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Abstract:
This paper makes contribution in the area of model based predictive control (MPC) and in
particular examines to what extent structured optimisation dynamics can improve regions
of attraction, performance and computational burden in the robust case. This paper focuses
on the use of structured prediction dynamics within a robust triple mode MPC context and
demonstrates that these can simplify the design significantly while retaining good robust
feasibility regions and performance. The improvements, with respect to existing algorithms
are demonstrated by numerical examples using statistical analysis.
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1. INTRODUCTION

Model Based Predictive Control (MPC) (Rossiter, 2003),
is the general name of different computer control algo-
rithms that use predictions as a basis of forming a control
law. MPC has now reached a high level of maturity in
academia and is widely used in industry. Nevertheless,
there are still many outstanding research issues. There
is substantial interest in how to develop algorithms to
deal with nonlinearity or uncertainty, in particular because
these issues can lead to substantial computation and/or
complexity. The main aim of this paper is to contribute to
research which reduces complexity while still tackling the
robust case, perhaps at some small loss to optimality but
critically retaining large regions of attraction. Specifically,
the focus is on the potential of structured optimisation dy-
namics (i.e. Laguerre, Kautz and higher order orthonormal
function) which have been shown by (Khan and Rossiter,
2011) to enable enlargement of the region of attraction in
the nominal case without (in general) detriment to perfor-
mance and the online computational burden, that is they
enable the use of low numbers of degrees of freedom (d.o.f.)
which in turn reduces the complexity of the optimisation.

Several authors have looked at this issue, some well known
ones being focussed on multiparametric solutions (Bem-
porad et al., 2002), fast optimisations (Wang and Boyd,
2010), time varying control laws (Limon et al., 2005), inter-
polation between two different control strategies, (Rossiter
and Ding, 2010) and blocking (Cagienard et al., 2007;
Gondhalekar and Imura, 2010); the latter two methods
form foundation concepts for parametric methods pro-
posed in (Rossiter et al., 2010) where the key development
is that the effective horizon range of the d.o.f (for con-
straint handling) is far greater than the number of d.o.f.

(this is not the case for conventional algorithms such as
Generalised Predictive Control (GPC)).

Some of the earlier work for the robust case (Kouvaritakis
et al., 2000; Cannon and Kouvaritakis, 2005) is based on
ellipsoidal invariance and thus is ill-suited to polyhedral
and/or asymmetric constraints. However, it is useful to
note that the ellipsoidal approaches indicate (Cannon and
Kouvaritakis, 2005) there is no further gain in the ellip-
soidal region of attraction when the order of the parame-
terisation dynamic used to capture the input predictions
exceeds the system dimension. These techniques are used
in triple mode control (Rossiter et al., 2000, 2001; Imsland
et al., 2008) to introduce an additional mode within dual
mode MPC; the additional mode is unstructured in the
sense that it arises from an optimisation of an ellipsoidal
region of attraction, but therefore is optimal (Cannon
and Kouvaritakis, 2005) only in the context of symmet-
ric constraints and ellipsoidal invariance. In the case of
asymmetric constraints and/or polyhedral constraints it
is logical to focus more on pragmatic (computationally
tractable) approaches such as arise in the use of structured
optimisation dynamics. In the context of dual mode MPC
algorithms parameterisations based on Laguerre polyno-
mials and higher order orthonormal functions have been
shown to be effective and give good numerical condition-
ing (Khan and Rossiter, 2013). Specifically, it was shown
that in many cases changing the parameterisation allowed
substantial improvements in the volume of the region of
attraction with little or no detriment and in fact in many
cases an improvement to performance. In summary, worth-
while question to ask is: Does the use of structured param-
eterisation dynamics within robust triple mode MPC yield
benefits? A statistical analysis, or comparison of the struc-
tured and unstructured parameterisation dynamics within
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robust triple mode approaches (Cannon and Kouvaritakis,
2005) is presented.

Section 2 will gives a brief outline of dual mode and
triple mode MPC structures. Section 3 shows how the
structured parameterisations can be used in a robust dual
mode approach; this is a straightforward extension to the
nominal case already in the literature and forms the basis
of the extension to robust triple mode structures in the
following section. Numerical examples are in section 5.
Finally conclusions and future work are in section 6.

2. BACKGROUND

This section will summarise the background information
related to robust MPC and robust triple mode MPC.

2.1 Problem formulation for Robust MPC

Assume discrete time linear parameter varying (LPV)
state space models of the form (Pluymers et al., 2005b)

xk+1 = Akxk +Bkuk (1)

with constraints on state xk ∈ Rnx and uk ∈ Rnu

Lxxk + Luuk ≤ l. (2)

The value of (Ak, Bk) are unknown and belong to a
polytopic uncertainty class Ω i.e.

(Ak, Bk) ∈ Ω = Co{(A1, B1), ..., (Am, Bm)} (3)

where (Aj , Bj), j = 1, ...,m are known constant matrices.

Suppose the infinite horizon linear quadratic performance
index is given as

Jk =

∞∑

i=0

xTk+i|kQxk+i|k + uTk+i|kRuk+i|k (4)

where Q = QT � 0 and R = RT ≻ 0 are performance
matrices. Then the worst case performance index to be
minimised is

J̃k = max
(Ak+i,Bk+i)∈Ω

Jk (5)

subject to system dynamics for prediction

xk+i+1|k = Ak+i|kxk+i|k +Bk+i|ku(k + i|k) (6)

In order to guarantee closed loop stability, constraints
(2) must be satisfied along predicted trajectories for all
possible future model uncertainty; details of how to form
robust constraint sets are available in (Pluymers et al.,
2005a) so omitted here. The system will be pre-stabilised
with a state feedback controller K as was done by (Kou-
varitakis et al., 2000; Imsland et al., 2005; Cannon and
Kouvaritakis, 2005).

2.2 Robust dual mode MPC structures and ERPC

Consider the autonomous state space model (Cannon and
Kouvaritakis, 2005)

zk+i+1|k = ψk+i|kzk+i|k, zk|k =

[
xk
c−→k

]

,

ψk+i|k ∈ Co{ψj , j = 0, 1 . . . ,m}, ψj =

[
Φj BjD
0 Gc

]

,

Φj = Aj −BjK, Gc ∈ {Gc,j, j = 0, . . . ,m},

xk+i|k = [I 0] zk+i|k, uk+i|k = [K D] zk+i|k (7)

where z ∈ R
nx+nunc , c−→

T
k = [cTk , c

T
k+1, . . . , c

T
k+nc−1], D

and Gc are variables that are used to optimise the size
and the shape of the associated region of attraction. In
(Kouvaritakis et al., 2000), D = E and Gc = IL are
known as Efficient Robust Predictive Control (ERPC),
where E = [Inu

0 . . .] and IL is a shift matrix.

This approach is improved in (Imsland et al., 2005) by
varying parameters in the dynamic feedback law and
known as generalised ERPC (GERPC). In (Cannon and
Kouvaritakis, 2005), a convex formulation of GERPC is
proposed to enlarge the region of attraction using as highly
tuned a terminal control as is possible in combination with
any other stabilising law. It provides a tuning parameter
γ for the size of the region of attraction and online cost
trade-off for GERPC.

2.3 Robust triple mode MPC

GERPC can be embedded within the middle and terminal
modes of triple mode MPC to enlarge the region of attrac-
tion. The prediction dynamics are defined as (Imsland and
Rossiter, 2005; Imsland et al., 2008)

Xk+1 = ΨkXk, Xk =





xk
f
−→

k

c−→k



 , (8)

Ψk ∈ Co{Ψj, j = 0, 1 . . . ,m}.

where both f
−→

k, c−→k can be d.o.f. in the predictions and

the uncertain description of augmented dynamics is given
by (Imsland and Rossiter, 2005; Imsland et al., 2008)

Ψj =

[
Aj −BjK BjD BjE

0 Gc 0
0 0 IL

]

. (9)

Robust constraint satisfaction by the uncertain predictions
can be ensured with inequalities of the form:

[Lx − LuK LuD LuE]Xk ≤ l, ∀k (10)

3. STRUCTURED OPTIMISATION DYNAMICS FOR
ROBUST DUAL MODE MPC

The earlier papers focused on symmetric constraints and
thus could use ellipsoids and LMI optimisation methods
(Cannon and Kouvaritakis, 2005) to identify the terminal
mode in robust dual mode MPC. This paper considers how
the design could be extended to asymmetric constraints
where those optimisation results are no longer valid. The
proposal is to use generalised function parameterisation
dynamics as earlier work (Khan and Rossiter, 2013) has
indicated that one can select these pragmatically and
effectively with a minimum of computation. Specifically,
this section explores a more intuitive technique based on
predefined structured dynamics to define Gc and D in
(7). This section further shows how structured function
dynamics are analogous to the additional mode of GERPC
based robust triple mode MPC.

The generalised structured function prediction for 3rd
order dynamics are defined as (Khan and Rossiter, 2011)
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Gk+1 =







a2 0 0 0 . . .
a2 a3 0 0 . . .

−a1a2 1− a1a3 a1 0 . . .
...

...
...

...
. . .







︸ ︷︷ ︸

AG

Gk,

G0 =
√

(1− a21)(1 − a22)(1 − a23)







1
1
−a
...






. (11)

Input predictions are defined using (7) and:

ck = GT
k η, Gk+1 = AGGk, ∀k. (12)

An autonomous prediction formulation of (9), using the
generalised function dynamic from (12), is defined as:Gc =
AT

G and D = GT
0 , where [AG, G0] ∈ Co{[AG,j, G0,j ], j =

0, . . . ,m}. For the robust case, the predicted cost can be
calculated using (12) as:

JG = max
(Ak+i,Bk+i)∈Ω

[xk c−→k]
TP [xk c−→k] (13)

where P > 0 satisfies

P −Ψj
TPΨj ≥ [I 0]TQ[I 0]

+[−K GT
0 ]

TR[−K GT
0 ], j = 1, ....,m. (14)

The matrix P can be efficiently calculated by the SDP

min
P

tr(P ) s.t. (14). (15)

Consequently, a robust dual mode algorithm using struc-
tured predictions can be summarised as:

Algorithm 3.1. GRMPC

min
η
−→

k, c−→k

JG

s.t. ASXk ≤ l.

Implement uk = −Kxk + GT
0 η−→

k to the plant. ASXk ≤ l

is a suitable polyhedral robust control invariant set.

4. ROBUST TRIPLE MODE MPC USING
STRUCTURED FUNCTION DYNAMICS

The triple mode approach is under-explored in the litera-
ture. It is recognised that a large number of free control
moves may be required to get close to the global optimal
region of attraction whereas one may not desire this. In
triple mode structures (9) an additional mode is intro-
duced into the predicted class to increase the region of
attraction; originally this choice was based on the analysis
of invariant ellipsoidal sets. However, to form an efficient
algorithm, that is with few optimisation variables, it is
necessary to make implicit assumptions for the terminal
mode and the middle mode (that is f

−→
k) while selecting

the initial mode c−→k explicitly using polytopic constraints.

In (Imsland et al., 2008), the triple mode prediction setup
is modified in conjunction with GERPC to formulate a
robust triple mode MPC algorithm. The proposed algo-
rithm allows a tractable QP-based MPC algorithm for
the robust case, it allows a large region of attraction
with just a small number of online optimisation variables.
However, that work assumed symmetric constraints and
hence this paper makes a proposal for possible modifica-
tions to deal with non-symmetric constraints. This paper

proposes structured function parameterisation to handle
non-symmetric constraints and significantly, proposes a
method which requires only elementary offline computa-
tions; the original work for symmetric constraints required
a relatively demanding LMI/BMI optimisation.

It is noted that the middle mode (or signal f
−→

k) of a triple

mode law can be defined either implicitly or explicitly;
obviously the latter is more computationally efficient and
that is the route used in this paper and explained shortly.
However that issue is not central to this paper. Rather, the
novel proposal here is to use structured parameterisations
in both the middle and terminal modes.

Specifically the contribution here is to:

• Use a structured parameterisation in the middle mode
and thus remove the need for a complex optimisation
to determine Gc, D; moreover those optimisations are
not valid for asymmetric constraints anyway.

• Use a structured function parameterisation for the
terminal mode. This is logical based on evidence in
the literature (Khan and Rossiter, 2013), but has not
been tried for triple mode.

4.1 Structured function parameterisations for the middle
mode of robust triple mode MPC

The offline problems of ERPC and GERPC can be used to
implicitly specify the additional mode control moves for
LTI and robust triple mode MPC, (Rossiter et al., 2001;
Imsland and Rossiter, 2005; Imsland et al., 2008). It is
temping to use the first control move of the middle mode
control fk+i = Hxnc

, where H = −P−1
22 P21. The P22 and

P21 are corresponding to an augmented invariant ellipsoid
Ez =

(

z : zTQ−1
z z ≤ 1

)
, with size to some degree decided

by choice of γ. The Ez in z = [xT cT ]T can be written as
(Rossiter et al., 2001; Imsland et al., 2008):

zT
[
P11 P12

PT
12 P22

]

︸ ︷︷ ︸

Q
−1
z

z ≤ 1. (16)

This fixed control law ensures robust invariance (Cannon
and Kouvaritakis, 2005; Imsland et al., 2008) and could
be used as first control move in a terminal mode in lieu of
the optimised feedback uk = −Kxk. Hence, define middle
mode varying terminal state feedback control law as

uk = (−K +DH)xk, (17)

which has the same (robustly) region of attraction as
(G)ERPC, a dual mode robust MPC algorithm can be
constructed by the method (Pluymers et al., 2005a) us-
ing this state feedback as a terminal control (defining a
terminal set and cost).

In this paper, the augmented dynamics are based on a
generalised function parameterisation and are defined as:

Ψ̃j =

[
Aj −BjK +DH BjE

0 AT
G

]

(18)

where ck = GT
0 η−→

k and η
−→

k+1 = AT
G η
−→

k. These dynamics

should fulfil the constraints,
[

Lxk − LuK + LuDH LuGT
0

]
zk ≤ l. (19)
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The associated worst case performance/constraints can be
represented as:

min
η
−→

k

[xk η
−→

k]
T P̃ [xk η

−→
k]

s.t. ASXk ≤ l. (20)

While this choice of middle model is simple (minimal off-
line computation) and gives good feasible regions, because
the choice is fixed (see eqn.17), performance is limited.
Consequently, it is logical to add an initial mode which
is totally free and is used to improve the performance
feasibility trade-off while utilising just a few d.o.f. and thus
retaining low on line computational loads.

4.2 Robust triple mode MPC using structured function
parameterisation for the terminal mode

The model structure for a triple mode prediction is given
in eqn.(9). The previous section discussed the definition
of matrices Gc, D used to form vector f

−→
k. This section

looks at the initial mode, or signal c−→k which originally

was governed by a shift matrix IL. Here, this will be
replaced by a structured function parameterisation (i.e.
Laguerre, Kautz or higher order dynamic function) in
order to enlarge the robust region of attraction.

The input perturbations ck parameterised using structured
functions and the predicted cost can be represented in
terms of the perturbations ρ̃k, hence

J̃G = [xk f
−→

k η
−→

k]
TP [xk f

−→
k η
−→

k], (21)

with fk+i = GT
i η−→

k, ck+i = G̃T
i η̃−→

k, Gi = AGGi−1

and G̃i = ÃGG̃i−1. It is noted that different structured
function dynamics can be used for middle/initial modes.

From (9), the triple mode augmented dynamics can

be modified by replacing IL by ÃG where [ÃG, G̃0] ∈

Co{[G̃, j, G̃0,j ], j = 0, . . . ,m}. Robust satisfaction of con-
straints can be tested with linear inequalities such as:

[

Lx − LuK LuG
T
0 LuG̃

T
0

]
Xk ≤ l. (22)

In summary, a triple mode algorithm deploying structured
prediction parameterisations is given by:

Algorithm 4.1. GRTMPC

min
f
−→

k η
−→

k

J̃G

s.t. ASXk ≤ l.

Remark 1. Recursive feasibility and robust asymptotic
stability of GRMPC, GR(E)TMPC and GRTMPC can
be proved using conventional Lypanunov methods as in
(Imsland et al., 2008).

4.3 Selection of structured function dynamics

The structured function dynamic offers a systematic tool
for creating a flexible prediction structure that works well
within MPC, the remaining question is how does one best
deploy this flexibility to achieve the desired benefits. From
equation (11), in structured function parameterisation
dynamics there are two main choices within the future
input predictions. Firstly, select the order of prediction

dynamics that is the number of poles ai in AG and
secondly, select specific values for the poles ai.

Higher order structured function dynamics have more
flexibility in choosing dynamic parameters to overcome
the trade off between the region of attraction and closed
loop performance loss. However, there is a commonsense
observation that nc ≥ m, that is to fully utilise the
flexibility in having m poles of generalised function dy-
namics, one should use at least m d.o.f.. Consequently,
where one knows that a given value of nc is sufficient, it
is not recommended to use a higher number of poles. It
was shown by Cannon and Kouvaritakis (2005) that in
terms of size of ellipsoidal regions of attraction, there is no
advantage in choosing m > nx.

The optimal selection of pole locations can be deter-
mined using a pareto surface with multiobjective opti-
misation(Khan and Rossiter, 2013). Nevertheless multi-
objective optimisations can been computationally de-
manding, albeit offline, so although these offer good insight
into the trade offs, it is not simplistic; there are easier
routes to an effective, albeit slightly suboptimal, design.
One can use system information to judge the likely out-
come without extensive optimisation, or to infer an ‘ideal’
prediction structure for given system. This selection is
based on the underlying convex hull of the closed loop sta-
ble system. The pole location(s) of parameterised dynam-
ics can be selected to be equal to or in vicinity of pole(s)
of the optimal closed loop system; often these provide a
good starting point. The authors make no claim that this
pragmatic selection can be proven in any objective sense,
but it is based on observation results from numerous tests
using the multi-objective approach.

5. NUMERICAL EXAMPLE

This section will illustrate the efficacy of the structured
algorithms using numerical examples and statistical anal-
ysis. The comparison will be done using volumes of the
regions of attraction and number of inequalities required
to describe the robust invariant set.

5.1 Statistical Analysis

The pragmatic selection is analysed in this section using
a statistical analysis for structured function parameterisa-
tion algorithms (i.e. 1st (LOMPC), 2nd (KOMPC), 3rd
(GOMPC 3rd, 4th order)). The prime interest is to com-
pare the MCAS (Maximum Controllable Admissible Set)
volume of structured dynamic algorithms with GERPC
(Cannon and Kouvaritakis, 2005) and ERPC (Kouvari-
takis et al., 2000) algorithms. The comparisons are based
on 500 random systems with x ∈ R

2, x ∈ R
3, and x ∈ R

4

(total of 1500 systems) using nc = nx.

Consider single input single output random systems sub-
ject to input and state constraints i.e. −1 ≤ uk ≤ 1 and
[4 1.5]T ≤ |xk| (for xk ∈ R

2), [4 1.5 2]T ≤ |xk| (for
xk ∈ R

3), [4 1.5 2 1]T ≤ |xk| (for xk ∈ R
4). The tuning

parameters are Q = CTC, R = 1, nc = nx and γ = ∞.
The region of attractions are calculated using the Multi-
Parametric Toolbox (MPT) (Kvasnica et al., 2004).

The MCAS volume is analysed using two sample hypoth-
esis tests. The volume of invariant set representing a non-

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8350



0 5 10 15 20 25
0

100

200

300

400

MCAS volume

S
ys

te
m

s

 

 
KOMPC
LOMPC
GERPC
ERPC

Fig. 1. Histogram comparison of MCAS volume for 2
dimensional Example

normally distributed data is shown in Figure 1. Therefore a
non-parametric test can be used to test the null hypothesis
(i.e. have the same median) between structured algorithms
(i.e. 1st, 2nd and 3rd order) and GERPC or alternatively,
whether the region of attraction of structured algorithms
tend to be larger than GERPC. The Mann-Whitney U
test (also called the Wilcoxon rank-sum test) (Mann and
Whitney, 1947) is used and results are shown in Table 1.

Table 1 shows the statistical significance level using a P -
value; this is the probability that the null hypothesis is
true. The null hypothesis is rejected when significance level
is less than 5%. The rejection of hypothesis is represented
using h-value. If h = 0, it indicates the failure to reject the
null hypothesis, whereas h = 1 indicates that the result
would be highly unlikely under the null hypothesis.

It is shown that for 2 dimensional random systems, 1st
and 2nd order structured dynamics enlarge the region of
attraction as compared to GERPC as for both algorithms
the P -value is less than 5% and h = 1. In 3 dimensional
examples, the significance level test shows that both 3rd
order and 2nd order structured dynamics enlarge the
region of attraction compared to GERPC as the P-values
are less than 5% and h = 1. However, 1st order fail to
reject the null hypothesis as significance level is 15% and
h = 0. In 4 dimensional systems, the significance level test
indicates that for both 4th order and 3rd order fail to reject
the null hypothesis test with 72% and 99% significance
level. However, 1st and 2nd order reject the null hypothesis
test as GERPC has a larger MCAS volume.

The statistical analysis shown in Table 1 and Figure 1
demonstrate that in many cases structured function dy-
namics using pragmatic selection enlarge the region of at-
traction. Table 1 suggests that for some randomly selected
systems GERPC may be a better choice than structured
function dynamics (e.g. 1st order) algorithms using prag-
matic selection; this is expected as the pragmatic choice is
a suboptimal choice which provides a good starting point
to tune the parameterisation dynamics.

5.2 Comparison of robust dual mode and triple mode MPC
using structured function dynamics

This section will further illustrate the efficacy of the pa-
rameterisation within robust triple mode MPC algorithms
by numerical example. The aim is to compare two aspects:

(i) the MCAS volume; (ii) the number of inequalities
required to describe the robust MCAS. The robust and
nominal cases are simulated using both symmetric and
non-symmetric constraints. The nominal dynamics are
given by A = 0.5(A1 +A2) and B = 0.5(B1 +B2).

Consider a linear uncertain system representing a double
integrator with an uncertainty polytope defined by:

A =

[
1 ζ1
0 1

]

; B =

[
0
ζ2

]

; ζ1 = (0.1, 0.2),

ζ2 = (1, 1.5) Q = I, R = 0.1,mc = 2, γ = 1010. (23)

The system is subject to symmetric constraints

− 1 ≤ uk ≤ 1; −10 ≤ xik ≤ 10; i = 1, 2; (24)

and non-symmetric constraints

− 1.5 ≤ uk ≤ 1; −15 ≤ xik ≤ 10; i = 1, 2; (25)

The structured function dynamics i.e. Laguerre (1st order)
and Kautz (2nd order) dynamics are selected in the
vicinity of closed loop stable pole(s). These dynamics
are selected as a combination to define both mode 2
and 3 respectively. Laguerre dynamics are a = (0.6, 0.7)
and Kautz dynamics are (a, b) = ((0.7, 0.1), (0.6, 0.1)).
The middle mode within the robust triple mode MPC
is introduced using GERPC (with γ = ∞), Laguerre
or Kautz function dynamics. The selection of structured
function dynamics is made with nc ≤ nx. The results
using both symmetric and non-symmetric constraints are
presented in Table 2 and 3. The d.o.f. shown in Table 2
and 3 is the sum of both modes. The regions of attraction
are compared using GERPC, Kautz and Laguerre function
dynamics for nc = 2 and nc = 4 for uncertain and nominal
cases. For both symmetric and non-symmetric constraints,
the region of attraction for both Laguerre and Kautz
dynamics are larger than GERPC, utilising the different
number of inequalities as shown in Table 2 and 3.

Table 1. Mann-Whitney U test of MCAS
volume between structured algorithms and

GERPC for random systems.

Example xk ∈ R
2 xk ∈ R

3 xk ∈ R
4

Algorithms P h P h P h
with GERPC

1st order 0.02 1 0.15 0 2×10−8 1
2nd order 8 ×10−5 1 0.03 1 3 ×10−2 1
3rd order - - 2 ×10−8 1 0.99 0
4th order - - - - 0.72 0

Table 2. Comparison of MCAS volume and
number of inequalities for robust triple mode

MPC

Symmetric Const. Non-symmetric Const.

Algorithms vol. Ineq. d.o.f. vol. Ineq. d.o.f.

RTMPC 344.94 227 4 505.44 140 4
(γ = ∞) 307.39 36 2 436.68 68 2
LRTMPC 380.00 136 4 592.50 122 4
(1st order) 338.24 88 2 456.22 89 2
KRTMPC 380.00 130 4 592.50 113 4
(2nd order) 338.24 24 2 456.22 37 2

R(E)TMPC 152.21 24 2 237.54 23 2
(γ = ∞)
R(L)TMPC 359.08 50 2 557.61 50 2
(1st order)
R(K)TMPC 366.48 40 2 565.82 40 2
(2nd order)
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For completeness, it is important to compare the number
of inequalities required to describe the robust MCAS as
the complexity of these set descriptions has an impact on
the online computational burden, the more inequalities the
higher the computational burden in solving the associated
QP optimisation (this paper does not discuss issues linked
to the exploitation of structure and efficient QP optimis-
ers). The number of inequalities to define the MCAS is
compared with the number of d.o.f. in Table 2 and 3.

The structured function dynamic algorithms (i.e. using La-
guerre and Kautz function dynamics) enlarge the MCAS
volume at the price of an increase in the number of
constraints in the online problem using an implicit or an
explicit choice of triple mode MPC. The higher order func-
tion dynamics seems to reduce the number of inequalities,
although this cannot be proved generally.

6. CONCLUSION

The main contribution of this paper is to present the po-
tential advantages of structured functions to robust triple
mode MPC: (i) Structured functions are embedded into
the middle mode of both nominal and robust triple mode
MPC. This provides a pragmatic choice to enlarge the
region of attraction which simplifies the offline design by
removing the need for a demanding optimisation and (ii)
The structured function are also used to parameterise the
degrees of freedom within the initial mode of triple mode
MPC. The examples demonstrate that such parameterisa-
tions can enlarge the robust region of attraction but some-
times with an increase in number of inequalities required
to describe the corresponding robust MCAS compared
to a more conventional robust approach. The structured
function dynamics were analysed using statistical analysis
and this demonstrated significant volume improvements
in general. Consequently, the use of the structured func-
tion dynamics within a robust triple mode MPC seems
to be beneficial in many cases. Nevertheless, an obvious
outstanding issue is to determine a systematic and rigorous
selection algorithm for the structured dynamics for robust
MPC, but critically using a tractable optimisation scheme.
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