
Reliability based multiobjective
optimization design procedure for PI

controller tuning. ?

Gilberto Reynoso-Meza, Helem Sabina Sánchez,
Xavier Blasco, Ramon Vilanova

Instituto Universitario de Automática e Informática Industrial
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Abstract: In this work, we propose an hybrid multi-objective optimization design procedure
for PI controller tuning. This procedure focuses on reliability-based optimization instances,
where Montecarlo methods are used to evaluate quantitatively the performance degradation
of a controller, due to unexpected or unmodeled dynamics. The procedure is evaluated on a
non-linear Peltier process. The presented results validate the procedure and its usefulness for
controller tuning.
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1. INTRODUCTION

PI-PID controller remains as a reliable and practical
control solution for several industrial processes. Owing to
this, research for new tuning techniques is an ongoing
research topic (see for example Åström and Hägglund
(2001); Vilanova and Alfaro (2011)). Current research
is heading to guarantee reasonable stability margins as
well as a good overall performance for a wide variety
of processes. One of the main advantages of PI-PID
controllers is their ease of implementation as well as their
tuning, giving a good trade-off between simplicity and cost
to implement (Stewart and Samad (2011)).
New tuning techniques have been focused on fulfill several
objectives and requirements, sometimes in conflict among
them (Ang et al. (2005); Li et al. (2006)). Some tuning
procedures are based on optimization statements (Ge et al.
(2002); Toscano (2005); Goncalves et al. (2008); Åström
et al. (1998); Panagopoulos et al. (2002); Reynoso-Meza
et al. (2013b)) and recently, PI-PID controller tuning by
means of multiobjective optimization (MO) procedures
have been proposed (Tavakoli et al. (2007); Sánchez and
Vilanova (2013a,b)). Such procedures are based on the so
called Pareto front approximation, where all the solutions
are Pareto optimal; meaning that there is no solution
better in all objectives, but a set of solutions with different
trade-offs.
Two common approaches are used to calculate the Pareto
front approximation: on the one hand by means of de-
terministic algorithms and on the other hand by evolu-
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tionary multiobjective optimization (EMO). In the first
case algorithms such the normalized normal constraint
(NNC) developed by Messac et al. (2003) has shown to
be useful for PI controller tuning (Sánchez and Vilanova
(2013a,b)). The main advantage of this class of algorithms
relies on their local convergence capabilities as well as
their robustness to provide a good approximation of the
Pareto front. However, they are highly sensitive to the
initial solution required to run the optimization. Even if
the objectives have been stated to guarantee convexity
properties the constraints incorporated to achieve a good
spread over the Pareto front approximation may modify
the objective space. Also, some issues regarding compu-
tational burden and anchor points selection might appear
as shown in Herrero et al. (2013). In the case of EMO,
multiobjective evolutionary algorithms (MOEA’s) have
shown interesting properties to handle highly constrained
and non-linear objective functions due to their flexibility
and adaptability (Chai et al. (2013); Reynoso-Meza et al.
(Accepted)); however two potential drawbacks are also
known: (1) given their stochastic nature, their convergence
can not be guaranteed and (2) the tuning of their own
parameters could be a time consuming task and, if selected
inappropriately, their performance could be deteriorated.
Depending on the desirable characteristics related with
the optimization problem at hand, one class of algorithms
could be more desirable than the other. Regarding the
desired Pareto front approximation, such desirable fea-
tures will be related to convergence, diversity and pref-
erences handling; regarding the multi-objective problem,
they will be associated with constrained, multi-modal,
robust, expensive, many-objectives, dynamic or reliability-
based optimization instances.
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In order to approximate a Pareto front based on an opti-
mization reliability statement, it is important to measure
the performance degradation (Beyer and Sendhoff (2007)).
This could be caused by unmodeled dynamics or errors in
the model used. Meaning that the designer has to keep in
mind such discrepancies not only from the robustness point
of view (ensuring controllability from a theoretical sense),
but also the possible degradation of the objetives directly
related with the model’s use (ensuring viability from a
practical sense). Thereby, a common approach to measure
the performance degradation is by means of Montecarlo
methods (i.e., direct search through simulations). It is
worth mentioning that running several simulations could
affect the performance of deterministic algorithms because
of computational burden; in the case of evolutionary al-
gorithms it could affect their exploration capabilities and
hence slow down the overall convergence of the algorithm.
Therefore we present a hybrid approach between determin-
istic and evolutionary optimization techniques, to handle
reliability based MO statements. With this approach, we
expect solutions with a higher reliability, both in a the-
oretical and practical sense. The remains of this work is
organized as follows: Section 2 briefly describes some ideas
and concepts related to the multi-objective optimization;
whilst in section 3 we present our proposal; in Section 4 an
evaluation on a physical system is presented and discussed;
finally, in Section 5 some concluding remarks are given.

2. BACKGROUND ON MULTIOBJECTIVE
OPTIMIZATION DESIGN

A multi-objective optimization problem (MOP) can be
handled by performing a simultaneous optimization of all
objectives. This implies the existence of a set of solutions,
where no one is better than the others, but differ in the
degree of performance between the objectives (Miettinen
(1998)). This set of solutions will offer a higher degree of
flexibility at the decision making stage. The role of the de-
signer is to select the most preferable solution according to
his (her) needs and preferences for a particular situation.
A MOP, without loss of generality (since a maximization
problem can be converted to a minimization problem), can
be stated as follows:

min
θ∈<n

J(θ) = [J1(θ), . . . , Jm(θ)] ∈ <m (1)

Therefore a set of Pareto-optimal solutions is defined as
the Pareto set ΘP and its projection into the objective
space is known as the Pareto front JP . Where each
solution in the Pareto front is said to be a non-dominated
and Pareto-optimal solution. In general, it does not exist a
unique solution because there is not a solution better than
other in all the objectives.
MO techniques search for a discrete approximation Θ∗

P
of the Pareto set ΘP capable of generate a good quality
description of the Pareto front J∗

P . In this way, the decision
maker (or simply the designer) can analyze the set and
select the most preferable solution.
A general framework is required to successfully incorpo-
rate the MO approach into any engineering process. A
multiobjective optimization engineering design (MOOD)
methodology consists (at least) of three main steps: the
MOP definition (objectives, decision variables and con-
straints), the MO process (optimizer selection) and the
decision-making (DM) stage (analysis and selection of the
calculated solutions).

Next, we will present a proposal for each step regarding
reliability-based optimization statements for PI controller
tuning.

3. MULTIOBJECTIVE OPTIMIZATION DESIGN
PROPOSAL

Reliability based optimization instances concern to guar-
antee a given performance, considering the possibility (in
the case of controller tuning) of unmodeled dynamics. Nev-
ertheless, for this kind of analysis Montecarlo approaches
are generally used, in order to evaluate the degradation of
the objectives when uncertainties on the system exist. In
this case, several simulations should be carried, increasing
the computational burden of the cost function itself. Next,
we will proposed a MOOD statement to face such MO
instances.

3.1 Multiobjective problem definition

The process will be controlled with a proportional-integral
controller (PI), whose output is

u(t) = Kp

r(t)− y(t) +
1

Ti

∞∫
0

[r(τ)− y(τ)] dτ

 (2)

where Kp is the controller gain, Ti is the integral time
constant, and r(t) and y(t) the reference and controlled
variable measurement, respectively.
Perhaps the most basic MOP statement for PI controller
tuning including performance’s reliability as control goals
could be represented as:

minJ(kp, Ti) = [J1(kp, Ti), J2(kp, Ti), J3(kp, Ti)] (3)

J1(kp, Ti) = Performance(kp, Ti)|G(s) (4)

J2(kp, Ti) = Robustness(kp, Ti)|G(s) (5)

J3(kp, Ti) = σ
(
J1(kp, Ti)|G′(s)

)
(6)

Where G(s) is the nominal model used as base case and
G′(s) any other model inside the possible set of models.

Some common choices for J1(kp, T i) are −ki = −kp

Ti
,

IAE and ITAE. These are recognized classical indexes
to evaluate performance of control systems. For J2(kp, Ti),
indexes as the maximum value of the sensitivity function or
total variation (TV) of the control action could be used;
in the latter case, experiments in Sánchez and Vilanova
(2013a) show that there is a correlation between the value
of robustness and the total variation TV ; we can therefore
directly associate the robustness to the TV performance
index and smoothness of control action. Finally J3(kp, Ti)
is the reliability based objective estimated by Montecarlo
sampling approach.

3.2 Hybrid multiobjective optimization algorithm

As commented before, both deterministic and evolutionary
algorithms have some drawbacks whilst leading with reli-
ability based MO instances. Therefore, a hybrid approach
(Algorithm I) using both could bring interesting alterna-
tives and solutions. Here, we merge in a sequential manner
both approaches for controller tuning, when a MOP as
described by equations 3-6 is being solved.
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We propose to merge two different tools: NNC algorithm
(Messac et al. (2003)) and sp-MODE algorithm (Reynoso-
Meza et al. (2010)). 1 Interested reader can refer to Ap-
pendix I and references therein for a brief description of
the two algorithms.

Algorithm I: Hybrid NNC and spMODE
algorithm.

1 : Determine the initial solution for NNC.
2 : Compute anchor points for objectives

J1(kp, Ti) and J2(kp, Ti).
3 : Approximate the sub-Pareto front

J ′(kp, Tu) = [J1(kp, Ti), J2(kp, Ti)] with
NNC algorithm and the computed anchor
points.

4 : Use the Pareto set approximation Θ′∗p , com-
puted previously as initial population for
sp-MODE algorithm.

5 : Approximate Pareto front J(kp, Tu) =
[J1(kp, Ti), J2(kp, Ti), J3(kp, Ti)].

6 : Perform DM step for controller selection.
The deterministic algorithm (NNC) is used in a bi-
objective statement, where it will be less sensitive to the
anchor solutions and will converge to the Pareto front;
the evolutionary algorithm (sp-MODE) will use as initial
population the locally Pareto-optimal approximation cal-
culated by the deterministic approach in the 3-objective
optimization instance. This would improve its exploitation
capabilities and will reduce the numerical burden associ-
ated to the Montecarlo approach.

3.3 Multicriteria decision making

For decision making we propose the Nash (NS ) criteria see
(Figure 1). In order to explain this option, we introduce
what can be called the disagreement point. If we think on
both objectives independently, none of both would agree
on this point as a common solution because it represents
the worst situation. In addition, this selection can be
improved with respect of both objectives. On that basis,
the area of the rectangle defined by the points (NS, A,
B) and the disagreement point provides a measure of the
amount of solutions the NS point improves both objectives
simultaneously. The NS is the one that maximizes such
area, this denomination comes from identifying this point
as the Nash Solution on a bargaining game among both
objectives (Aumann and Hart (1994)). This approach
provides a quite simple and direct approach for selecting
one point from the Pareto front (Sánchez and Vilanova
(2013b)).
Although a visual representation for two objectives is
straightforward, for 3 objectives could be more complex.
Here we are using level diagrams (Blasco et al. (2008)) 2

as it represents a trade-off as commented in (Reynoso-
Meza et al. (2013a)) among the properties for visualiza-
tion stated by Lotov and Miettinen (2008): simplicity,
persistence and completeness. Next, we will evaluate this
approach on a physical system with such tools and ideas.

1 Both algorithms are available in Matlab Central at http://

www.mathworks.com/matlabcentral/fileexchange/38976 and http:

//www.mathworks.com/matlabcentral/fileexchange/39215 respec-
tively
2 Tool available for Matlab at http://www.mathworks.es/

matlabcentral/fileexchange/24042

Fig. 1. The Nash solution for a bi-objective case.

4. TEST CASE

A Peltier cell (Figure 2) is selected to evaluate the above
mentioned MOOD procedure. Such devices are based on
the Peltier effect, which describes a cooling by means
of thermoelectric processes. It is a heat pump where
the manipulated variable is the current [%] whilst the
controlled variable is the temperature [oC] of the cold-face.
This kind of processes has non-linear dynamics as it will
be shown.
Successive step reference changes have been made in
the range temperature Te = [−7.5oC, 7.5oC], in order
to identify several first order plus dead time models
(FOPDT) P (s) = K

Ts+1e
−Ls where K is the process

proportional gain, T the time constant and L the lag of the
system. The resulting models are depicted in Figure 3. It is
important to notice differences among models concerning
K and T values, showing the non-linearity of the system.

Fig. 2. Peltier cell set-up.

We are interested in tuning a controller to mainly work
around Te = −5oC, but capable of achieving a good
behavior in the range Te = [−7.5oC, 7.5oC]. Therefore, as
nominal model is selected the identified model at −5oC:

P (s) =
0.6404

2.7395s+ 1
e−0.2s (7)

The objectives considered for controller tuning are:
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Fig. 3. Step response for identified models of the Peltier
cell at different temperatures.
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Fig. 4. Pareto front and Pareto set approximations cal-
culated by NNC algorithm (line 1, 2 and 3 of the
Algorithm I). Controller IS (square) and Controller
NS-2D (star) are depicted.

J1(kp, Ti) = Ts ·
K∑

k=0

|e(k + 1)− e(k)|
∣∣∣∣∣
P (s)

(8)

J2(kp, Ti) =

K∑
k=T0

|u(k + 1)− u(k)|
∣∣∣∣∣
P (s)

(9)

J3(kp, Ti) = σ

 K∑
k=0

|e(k + 1)− e(k)|
∣∣∣∣∣
P ′(s)

 (10)

Where Ts = 200 milliseconds is the sampling time,
J1(kp, Ti) is the IAE, J2(kp, Ti) is the TV index and
J3(kp, Ti) is the variance of J1(kp, Ti) when the controller
is used in a random uniformly sampled model P ′(s) in the
intervals K = 0.6404 ± 50% and T = 2.7395 ± 30%. For
this example, 51 models were used.

4.1 Multiobjective optimization and selection procedure

The preliminary bi-objective Pareto front J ′∗P is approx-
imated with the NNC algorithm (11,000 function evalu-
ations approximately). As commented before, the NNC
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Fig. 5. Pareto front and Pareto set approximations (∞-
norm) calculated by sp-MODE algorithm (line 5 of
Algorithm I). Controller NS-3D (star) and Controller
LD-3D (square) are depicted.

algorithm is focuses on objectives J1(kp, Ti) and J2(kp, Ti).
This approximation is depicted in Figure 4.
With such Pareto front, 2 solutions are selected for further
evaluation: the initial solution employed in the optimiza-
tion process [kp, T i] = [0.19, 2.74] and the Nash-based
[kp, T i] = [0.1898, 2.6613] (IS and NS-2D respectively).
In the execution using the sp-MODE (11,000 function
evaluations) and the Pareto front approximation from
NNC algorithm, pertinency is included in the algorithm
to bound the new objective using the starting solution of
the NNC algorithm. In order to avoid controllers with high
degradation on the third objective, the maximum value
J3 for J3(kp, Ti) has been bound to J3 = J3(0.19, 2.74).
This approximation is depicted in Figure 5. Two solutions
were selected: Nash-based [kp, Ti] = [0.5091, 0.4057] and
a solution selected by analyzing the Pareto front using
Level diagrams: [kp, Ti] = [2.3735, 3.2623] (NS-3D and LD-
3D respectively). In the former selection, is interesting to
notice that the Nash selection coincides with the solution
with the lower ∞-norm. In the latter selection, it is ex-
pected to have a better performance on IAE at the expense
of higher control effort.
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Fig. 6. Performance comparison on the physical process.

4.2 Discussions and insights

The performance of the selected controllers is shown in
figure 6 and in Table 1. Whilst performance of controllers
IS and NS-2D are similar it is interesting to notice dif-
ferences between controllers NS-2D and NS-3D. Both of
them have been selected using the same DM rule (Nash
selection). Differences on the performance are due to the
additional information used in the MOP statement mind-
ing degradation on IAE performance. Controller LD-3D
selected from the LD visualization is consistent with the
fact of improving IAE at expense of more control effort
(TV).

Table 1. Controller performance on the physi-
cal process.

Controller Kp Ti IAE TV

IS 0.19 2.74 992.4 86.0

NS-2D 0.1898 2.6613 967.6 86.8

NS-3D 0.5091 0.4057 154.6 263.9

LD-3D 2.3735 3.2623 120.7 657.4

5. CONCLUSIONS

In this work we have presented a MOOD procedure in-
volving a reliability based MOP statement for controller
tuning. To improve results in the MO process a hybrid ap-
proach has been proposed, merging deterministic and evo-
lutionary approaches to calculate the Pareto front approx-
imation. The results presented validate the procedure as
useful for PI tuning of non-linear systems. Future work will
focus on PID controller tuning in more complex processes
and the comparison with standard control techniques as
gain scheduling.

ANNEX I: ALGORITHMS DESCRIPTION

Deterministic Optimization Approach

In the NNC method, the optimization problem is sepa-
rated into several constrained single optimization prob-
lems. After series optimizations, a set of evenly distributed
pareto solutions results see (Figure 7a). The NNC method
incorporates a critical linear mapping of the design objec-
tives. This mapping has the desirable property that the
resulting performance of the method is entirely indepen-
dent of the design objectives scales and in the ability to
generate a well distributed set of Pareto points even in
numerically demanding situations. The NNC method is
presented here to solve a bi-objectives problem, but it can
be generalized to n-objectives, for more details about the
method see Messac et al. (2003).

Evolutionary Optimization Approach

The sp-MODE algorithm is an algorithm based on Dif-
ferential Evolution Das and Suganthan (2010). As diver-
sity improvement technique, it uses a spherical pruning
technique (see Figure 7b). The basic idea of the spherical
pruning is to analyze the proposed solutions in the current
Pareto front approximation J∗P by using normalized spher-
ical coordinates from a reference solution. With such ap-
proach, it is possible to attain a good distribution along the
Pareto front Reynoso-Meza et al. (2010). The algorithm
selects one solution for each spherical sector, according to
a given norm or measure. Such algorithm has been used
with success for controller tuning purposes (Reynoso-Meza
et al. (2013c)).
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Design of PI controllers based on non-convex optimiza-
tion. Automatica, 34(5), 585 – 601.

Aumann, R. and Hart, S. (1994). Handbook of Game
Theory with Economic Applications. Elsevier.

Beyer, H.G. and Sendhoff, B. (2007). Robust optimization
- a comprehensive survey. Computer Methods in Applied
Mechanics and Engineering, 196(33-34), 3190 – 3218.

Blasco, X., Herrero, J., Sanchis, J., and Mart́ınez, M.
(2008). A new graphical visualization of n-dimensional
Pareto front for decision-making in multiobjective opti-
mization. Information Sciences, 178(20), 3908 – 3924.

Chai, T., Jin, Y., and Sendhoff, B. (2013). Evolutionary
complex engineering optimization: opportunities and
challenges. Computational Intelligence Magazine, 8(3),
12 – 15.

Das, S. and Suganthan, P.N. (2010). Differential evolution:
A survey of the state-of-the-art. IEEE Transactions on
Evolutionary Computation, PP(99), 1 –28.

Ge, M., Chiu, M.S., and Wang, Q.G. (2002). Robust pid
controller design via lmi approach. Journal of process
control, (12), 3 – 13.

Goncalves, E.N., Palhares, R.M., and Takahashi, R.H.
(2008). A novel approach for H2/H∞ robust pid syn-
thesis for uncertain systems. Journal of process control,
(18), 19 – 26.

Herrero, J.M., Reynoso-Meza, G., Mart́ınez, M., Blasco,
X., and Sanchis, J. (2013). A smart-distributed Pareto
front using the ev-MOGA evolutionary algorithm. In-
ternational Journal on Artificial Intelligence Tools.

Li, Y., Ang, K.H., and Chong, G. (2006). Pid control
system analysis and design. IEEE Control Systems,
26(1), 32 – 41.

Lotov, A. and Miettinen, K. (2008). Visualizing the Pareto
frontier. In J. Branke, K. Deb, K. Miettinen, and
R. Slowinski (eds.), Multiobjective Optimization, volume
5252 of Lecture Notes in Computer Science, 213–243.
Springer Berlin / Heidelberg.

Messac, A., Ismail-Yahaya, A., and Mattson, C. (2003).
The normalized normal constraint method for generat-
ing the Pareto frontier. Structural and Multidisciplinary
Optimization, (25), 86 – 98.

Miettinen, K.M. (1998). Nonlinear multiobjective opti-
mization. Kluwer Academic Publishers.
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A. Ekárt, A. I.Esparcia-Alcaráz, C.K. Goh, J. J.Merelo,
F. Neri, M. Preuss, J. Togelius, and G. N.Yannakakis
(eds.), Applications of Evolutionary Computation, Part
I, volume LNCS 6024, 532–541. Springer-Verlag.

Reynoso-Meza, G., Sanchis, J., Blasco, X., and Mart́ınez,
M. (Accepted). Controller tuning using evolution-
ary multi-objective optimisation: current trends and
applications. Control Engineering Practice, (DOI:
10.1016/j.conengprac.2014.03.003).

Sánchez, H. and Vilanova, R. (2013a). Multiobjective
tuning of PI controller using the NNC method: Sim-
plified problem definition and guidelines for decision
making. In Proceedings of the 18th. IEEE Conference on
emerging technologies & factory automation (ETFA).

Sánchez, H. and Vilanova, R. (2013b). Nash-based criteria
for selection of pareto optimal controller. In Proceedings
of the 17th. International Conference on System Theory,
Control anmd Computing.

Stewart, G. and Samad, T. (2011). Cross-application
perspectives: Application and market requirements. In
T. Samad and A. Annaswamy (eds.), The Impact of
Control Technology, 95 – 100. IEEE Control Systems
Society.

Tavakoli, S., Griffin, I., and Fleming, P. (2007). Multi-
objective optimization approach to the PI tuning prob-
lem. In Proceedings of the IEEE congress on evolution-
ary computation (CEC2007), 3165 – 3171.

Toscano, R. (2005). A simple robust PI/PID controller
design via numerical optimization approach. Journal of
process control, (15), 81 – 88.

Vilanova, R. and Alfaro, V.M. (2011). Robust PID control:
an overview (in spanish). Revista Iberoamericana de
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