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Abstract: The robust stabilization of uncertain linear time-varying continuous-time systems
with a mode-switch dynamics is considered. Each mode is characterized by a dynamical matrix
containing elements whose time behavior over bounded time intervals is sufficiently smooth to
be well described by interval polynomials of arbitrary degree. The stability conditions of the
switching closed-loop system are derived defining a switched Lyapunov function and involving
the dwell time of the system over each single mode. An important feature of the paper is that,
unlike all the other existing methods, each plant mode can be stabilized over arbitrarily large
uncertain domains of parameters and their derivatives.

1. INTRODUCTION

In recent years analysis and synthesis of control systems
for linear time-varying (LTV) plants with polytopic uncer-
tainties have been widely investigating in different settings
and from different points of view. Much attention has
been recently devoting to the synthesis of control sys-
tems for linear parameter-varying (LPV) plants, (see e.g.
Apkarian et al. [1995],Daafouz et al. [2008], Jetto et al.
[2010a], Heemels et al. [2010], Oliveira et al. [2009] and
references therein). A wide literature also exists on the
robust analysis and synthesis of LTV uncertain polytopic
system with no on-line available information on physical
parameters (see e.g. Daafouz et al. [2001], Dong et al.
[2008], Geromel et al. [2006],Jetto et al. [2009],Jetto et al.
[2010b], Mao [2003], Rugh et al. [2000],Trofino et al. [2001]
and references therein). A common assumption of all the
above papers is that the unknown parameters belong to
a bounded (and generally small) uncertainty domain. The
stability analysis reported in Jetto et al. [2009] showed that
it is possible to state stability conditions under arbitrarily
large time varying parametric uncertainties with possibly
arbitrarily large variations rates. This is possible under the
assumption of plants with a time-varying dynamical ma-
trix whose elements are described by interval polynomial
functions.

The purpose of this paper is to extend the results of
Jetto et al. [2009] to the controller synthesis problem for a
plant with a dynamics switching among a finite number of
modes. The physically meaningful modeling assumption
allows us to transfer the uncertainty from the domain
of the process parameter space to that of the relative
polynomial coefficient space so that arbitrarily large un-
certainty region can be obtained by increasing time. The
stabilization of each ”single mode” is obtained through an
observer based controller with gain matrices polynomially
depending on the time. A parameter dependent Lyapunov
function whose matrix is itself polynomially depending on

time is adopted and the stabilization problem is solved
here defining a set of BMI’s which reduce to a set of LMI’s
fixing two positive scalars.
The main evident theoretical interest of the present pa-
per is that, unlike all the other approaches, it allows
the synthesis of a stabilizing controller for uncertain non
uniformly bounded dynamical matrices.
The overall controller is given by the switching among
the family of observer-based controllers designed for each
single mode. Closed-loop stability conditions are stated in
terms of permanence time intervals of the plant dynamics
over the same mode. This is accomplished by defining a
suitable switched Lyapunov function.

2. ”SINGLE MODE” PLANT

Consider the following uncertain polynomially time vary-
ing plant Σ

Σ =

{

ẋ(t) = A(t, α)x(t) +Bu(t)
y(t) = Cx(t)

(1)

with A(t, α)
△
= A0(α0) +

ℓ
∑

i=1

Ai(αi)t
i, t ≥ 0, (2)

where: Ai(αi)
△
=
∑ni

j=1 αi,jAi,j ,
∑ni

j=1 αi,j = 1, αi,j ≥ 0,
and Ai,j , i = 0, · · · , ℓ; j = 1, · · · , ni , are known square
constant matrices.

Remark 1. The assumption of constant matricesB and C is
not a loss of generality because, as shown in Apkarian et al.
[1995], it can always be satisfied if proper LTI filters are
applied to the original signals u(t) and y(t). This implies
a controller of increased order. △

The robust stabilization problem defined in this section
consists in finding (if it exists) a dynamic output feedback
controller Σc which guarantees the exponential γ-stability
(as defined in Jetto et al. [2009]) of the closed-loop un-
certain polynomially time varying system Σf given by the
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feedback connection of Σc with Σ.
The two following preliminary results will be exploited to
solve the aforementioned problem.

PR1: If G is a positive definite matrix, X and Y are
matrices of appropriate dimensions and ε is a positive
scalar, then the following direct consequence of the Schur
complement holds

[

0 XY T

Y XT 0

]

≤

[

εXGXT 0

0
1

ε
Y G−1Y T

]

.

PR2, Song et al. [2011]: Let Φ be a symmetric matrix and
N, M be matrices of appropriate dimensions. The following
statements are equivalent:

(1) Φ < 0 and Φ +NMT +MNT < 0;

(2) The LMI problem

[

Φ M +NF

MT + FTNT −F − FT

]

< 0 is

feasible with respect to F .

Consider the following observer based controller Σc

Σc =

{

ξ̇(t) = A(t)ξ(t) +Bu(t)− L(t)(y(t)− Cξ(t))
u(t) = K(t)ξ(t)

(3)

where A(t) defines a sort of ” nominal central plant” and is

given by A(t) = A0 +
∑ℓ

i=1 Ait
i, t ≥ 0, Ai =

∑

ni

j=1
Ai,j

ni
.

The gains K(t) and L(t) are polynomially time varying
matrices defined as

K(t)
△
= Kℓt

ℓ L(t)
△
= Lℓt

ℓ, (4)

where Kℓ and Lℓ, are constant matrices to be computed.
The assumed form of K(t) and L(t) will be justified in
the light of Remark 3 reported later.
Applying the usual transformation matrix, the state space
representation of the uncertain time varying closed loop

system Σf
△
= (Ĉf , Âf (t, α)) is

˙̂xf (t) =

[

A(t, α) +BK(t) −BK(t)
∆A(t, α) A(t) + L(t)C

]

x̂f (t) (5)

y(t) = [C 0 ] x̂f (t) (6)

where: ˙̂xf (t)
△
=
[

ẋT (t), ẋ(T t)− ξ̇T (t)
]T

, ∆A(t, α)
△
=

A(t, α) − Ā(t)
△
=

∑ℓ
i=0 ∆Ai(αi)t

i, with ∆Ai(αi)
△
=

(Ai(αi) − Ai) =
∑nj

j=1 αi,j∆Ai,j , ∆Ai,j
△
= Ai,j − Āi,

∑nj

j=1 αi,j = 1, αi,j ≥ 0.
To investigate the stability of Σf the following parameter
dependent Lyapunov function is considered

V (x̂f (t), α) = x̂f (t)
TR(t, α)x̂f (t), α ∈ S (7)

where

R(t, α) =

[

P (t, α) W (t, α)
WT (t, α) Q(t, α)

]

=

ℓ
∑

i=0

Ri(αi)t
i (8)

is a symmetric positive definite matrix ∀t ≥ 0, ∀α ∈ S,
with

Ri(αi) =

(

Pi(αi) Wi(αi)
WT

i (αi) Qi(αi)

)

, i = 0, · · · , ℓ− 1,

and Rℓ(αℓ) =

(

Pℓ(αℓ) 0
0 Qℓ(αℓ)

)

. (9)

The time derivative of V (x̂f (t), α) is

V̇ (x̂f (t), α) = x̂T
f (t)H(t, α)x̂f (t) (10)

with H(t, α) = ÂT
f (t, α)R(t, α)+R(t, α)Âf (t, α)+Ṙ(t, α).

By (5) and (8),H(t, α) is the symmetric polynomially time
varying matrix given by

H(t, α) =

(

H(1,1)(t, α) H(1,2)(t, α)

H(2,1)(t, α) H(2,2)(t, α)

)

. (11)

The form of each single block H(i,j)(t, α) is reported in
(12) at the top of page 3. Exploiting the polynomial time-
dependence of matrices on the r.h.s. of (12) (see page 3),
an equivalent representation of (10) is

V̇ (x̂f (t), α) = x̂T
f (t)

(

H0(α) +

2ℓ
∑

k=1

Hk(α)t
k

)

x̂f (t)(13)

with Hk(α) =

(

H
(1,1)
k (α) H

(1,2)
k (α)

H
(2,1)
k (α) H

(2,2)
k (α)

)

, k = 0, · · · , 2ℓ.

Exploiting (10)-(13), it can be shown that each single
block H(i,j)(t, α), i, j = 1, 2 of H(t, α) in (11) has the

form: H(i,j)(t, α) = H
(i,j)
0 (α) +

∑2ℓ
k=1 H

(i,j)
k (α)tk. Each

term H
(i,j)
k (α) has the form reported in Appendix.

Remark 2. A conceptually simple but algebraically tedious
generalization of the results reported in the Appendix

shows that even assuming K(t) =
∑ℓ

i=0 Kit
i, L(t) =

∑ℓ

i=0 Lit
i, Ki, Li 6= 0, in any case H2ℓ(α) only depends

on Kℓ and Lℓ △.

As neither R(t, α), nor A(t, α) are uniformly bounded, the
stability analysis of Σf requires the two following lemmas.

Lemma 1. Jetto et al. [2009] If there exists a finite t̄ ≥ 0
such that

V̇ (x̂f (t), α) < 0, ∀α ∈ S, ∀t ≥ t̄, (14)

then Σf is exponentially γ-stable.

Lemma 2. Jetto et al. [2009] If ∃ k̄ ∈ [0, 1, · · · , 2ℓ] such
that ∀α ∈ S, one has

Hk̄(α) < 0, Hk̄+j(α) ≤ 0, 1 ≤ j ≤ 2ℓ− k̄, (15)

then condition (14) holds ∀t ≥ t̄
△
= t̄(k̄) ≥ 0, where t̄(k̄) is

the minimum t such that

k̄−1
∑

k=0

Hk(α)t
(k−k̄) < −

2ℓ
∑

k=k̄

Hk(α)t
(k−k̄). (16)

Remark 3. The importance of Lemma 2 is that the stability
of Σf can be guaranteed with no constraint on Hk(α),
for k < k̄. Hence a robust stabilizing output dynamic
controller can be found by simply imposing the fulfillment
of (15) for k̄ = 2ℓ. This drastically reduce the numerical
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H(1,1)(t, α) = P (t, α)(A(t, α) + BK(t)) + (A(t, α) +BK(t))T P (α) + Ṗ (t, α) +W (t, α)∆A(t, α) + ∆AT (t, α)WT (t, α)

H(2,1)(t, α) = WT (t, α)(A(t, α) + BK(t)) +Q(t, α)∆A(t, α)−KT (t)BT P (t, α) + (A(t) + L(t)C)TWT (t, α) + ẆT (t, α)

H(2,2)(t, α) = Q(t, α)(A(t) + L(t)C) + (A(t) + L(t)C)T Q(t, α) + Q̇(t, α) −WT (t, α)BK(t) −KT (t)BTW (t, α) (12)

complexity of the synthesis procedure because H2ℓ(α)
△
=

H2ℓ(αℓ) < 0 only involves the following matrices: Aℓ(αℓ),

∆Aℓ(αℓ), Rℓ(αℓ) =

(

Pℓ(αℓ) 0
0 Qℓ(αℓ)

)

, Kℓ and Lℓ. The

diagonal structure of Rℓ(αℓ) introduces some conservatism
but on the other hand allows the simultaneous design of
Kℓ and Lℓ under the assumption of parametric uncer-
tainties arbitrarily increasing with time. The counterpart
is that V̇ (x̂f (t), α) < 0, ∀α ∈ S, is not satisfied for
t ≥ 0 and hence both a slower convergence to the null
equilibrium point and a more conservative estimate of the
dwell time are obtained. Nevertheless, as shown later, the
conservatism can be greatly reduced through an itera-
tive constrained minimization procedure (ICMP) based on
semidefinite programming. The ICMP exploits the degrees
of freedom introduced by the full block matrices Rk(αk),
k = 0, · · · , ℓ − 1, of R(t, α) to minimize the time instant
t̄ = t̄(k̄) = t̄(2ℓ) such that (16) for k̄ = 2ℓ is satisfied (or
equivalently (14) hold). △

Remark 4. In the light of Remark 3, Remark 2 justifies the
assumption on the form of K(t) and L(t) given by (4). △

Theorem 1. The condition (15) of Lemma 2 holds for
k̄ = 2ℓ if there exist positive definite symmetric matrices
P̃ℓ,j , Qℓ,j, j = 1, · · · , nℓ, Z, J̃ℓ and matrices Vℓ, Xℓ, Yℓ,
such that for some fixed positive scalars βℓ, γℓ, conditions
(17)-(20)(reported at the top of page 4) are satisfied. △
Proof of Theorem 1. Not reported for brevity.

If the set of LMIs (17)-(20) admits a solution for a fixed
pair (γℓ, βℓ) then (15) holds for k̄ = 2ℓ. By Lemmas 1 and
2, the closed loop system Σf results to be exponentially
γ-stable for some γ > 0. The gain matrices characterizing
the dynamic output controller (3)-(4) are:

Kℓ = YℓZ
−1 Lℓ = V −T

ℓ Xℓ. (21)

The respective Lyapunov function (7)-(9) is characterized

by Rℓ(αℓ)
△
=

(

Pℓ(αℓ) 0
0 Qℓ(αℓ)

)

with vertices Rℓ,j =
(

Z−T P̃ℓ,jZ
−1 0

0 Qℓ,j

)

, j = 1, · · · , nℓ and by the full

block matrices Ri(αi)’s, i = 0, · · · , 2ℓ − 1 with vertices

Ri,j =

(

Pi,j Wi,j

WT
i,j Qi,j

)

still to be determined. According

to Remark 3, they are degrees of freedom exploited by
the ICMP for minimizing t̄ = t̄(2ℓ), as explained beneath,
and hence to reduce the introduced conservatism imposing
V̇ (x̂f (t), α) < 0 for t ≥ t̄ > 0.

2.1 Minimization of t̄

As k̄ = 2ℓ, by Lemma 2, t̄ is the minimum t such that

2ℓ−1
∑

i=0

Hi(α)

t2ℓ−i
< −H2ℓ(α). (22)

Taking into account that: 1) H2ℓ(α) = H2ℓ(αℓ) <
−v2ℓI for some known positive scalar v2ℓ, 2) for each
Hi(α), i = 0, · · · , 2ℓ − 1, there exists a scalar vi, to
be determinated, such that Hi(α) < viI, inequality (22)
makes it evident that to reduce t̄ it is necessary to minimize
the maximum eigenvalue vi of eachHi(α), i = 0, · · · , 2ℓ−1,
α ∈ S. Unfortunately, the ℓ degrees of freedom Ri(αi),
i = 0, · · · , ℓ − 1 , allow us to only solve ℓ problems of
minimization with respect to the maximum eigenvalues of
ℓ matrices Hi(α) with i ∈ [0, · · · , 2ℓ − 1]. Inequality (22)
suggests that a more significant reduction of t̄ is obtained
minimizing the maximum eigenvalues of the ℓ matrices
Hℓ+k(α) , for k = 0, · · · , ℓ− 1.
As the ℓ matrices Hℓ+k(α), for k = 0, · · · , ℓ − 1, are
functions of the unknown Ri(αi), i = 0, · · · , ℓ − 1 ,
according to the following relation for k = 0, · · · , ℓ− 1:

Hℓ+k(α) = fℓ+k(Rk(αk), Rk+1(αk+1, · · · , Rℓ−1(αℓ−1)),

the ICMP has the following structure:

(1) put k = ℓ− 1
(2) min vℓ+k subject to

Hℓ+k(α) < vℓ+k · I (23)

Constraint (23) corresponds to the finite set of LMIs
whose unknowns to be determinated are vℓ+k and the
vertices of the polytopic Rk(αk)

(3) put k = k − 1, if k ≥ 0 go to step (2) otherwise
end.

At the end of the ICMP, all the vertices of Ri(αi)’s,
i = 1, · · · , ℓ − 1, have been computed. This means that
all available degrees of freedom have been used and,
as a consequence, the matrices Hi(α), i = 0, · · · , ℓ −
1, (namely those ones which have not been taken into
account in the minimization procedure) are automatically
determinated at the vertices as well as their respective
maximum eigenvalues vi.
In conclusion, by (22) one has that the finite t̄ = t̄(2ℓ)

such that V̇ (x̂f (t), α) < 0, ∀t ≥ t̄(2ℓ) is obtained in the
following way:

t̄ = t̄(2ℓ) = min
t

:

2ℓ−1
∑

i=0

vi

t2ℓ−i
< v2ℓ. (24)

3. SWITCHING MODE PLANTS

The results of Section 2 are here exploited to investigate
stabilizability conditions for the class of switching systems
Σσ(t) that, according to the introductory considerations,
are described by

Σσ(t) =

{

ẋ(t) = Aσ(t)(t, α
(σ(t)))x(t) +Bu(t),

y(t) = Cx(t)
(25)

where σ(t) : [0,∞) → P
△
= [1, · · · , p̄] is a piecewise

constant function which represents the switching signal,
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



−2γℓP̃ℓ,j + J̃ℓ P̃ℓ,j + ZTAT
ℓ,j + Y T

ℓ BT + γℓZ
T P̃ℓ,j

P̃ℓ,j +Aℓ,jZ +BYℓ + γℓZ −Z − ZT 0

P̃ℓ,j 0 −ZT



 < 0, j = 1, · · · , nℓ, (17)

[

−J̃ℓ ZT∆AT
ℓ,j

∆Aℓ,jZ −I

]

< 0, j = 1, · · · , nℓ, (18)

[

−Z Y T
ℓ BT

BYℓ −Z

]

< 0, (19)









−2βℓQℓ,j Qℓ,j +A
T

ℓ Vℓ + CTXT
ℓ + βℓVℓ Qℓ,j I

Qℓ,j + V T
ℓ Aℓ +XℓC + βℓV

T
ℓ −Vℓ − V T

ℓ 0 0
Qℓ,j 0 −I 0

I 0 0 −ZT









< 0, j = 1, · · · , nℓ. (20)

its value σ(t) identifies the particular mode acting at time
t. Any interval over which a particular mode p is active

is denoted by T
(p)
k

△
= [t

(p)
k ; t

(q)
m ), k,m ∈ 6Z+. This notation

means that over T
(p)
k the p-th mode occurs for the k-th

time (since t = 0) and it is followed by them-th occurrence

(since t = 0) of the q-th mode. Hence, ∀t ∈ T
(p)
k , each

Ap(t, α
(p)) is of the same kind of A(t, α) given by (2) and

can be written as

Ap(t, α
(p)) = Ap,0(α

(p)
0 ) +

ℓp
∑

i=1

Ap,i(α
(p)
i )(t− t

(p)
k )i (26)

where Ap,i(α
(p)
i ) =

∑npi

j=1 α
(p)
i,j A

(p)
i,j .

The following assumption is made:

A1). Both the switching instant and the new configu-
ration assumed by the switched plant are assumed to be
known.

The Lyapunov function associated to each mode is defined
as : Vp(x̂f (t), α

(p)) = x̂T
f (t)Rp(t, α

(p))x̂f (t), p ∈ P , where,

accordingly to (26), the time is reset at every switching

instant defining Rp(t, α
(p)), ∀t ∈ T

(p)
k as

Rp(t, α
(p)) = Rp,0(α

(p)
0 ) +

ℓp
∑

i=1

Rp,i(α
(p)
i )(t− t

(p)
k )i. (27)

Each Rp,i(α
(p)
i ), p ∈ P , is of the same kind of Ri(αi) given

by (9). Moreover it is assumed :

A2). Rp,0(α
(p)
0 ) = R0(α0), ∀p ∈ P , for a suitably defined

constant vector α0 ∈ Rn0 where n0 = max
p

{np0}.

Assumption A2) implies that the degree of freedom
R0(α0) is common to all the p̄ Lyapunov matrices
Rp(t, α

(p)). As it will be explained later, this hypothesis
will allow us to derive stabilizability conditions for the
switching plant Σσ(t).

The derivative of each Vp(x̂f (t), α
(p)) is V̇p(x̂f (t), α

(p)) =

x̂T
f (t)Hp(t, α

(p))x̂f (t), where analogously to (13),∀t ∈ T
(p)
k ,

Hp(t, α
(p)) is given by

Hp(t, α
(p)) = Hp,0(α

(p)) +

2ℓp
∑

i=1

Hp,i(α
(p))(t− t

(p)
k )i.(28)

Let Σf,p be the feedback connection of the mode Σp with
the corresponding stabilizing observer based controller
Σc,p computed as explained in section 2. By Lemma 2,

each Vp(x̂f (t), α
(p)) is negative definite ∀t ≥ t̄p(2ℓp).

By A2), the p̄ ICMP’s are independent of each other
until k = 1. For k = 0, the p̄ constraints of the kind of
(23) must be simultaneously satisfied. Hence putting all

the v
(p)
ℓp

’s, p = 1, · · · , p̄, equal to v one has

min v subject to











H1,ℓ1(α
(1)) < vI

...

Hp̄,ℓp̄(α
(p̄)) < vI

(29)

where the unknowns are the scalar v and the vertices of
R0(α0).
Analogously to (24), each t̄p = t̄p(2ℓp) > 0, p ∈ P , can be
obtained as:

t̄p(2ℓp) = min
t

:

ℓp−1
∑

i=0

v
(p)
i

t2ℓp−i
+

v

tℓp
+

2ℓp−1
∑

i=ℓp+1

v
(p)
i

t2ℓp−i
< v

(p)
2ℓp

.

(30)

3.1 Stabilizability conditions for the switching mode plant

Provided that the conditions of Theorem 1 are satis-
fied, each controller Σc,p stabilizing the corresponding Σp

guarantees that inside each T
(p)
k , p ∈ P , there exists a

t̄
(p)
k , with t̄

(p)
k − t

(p)
k

△
= t̄p independent of k, such that

V̇p(x̂f (t), α
(p)) < 0, ∀t ≥ t̄

(p)
k , t ∈ T

(p)
k . In practice t̄

(p)
k

has the same meaning of t̄p in (30) for a single mode of
the plant. Stability conditions for the switching closed loop
system Σf,σ(t) are stated in terms of minimum dwell time,
as stated in the following Theorem.

Theorem 2. Provided that each Σf,p is exponentially γp
stable for some γp > 0, the switching system Σf,σ(t) is

asymptotically stable if the length L
(p)
k of each T

(p)
k =

[t
(p)
k ; t

(q)
m ), ∀p ∈ P , ∀k,m ∈ 6Z+ is such that:

L
(p)
k ≥ τp > t̄p. where τp is the minimum time(31)

such that

∫ t
(p)

k
+τp

t
(p)

k

V̇p(x̂f (t), α
(p))dt < 0. (32)
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Proof of Theorem 2. Not reported for brevity.

4. NUMERICAL RESULTS

Consider the following dynamical plant Σσ(t) dependent
on the switching signal σ(t) : [0,∞) → P = [1, 2], de-
scribed by the following triplet (C,Ap(t, α

(p)), B): C =

[ 0 1 ], Ap(t, α
(p)) =

[

8 −9
120 −18

]

+ θ(p)(t)

[

−108 −9
−120 17

]

,

B =

[

1 0
0 0.5

]

. The dynamical matrix is borrowed from

Montagner et al. [2003], where the stability is proved
in the uncertainty range θ(t) ∈ [0, 1]. The parameter
θ(t) is here assumed to be a switching interval polyno-
mial function θ(p)(t) of degree ℓp = 2, more precisely:

θ(1)(t) = [0, 0.2] + [0.01, 0.02] t + [0.005, 0.01] t2 and
θ(2)(t) = [0, 0.2]+[−0.02, −0.01] t+[−0.002, −0.001] t2.
Unlike all the existing literature both the parameter and
its derivative are allowed to vary over theoretically un-
bounded uncertainty sets. For each mode p ∈ P , by vary-
ing both γℓp = γ2 and βℓp = β2 with a logarithmic scale

inside [10−1, 101], conditions of Theorem 1 result to be
satisfied for γ2 = β2 = 1. This means that Hp,2ℓp(α

(p)) <
0, for each p ∈ P . More precisely the solution is given

by: H1,4(α
(1)) < −v

(1)
4 · I = −0.1879 · I (p = 1) and

H2,4(α
(2)) < −v

(2)
4 · I = −0.0078 · I (p = 2). By Lemma

2, V̇p(x̂f (t), α
(p)) < 0, ∀t ≥ t̄p(2ℓp) for some t̄p(2ℓp) > 0.

By Lemma 1, each Σf,p, p ∈ P is exponentially stable and
the gain matrices, obtained through (21), of the respective
controller Σc,p are:

K2 =

(

−0.5649 −0.0269
0.8802 −1.6784

)

, L2 =

(

0.8996
−1.9163

)

, (p = 1),

K2 =

(

−0.9430 0.0590
−0.1912 −1.6097

)

, L2 =

(

−22.7356
−4.3827

)

(p = 2).

By Remark 3, as ℓp = 2, ∀p ∈ P , two degrees of

freedom Rp,1(α
(p)
1 ) and Rp,0(α

(p)
0 ) = R0(α0) are available

for minimizing t̄p(2ℓp).
Each ICMP consists of two iterations described as reported
at the top of page 6.
By A2), the two ICMP’s are simultaneously solved in the

last iteration. The solution is given by: v
(1)
3 = v

(2)
3 =

−1 and v = −17.3116. As mentioned in Section 2,

the maximum eigenvalues v
(p)
1 and v

(p)
0 of Hp,1(α

(p))’s

and Hp,0(α
(p))’s respectively p ∈ P , are automatically

determinated and their values are v
(1)
1 = 479.5, v

(2)
1 =

11, 112, v
(1)
0 = 29, 415 and v

(2)
0 = 29, 433. The Lyapunov

functions Rp(t, α
(p))’s, p ∈ P are not reported to save

space. Applying (30) one has:

V̇1(x̂f (t), α
(1)) < 0, t ≥ t̄1 = 20 and V̇2(x̂f (t), α

(2)) < 0,
t ≥ t̄2 = 26.
Assuming to know that ‖x(0)‖ ≤ 1, some calculations (not
reported for brevity) show that condition (32) is satisfied
for τ1 = 29, (p = 1) and τ2 = 41, (p = 2). Recalling

that Lp
k is the length of T

(p)
k , by (31), the switching closed

loop system Σf,σ(t) is asymptotically stable if L1
k ≥ 29 and

L2
k ≥ 41.

A simulation has been performed starting from x(0) =
[0.1, 0.1, 0, 0]T . The trajectories of θ(1)(t) and θ(2)(t) have

been generated according to θ(1)(t) = 0.1+ 0.01 · t+0.01 ·
t2 (p = 1) and θ(2)(t) = 0.2 − 0.02 · t − 0.001 · t2 (p = 2)
respectively. Over a simulation interval of amplitude 80,
the switching plant Σσ(t) is such that: Σσ(t) = Σ1(t),

∀t ∈ [0, 30]
△
= T

(1)
1 and Σσ(t) = Σ2(t), ∀t ∈ (30, 80]

△
= T

(2)
1 .

The output response of the switching closed loop system
Σf,σ(t) practically converges to zero for t ≤ 1. The plot is
not reported for brevity.

5. CONCLUSIONS

The main novelty of this paper is a controller synthesis
method for uncertain plants whose parameters are allowed
to vary inside arbitrarily large domains. Another interest-
ing by-product of the paper is the way each single-mode
stabilizing controller is derived. The dynamic output-
feedback controller is obtained through a set of LMI’s by
fixing two positive scalars. If the set is feasible, it provides
both the observer and the static gains in only one step for
parametric uncertainty arbitrarily increasing with time.

Appendix

Explicit expression of H
(i,j)
k (α): Exploiting (10)-(13), it

can be shown that each term H
(i,j)
k (α) has the form

reported on page 6.
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ICMP’s (p=1) (p=2)

i) min v
(1)
3 subject to H1,3(α

(1)) < v
(1)
3 I min v

(2)
3 subject to H2,3(α

(2)) < v
(2)
3 I

ii) min v subject to

{

H1,2(α
(1)) < vI

H2,2(α
(2)) < vI

• H
i,j
k (α), i = j = 1























































H
(1,1)

k
0≤k≤ℓ−1

(α) =
∑

i+j=k
i,j≥0

[Pi(αi)Aj(αj) +AT
j (αj)Pi(αi) +Wi(αi)∆Aj(αj) + ∆AT

j (αj)W
T
i (αi)] + (k + 1)Pk+1(αk+1),

H
(1,1)
ℓ+k

0≤k≤ℓ−1

(α) = Pk(αk)(Aℓ(αℓ) +BKℓ) + (Aℓ(αℓ) +BKℓ)
TPk(αk) + Pℓ(αℓ)Ak(αk) +AT

k (αk)Pℓ(αℓ)

+ Wk(αk)∆Aℓ(αℓ) + ∆AT
ℓ (αℓ)W

T
k (αk)

+
∑

k+1≤i≤ℓ−1
i+j=ℓ+k

[Pi(αi)Aj(αj) +AT
j (αj)Pi(αi) +Wi(αi)∆Aj(αj) + ∆AT

j (αj)W
T
i (αi)],

H
(1,1)
2ℓ (α) = Pℓ(αℓ)(Aℓ(αℓ) +BKℓ) + (Aℓ(αℓ) +BKℓ)

TPℓ(αℓ)

• H
i,j
k (α), i = 2, j = 1



























































H
(2,1)

k
0≤k≤ℓ−1

(α) =
∑

i+j=k
i,j≥0

[WT
i (αi)Aj(αj) +Qi(αi)∆Aj(αj) +A

T

j W
T
i (αi)] +

{

(k + 1)WT
k+1(αk+1), k = 0, · · · , ℓ− 2

0, k = ℓ− 1

H
(2,1)
ℓ+k

0≤k≤ℓ−1

(α) = WT
k (αk)(Aℓ(αℓ) + BKℓ) +Qk(αk)∆Aℓ(αℓ) +Qℓ(αℓ)∆Ak(αk)

+ (Aℓ + LℓC)TWT
k (αk)−KT

ℓ B
TPk(αk)

+
∑

k+1≤i≤ℓ−1
i+j=ℓ+k

[WT
i (αi)A

T
j (αj) +AjW

T
i (αi) +Qi(αi)∆Aj(αj)]

H
(2,1)
2ℓ (α) = Qℓ(αℓ)∆Aℓ(αℓ)−KT

ℓ B
TPℓ(αℓ)

• H
i,j
k (α), i = j = 2



















































H
(2,2)

k
0≤k≤ℓ−1

(α) =
∑

i+j=k
i,j≥0

[Qi(αi)Aj +A
T

j Qi(αi)] + (k + 1)Qk+1(αk+1),

H
(2,2)
ℓ+k

0≤k≤ℓ−1

(α) = Qk(αk)(Aℓ + LℓC) + (Aℓ + LℓC)TQk(αk) +Qℓ(αℓ)Ak +A
T

k Qℓ(αℓ)

− WT
k (αk)BKℓ −KT

ℓ B
TWk(αk) +

∑

k+1≤i≤ℓ−1
i+j=ℓ+k

[Qi(αi)Aj +A
T

j Qi(αi)]

H
(2,2)
2ℓ (α) = Qℓ(αℓ)(Aℓ + LℓC) + (Aℓ + LℓC)TQℓ(αℓ)
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