these estimates were constructed from
the same sample points) then one could simply compute πik
directly via (8). This is essentially the situation considered
in Savic et al. (2012) and Lindberg et al. (2013) where the
initial posteriors πik=0 are sampled at the same point for
each i ∈ V. However, in the more likely case in which the
supports of πjk−1, ∀j ∈ Ni ∪ {i} are totally disjoint (with
probability 1) then an alternative method of computing an
empirical estimate πik of πik is needed.

Note that we obviously cannot sample directly from πik
even if we know πjk−1, ∀j ∈ Ni ∪ {i}. We can estimate

πjk−1, ∀j ∈ Ni ∪ {i} from πjk−1, ∀j ∈ Ni ∪ {i}, using for
example Kernel density estimation as in Silverman (1986),
but we cannot then use this to compute an estimate of πik
as no closed form solution to the update in (8) exists for
any reasonable choice of the Kernel density estimate.

Instead we propose the following empirical approximation
of πik based on importance sampling; see Doucet et al.
(2001). Note

πik = πik−1
∏
j∈Ni

(
πjk−1
πik−1

)γ

= qik−1
πik−1
qik−1

∏
j∈Ni

(
πjk−1
πik−1

)γ
(9)

or

πik(x) =

Ns∑
l=1

πik−1(xil)

qik−1(xil)

∏
j∈Ni

(
πjk−1(xil)

πik−1(xil)

)γ
δ(x− xl)(10)

where here xl ∈ Rmx are a set of Ns independent and
identically distributed samples of the so-called importance
function qik−1. Two matters remain. Firstly, one needs

an importance function qik−1 from which one can easily

sample from. Secondly, we still don’t know πjk−1, ∀j ∈ Ni∪
{i} and thus cannot compute πjk−1(xil), ∀j ∈ Ni ∪ {i}.
To resolve the second matter we resort to Kernel density
estimation and obtain

πik(x) =

Ns∑
l=1

π̃ik−1(xil)

qik−1(xil)

∏
j∈Ni

(
π̃jk−1(xil)

π̃ik−1(xil)

)γ
δ(x− xil)(11)

where again xl ∈ Rmx are samples of qik−1 and

π̃ik(x) =
1

Ns

Ns∑
`=1

1

h
K

(
x− xi`
h

)
(12)

where here x` ∈ Rmx are samples of πik or in other words
correspond to the support of πik(x) and thus are obviously
known (i.e. by assumption at k = 0 we know πik(x)). The
Kernel K(·) is chosen to be Gaussian in our simulations
but other choices are possible; see Silverman (1986).

The importance function qik−1(x) must now be chosen and
given the information available at the agents one obvious
choice is

qik−1(x) = π̃ik−1(x) (13)

where the support of πik−1(x) is distributed according to

qik−1(x) = π̃ik−1(x) and so sampling from qik−1(x) is given.
In this case

π̂
i

k(x) =

Ns∑
`=1

wik,`δ(x− xi`) (14)

where

wik,` =
π̃ik−1(xi`)

π̃ik−1(xi`)

∏
j∈Ni

(
π̃jk−1(xi`)

π̃ik−1(xi`)

)γ
(15)

=
∏
j∈Ni

(
π̃jk−1(xi`)

π̃ik−1(xi`)

)γ
(16)

with wik,` = wik,`/
∑Ns

`=1 w
i
k,` and xi` ∈ Rmx sampled from

qik−1(x) = π̃ik−1(x) which in practice means xi` are exactly

the samples of πik−1(x) at the previous time step. To

combat possible degeneracy we then, given the wik,` and xi`

that define π̂
i

k(x), resample Ns times from a multinomial
distribution defined by wik,` and xi` to obtain the final

πik(x) =
1

Ns

Ns∑
`=1

δ(x− x`) (17)

where now x` ∈ Rmx corresponds to the set of independent
and identically distributed samples of the multinomial
distribution just discussed.

2.2 The Distributed Monte Carlo Fusion Algorithm

From the perspective of sensor i the Monte Carlo dis-
tributed fusion algorithm is:

Step 0: Initialisation
Pick γ according to 0 < γ < 1/max({|Ni| : i ∈ V }), and
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select a stopping time, kstop. For ` = 1, . . . , Ns sample
xik,` ∼ πi0, where πi0 is a given initial probability density;

e.g. πik=0 ∝ p(x)g(yi|x)n or πik=0 ∝ p(x)g(yi|x).
Step 1: Send, Receive (k > 0)

For each j ∈ Ni send the unweighted samples set
{xik,`}

Ns

`=1 to agent j. For each j ∈ Ni receive {xjk,`}
Ns

`=1.
Step 2: Calculate weights

If k < kstop then for ` = 1 . . . Ns calculate the fused
particle weight wik+1,` via (15). If k = kstop then for

` = 1 . . . Ns assign wik+1,` = π̃ik(xik,`).
Step 3: Resample

Resample with replacement Ns points xik+1,` from the

empirical density π̂
i

k+1(x) in (14). This is equivalent
to sampling from a multinomial distribution defined by
xik,` and wik+1,`. If k = kstop then the resampled set

{xik+1,`}
Ns

`=1 defines an unweighted empirical probability

density of the form (17) which is the Monte Carlo
approximation of either Q ∝ p(x)

∏
i∈V g(yi|x)1/n or

Q′ ∝ p(x)
∏
i∈V g(yi|x) (depending on the definition of

the initial πi0).

Note that we have restricted the number of iterations by
the parameter kstop. This is a practical approximation
obviously and one could even use some defined threshold
on the weights such that the weights in (15) approach
one the algorithm halts. Again, depending on whether the
initial likelihoods are conditionally independent or not, one
may opt for convergence to Q ∝ p(x)

∏
i∈V g(yi|x)1/n or

Q′ ∝ p(x)
∏
i∈V g(yi|x).

2.3 Illustrative Examples

In this subsection we highlight the performance of the
distributed Monte Carlo fusion algorithm initialised sim-
ply by πik=0 ∝ p(x)g(yi|x)n and where we seek conver-
gence to the true optimal Bayesian fusion result Q′ ∝
p(x)

∏
i∈V g(yi|x).

Firstly, we consider a random network with 5 agents
shown in Figure 1. The true initial density πik=0 at each
agent was a randomly generated Gaussian mixture with 5
components. This initial density was then sampled at 1000
points to generate each agent’s initial sampled density
πik=0(x) which all the agents would actually have access
to in practice. The true initial densities at each agent and
the corresponding random samples are shown in Figure 2.
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Fig. 1. The network topology with n = 5 agents.

The centralized Bayesian solution (which is computable
from the true initial Gaussian mixtures) was computed for
comparison and is shown in Figure 3. Note this cannot be
computed in practice because the true initial (continuous)
densities are unknown (only the samples are known) and
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Fig. 2. The actual initial densities are Gaussian mixtures
and the samples are shown above these for clarity.

of course we are interested in distributed computation
in this work. However, this centralised solution is the
ideal solution and represents the outcome we seek through
iterative means and via Monte Carlo approximation.
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Fig. 3. The ideal centralised optimal Bayesian fusion result
computed on the true underlying initial continuous
densities. This is not computable in practice as we
suppose only the empirical (sampled) density is ini-
tially known (and also the underlying true distribu-
tions are unlikely to Gaussian mixtures).

The centralised optimal Bayesian solution was compared
to the distributed Monte Carlo algorithm for Bayesian
fusion. The Monte Carlo solutions are shown (in colour)
against the centralised solution (in black) in Figure 4.
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Fig. 4. The outcome from the distributed Monte Carlo
fusion algorithm after 50 iterations. The empirical
measure sample points are shown along with continu-
ous Kernel density estimates generated from such (for
visualisation only). The centralised optimal Bayesian
solution shown in Figure 3 is also shown again here
and we can see the Kernel estimates of the empirical
(sampled) densities closely approximate the optimal
centralised solution. They also have converged to-
gether and reached consensus.

From Figure 4 we clearly see that each agent has converged
to a common value (i.e. they have reached consensus)
and that this common value has converged to the desired
(centralised Bayesian) solution.

We consider now a similar illustration with 10 agents
and a network with cycles as shown in Figure 5. The
true initial density πik=0 at each agent was a randomly
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generated Gaussian mixture with 5 components. This
initial density was then sampled at 1000 points to generate
each agent’s initial sampled density πik=0(x) which all
the agent would actually have access to in practice. The
true initial densities at each agent and the corresponding
random samples are also shown in Figure 5.
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Fig. 5. The network topology with n = 10 agents and the
actual initial densities are Gaussian mixtures and the
samples are shown above these for clarity.

The centralized Bayesian solution (which is computable
from the true initial Gaussian mixtures) was computed for
comparison and is shown in Figure 6. Again this is just for
comparison and is not realistically computable in practice.
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Fig. 6. The ideal centralised optimal Bayesian fusion result
computed on the true underlying initial continuous
densities. This is not typically computable in practice.

The centralised optimal Bayesian solution was compared
to the distributed Monte Carlo algorithm for Bayesian
fusion. The Monte Carlo solutions are shown (in colour)
against the centralised solution (in black) in Figure 7.
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Fig. 7. The outcome from the distributed Monte Carlo
fusion algorithm after 100 iterations. The empirical
measure sample points are shown along with continu-
ous Kernel density estimates generated from such (for
visualisation only). The centralised optimal Bayesian
solution shown in Figure 6 is also shown again here
and we can see the Kernel estimates of the empirical
(sampled) densities closely approximate the optimal
centralised solution. They also have converged to-
gether and reached consensus.

From Figure 7 we clearly see that each agent has converged
to a common value (i.e. they have reached consensus)

and that this common value has converged closely to
the desired (centralised Bayesian) solution. This multi-
modal fusion result shows the accuracy and potential of
the distributed Monte Carlo fusion algorithm (as only the
initial sample points in Fig 5 are used in initialising the
algorithm and no knowledge about the underlying initial
continuous densities is assumed).

3. A NOVEL METHOD FOR DISTRIBUTED
PARTICLE FILTERING

In this section we apply the Monte Carlo data fusion
algorithm to systems of networked particle filters. Particle
filters are Bayesian filters that represent their posterior
distributions by sets of unweighted samples.

The standard algorithm for particle filtering, also known
as the bootstrap filter, works as follows:

3.1 The Bootstrap Filter Algorithm

Step 0: Initialisation (t = 0)
For ` = 1 . . . Ns sample xit,` ∼ p(x0|x0), where p(x0|x0)
is a known initial particle density.

Step 1: Importance Sampling (t > 0)
For ` = 1 . . . Ns, propagate the samples forward in
time through the update (system) equation, xit,` =

f(xit−1,`, u
i
t,`) where uit,` is a sample from the distribu-

tion of process noise.
For ` = 1 . . . Ns, evaluate the importance weights

wit,` ∝ g(yit|xit) and normalise,
∑Ns

`=1 w
i
t,` = 1.

Step 2: Resample
For ` = 1 . . . Ns, sample xit,` from the multivariate

distribution p̄(xit|xit−1, yit) that is constructed from the

samples xit,` and the weights wit,`.

After resampling, the samples {xt,`}Ns

`=1 define the approx-
imation of the posterior density of agent i. That is, we are
approximating the true posterior given by

p(xt|xt−1, yit) ∝ p(xt|xt−1)g(yit|xt) (18)

via a normalised empirical probability distribution defined
by the samples {xt,`}Ns

`=1.

3.2 The Distributed Particle Filtering Algorithm

Consider a group of agents (implementing individual par-
ticle filters) and an information sharing network defined
by an undirected graph G as defined in Section 2.

The agents are tasked with estimating a target state. Each
agent i ∈ V, can make observations yit about the target at
time t.

Our goal in distributed particle filtering is to exchange
and combine posteriors such that each agent arrives at an
approximation of the centralised posterior,

p(xt|xt−1, yit) ∝ p(xt|xt−1)
∏
i∈V

g(yit|xt), (19)

provided that the likelihood functions g(yit|xt) for all i ∈ V
are conditionally independent.

To achieve this goal we propose that the Monte Carlo
fusion algorithm is run after Step 2 of the bootstrap
algorithm.
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From the perspective of sensor i:

Step 0: Initialisation (t = 0)
Pick γ according to 0 < γ < 1/max({|Nj | : j ∈ V }).
For ` = 1 . . . Ns sample xit,` ∼ p(xi0|xi0), where p(xi0|xi0)
is a known initial particle density.

Step 1: Importance Sampling (t > 0)
For ` = 1 . . . Ns, propagate the samples forward in time
xit,` = f(xit−1,`, u

i
t,`) where uit,` is a sample from the

distribution of process noise.
For ` = 1 . . . Ns, evaluate the importance weights

wit,` ∝ g(yit|xit)|V | and normalise.
Step 2: Resample

For ` = 1 . . . Ns, sample xit,` from the multinomial

distribution p̄ constructed from the samples {xit,`}
Ns

`=1

and the weights {wit,`}
Ns

`=1.
Step 3: Distributed Fusion

Run fusion algorithm of Section 2.2 for k = 0 . . . kstop.
For ` = 1 . . . Ns assign xit,` = xikstop,` and wit,` = wikstop,`.

Note that the weights should be equal to 1/Ns as the
samples xikstop,` should be unweighted.

3.3 Illustrative Examples

In this subsection we demonstrate the distributed particle
filtering algorithm on the benchmark nonlinear dynamical
system of Gordon et al. (1993). The process equation of
this system is

xt = 0.5xt−1 +
25xt−1

1 + xt−12
+ 8 cos(1.2(t− 1)) + ut, (20)

where ut is Gaussian white noise with variance, σ2 = 10;
and the sensor equation is

yit =
xt

2

20
+ vit, (21)

where vit is Gaussian white noise with a random variance.
We initialised the filters with the state xi0 = 0.1 for all
i ∈ V . This represents a system with a known initial state.

The first simulation was conducted over a network of 10
agents, see Figure 8, with Ns = 1500 samples. The true
state of the system is also shown in Figure 8. We use
the version of the fusion algorithm that converges to Q′

(see Corollary 2) as the likelihood functions are known
to be conditionally independent. Therefore we anticipate
that the fusion algorithm will converge to the centralised
posterior density.
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Fig. 8. The network topology of the second distributed
particle filter simulation with n = 10 agents and the
true state of the nonlinear dynamical system which
the agents are trying to estimate.

Between measurements each agent runs the distributed
fusion algorithm with kstop = 15. In Figure 9 we compare
the resulting estimates (which we call the fusion estimates)
to the desired state and the centralised estimate (com-
puted at a hypothetical agent with access to each agent’s
likelihood functions). The fusion estimates are shown by
the coloured dotted lines while the centralised estimate
is shown in solid blue and the true state in solid black.
It is clear that after fusion the agents arrive at estimates
that are close to the centralised solution. In Figure 10 we
show the estimates that would be obtained if each node
ran the bootstrap filter algorithm in isolation (i.e. using
only their individual local likelihood functions). We refer
to these as the isolated estimates as they do not involve any
communication (exchange of information). By comparison
to the fusion estimates, the isolated estimates are scattered
around the centralised solution as expected.

In Figure 11 we show the estimates generated by a local
particle filter running at each agent that makes use of the
just the independent likelihood functions from each agent’s
neighbours. We refer to these as the local estimates and
this method. The local estimate of i can be thought of as
centralised estimate in the neighbourhood of agent i. In a
complete network the local estimates are equivalent to the
centralised estimates.
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Fig. 9. The estimates made by the distributed particle
filtering algorithm (coloured dotted lines). These are
shown with the centralised estimates (solid blue) and
the true state (solid black). The figure shows that the
agents are approximately reaching a consensus about
the fused posterior near the centralised solution as
desired.
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Fig. 10. The isolated estimates (coloured dotted lines) are
shown along with the centralised estimate and the
true state. As expected the centralised estimate falls
between the isolated estimates which are computed
by the standard bootstrap filter algorithm.

In the second example we randomly generate another net-
work of 10 agents and a new underlying system trajectory;
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Fig. 11. The local estimates (coloured dotted lines) are
shown along with the centralised estimate and the
true state. The local estimates are made by exchang-
ing likelihoods between neighbours only. This is im-
portant as a benchmark for our proposed algorithm
as this is the simplest algorithm that may be imple-
mented in a network of particle filters.

see Figure 12. Again the likelihood functions are condi-
tionally independent, however we unnecessarily use the
conservative fusion method (for demonstration purposes).
As the observations are independent this method leads to
sub-optimal estimates.
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Fig. 12. The network topology of the second distributed
particle filter simulation with n = 10 agents and the
true state of the nonlinear dynamical system which
the agents are trying to estimate.

The agents run the conservative distributed fusion algo-
rithm with kstop = 20 which converges towards the con-

sensus value Q ∝ p(x)
∏
j∈V g(yj |x)1/n. This is the con-

servative posterior. The fusion estimates were compared
to the true state and the centralised estimate in Figure
13. We can see that the agents are approaching a common
value (i.e. they are close to consensus).

In Figures 14 and 15 we show the isolated and local
estimates respectively (see the coloured dotted lines). It
can be seen that although the local estimates are an
improvement on the isolated estimates, the conservative
fusion estimates are better again. This simulation shows
that it is possible to make useful state estimates even when
the dependence between the agents is unknown [Bailey
et al. (2012)].

4. CONCLUSION

We presented a practical method for distributed data
fusion and particle filtering. The algorithm is consensus-
based and involves the exchange of posteriors between
neighbours. The proposed solution is robust to time-
varying network topologies including those with cycles and
is guaranteed consistent.
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Fig. 13. The estimates made by the distributed particle
filtering algorithm (coloured dotted lines). These are
shown with the centralised estimates (solid blue) and
the true state (solid black). The figure shows that the
agents are approximately reaching a consensus about
the fused posterior near the centralised solution as
desired.
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Fig. 14. The isolated estimates (coloured dotted lines) are
shown along with the centralised estimate and the
true state. As expected the centralised estimate falls
between the isolated estimates which are computed
by the standard bootstrap filter algorithm.
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Fig. 15. The local estimates (coloured dotted lines) are
shown along with the centralised estimate and the
true state. The local estimates are made by exchang-
ing likelihoods between neighbours only.

In the future we would like to experiment with other
consensus algorithms such as the dynamic consensus al-
gorithm of Zhu and Mart́ınez (2010) to reduce the com-
munication overhead.
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