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Abstract: The linear fusion of estimators is widely used in decentralised state estimation.
Because the maintaining of estimation error cross-correlations between local estimators is
not affordable in large-scale problems, approaches dealing with unknown correlations were
developed. The Covariance Intersection fusion is a linear fusion of estimators and it provides
a fused estimator quality matrix that does not undervalue the mean square error matrix. This
paper derives the matrix of the fused estimator quality for arbitrary weights of the linear fusion
rule that considers the unknown correlations. It also shows that there can exist better matrices
of the fused estimator quality than the ones proposed by the Covariance Intersection fusion rule.
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1. INTRODUCTION

Estimation deals with inferring the value of a quantity of
interest from observed data that are affected by random
errors. The elementary requirement of point estimation,
Lehmann and Casella [1998], is to provide an estimate that
is close to the estimated quantity in some statistical sense.
In state estimation of dynamic systems, Simon [2006],
Bar-Shalom et al. [2011], the availability of stochastic
description of the estimation error is no less important
than the error itself.

Using the mean square error criterion for evaluating the
mapping from the data to the estimates, that means for
evaluating the estimator, the Kalman filter is the optimal
linear estimation algorithm. If the measured data are not
available in one central processor, decentralised estimation
is needed. There are several approaches that fuses local
estimators, i.e. that fuses locally processed data. The
decentralised Kalman filter, Chong [1979], Hashemipour
et al. [1988], provides the same outputs as the hypothetical
Kalman filter that fuses all local data directly, but it is
the most restrictive one. Besides the local estimators, the
filter needs to handle the common prior information and
employs an affine fusion of local estimators.

Leaving the requirement to obtain the optimal estimator
and contenting with the exact description of the estimator
error, the linear fusion can be adopted, Chang et al. [1997],
Li et al. [2003], Shin et al. [2007], Yuan et al. [2010]. The
optimal linear fusion of local estimators is determined by
the correlations of their errors. The mean square error
matrix of the fused estimator depends on the correlations
as well. However, the maintaining of the knowledge of
exact cross-correlations is expensive. It requires an extra
communication every time the local estimators are up-
dated by the local measurements. In complex networks

of estimators, it also requires the knowledge of the whole
network, that cannot be achieved in practice.

Because of that, a further concession is made and the
requirement to compute the mean square error matrix
exactly is retracted. Instead of the exact value of the mean
square error matrix, its upper bound is constructed in the
Covariance Intersection fusion, Julier and Uhlmann [1997],
Arambel et al. [2001], Chen et al. [2002], Reinhardt et al.
[2012] . In order to compute the upper bound, the weights
of the linear combination of the local estimators are se-
lected from a set given by a vector parameter. The value of
the parameter is chosen according to a predefined criterion.
However, it is not the actual mean square error of the fused
estimator that is optimised, but it is a measure of the
provided upper bound. Fast approaches that approximate
the optimal parameter are proposed in Niehsen [2002],
Fränken and Hüpper [2005]. Covariance Intersection sup-
poses that the cross-correlations of the local estimator
errors are completely unknown. A partial knowledge of the
cross-correlation is dealt with in Hanebeck and Briechle
[2001], Hanebeck et al. [2001], Julier [2009], a comparison
with other approaches is made in Ajgl and Šimandl [2013].

This paper considers the linear combination of the local
estimators with the weights that are selected from a wider
set than in the Covariance Intersection fusion. The goal of
the paper is to cast new light on the fusion under unknown
correlations, namely on the choice of the weights and on
the optimality of the upper bounds of the mean square
error matrices.

In Section 2, the problem of linear fusion under unknown
correlations is formulated. Section 3 focuses on fusion
of full state estimates, Section 4 dissects partial state
estimates. Section 5 summarises the paper. Appendix
discusses the parametrisation of matrix upper bounds.
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2. PROBLEM SETTINGS

Let x be the quantity to be estimated and let the quantity
be a realisation of an unobservable random variable X
with probability density pX and support ΩX . In classical
approach, pX is considered to be an unknown Dirac
function, i.e. x is an unknown deterministic value. In a
more general approach, the density pX is not Dirac and
it is considered to be known. Let Z be an observable
random variable with density pZ|x for each x ∈ ΩX . The
observation z of Z is called a measurement.

An estimator X̂ is the random variable given by a func-
tion x̂ of the random variable Z, X̂ = x̂(Z), its realisation
is the estimate x̂, x̂ = x̂(z). An estimator is unbiased,
if the expectation of the estimator error is zero, i.e. if
E{X − x̂(Z)} = 0 holds. Note that the expectation is
unconditional. That means that the estimate needs not be
the conditional expectation of X given by z and that the
conditional expectation of x̂(Z) given by x need not be
equal to x.

The quality of an estimator is often assessed by the mean
square error matrix P, P = E{(X − x̂(Z))(X − x̂(Z))T}.
Again, the expectation is unconditional, i.e. the matrix P
cannot depend on the actual measurement z, and so it has
to be possible to compute P without the knowledge of z.

In fusion, multidimensional random variables Z are consid-
ered and are partitioned into N parts, Z = [ZT

1 , . . . ,ZT
N ]T.

Local estimators X̂n, n = 1, . . . , N , are given by X̂n =
x̂n(Zn), their quality by the mean square error matrices
Pn and the matrices Pij , i = 1, . . . , N , j = 1, . . . , N , i 6= j,
are given by Pij = E{(X − x̂i(Zi))(X − x̂j(Zj))

T}. The

fusion provides an estimator X̂F , X̂F = x̂F (X̂1, . . . , X̂N ),
its quality is measured by analogically defined matrix PF .

If the matrices Pij are not available, it is not possible
to compute the matrix PF . Covariance Intersection, see
Julier and Uhlmann [1997], Arambel et al. [2001], Chen
et al. [2002], performs a linear fusion of the local estimators

X̂n and provides an upper bound �F of the mean square
error matrix PF , while the upper bound is meant in the
sense that the matrix �F−PF is positive semidefinite. The
estimator provided by Covariance Intersection is given by

X̂F =

N∑
n=1

WnX̂n, (1a)

where the weights Wn fulfil
∑N

n=1 Wn = I, I denotes the
identity matrix of the corresponding order. For the weights
Wn given by

Wn = (

N∑
m=1

ωm�−1m )−1ωn�
−1
n , (1b)

where ωn, 0 ≤ ωn ≤ 1,
∑N

n=1 ωn = 1, are free parameters
and �n are known upper bounds of the local mean square
error matrices Pn, �n−Pn ≥ 0, the Covariance Intersection
fusion proposes a matrix of the fused estimator quality �F ,

�F = (

N∑
n=1

ωn�
−1
n )−1, (1c)

that is an upper bound of PF for all admissible values of
the free parameters ωn.

The question posed in this paper is if this upper bound �F

is optimal for all admissible values of the free parameters
ωn in (1b). That is if there exist another matrix upper
bound which achieves a lower value of some criterion.

3. FULL STATE FUSION ANALYSIS

In this section, upper bounds of mean square error matri-
ces in linear fusion are treated. The increase of the upper
bounds that is caused by the non-optimal choice of the
weights of the linear combination is expressed in a closed
form. By the means of an example, it is shown that for the
weights given by (1b), the upper bound (1c) needs not be
optimal for non-optimal values of the free parameters ωn.

3.1 Expression of the upper bounds

The analysis starts with the linear fusion of two estimators,
N = 2. The matrices P1, P2 and P12 are composed into
the matrix PC and its upper bound �C is composed of the
upper bounds �1 and �2,

�C =

[
�1/ω1 0

0 �2/(1− ω1)

]
, PC =

[
P1 P12

PT
12 P2

]
. (2)

Note that the parametrisation of the upper bound �C by
a scalar parameter is discussed in the Appendix.

The requirement W1+W2 = I is made in order to be able
to express PF by using only W1, W2 and �C . Note that if
the weights does not sum up to the identity matrix, then
according to its definition, �F is dependent on E{XXT}
and some cross-terms. However, it cannot be supposed
that E{XXT} is available in the decentralised fusion. So,
suppose that it holds W2 = I −W1 and combine the
weights into WC , WC = [W1,W2]. Then the mean square
error matrix PF is obtained by PF = WCPCWT

C . If the
matrix �F is constructed as �F = WC�CWT

C , then it
is an upper bound of PF if �C is an upper bound of
PC , because �F − PF = WC(�C − PC)WT

C holds then,
see Hanebeck and Briechle [2001], Hanebeck et al. [2001].
Constructed in such a way, the matrix �F is given by

�F = W1
�1

ω1
WT

1 + (I−W1)
�2

1− ω1
(I−W1)T =

�2

1− ω1

+W1(
�1

ω1
+

�2

1− ω1
)WT

1 −W1
�2

1− ω1
− �2

1− ω1
WT

1 . (3)

Lemma 1. The upper bound �F can be expressed as

�F =∆(
�1

ω1
+

�2

1− ω1
)∆T+

+
�2

1− ω1
− �2

1− ω1
(
�1

ω1
+

�2

1− ω1
)−1

�2

1− ω1
, (4a)

∆ =W1 −
�2

1− ω1
(
�1

ω1
+

�2

1− ω1
)−1. (4b)

Proof: Complete (3) to square. 2

Corollary 2. The upper bound �F is also given by

�F = ∆(
�1

ω1
+

�2

1− ω1
)∆T + (ω1�

−1
1 + (1− ω1)�−12 )−1,

(5a)

∆ = W1 − (ω1�
−1
1 + (1− ω1)�−12 )−1ω1�

−1
1 . (5b)

Proof: Apply the identities (22) and (23) on (4). 2
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Remark 3. The relation between (5) and (1b), (1c) is
evident. From (4), (5), it follows that if the parameter ω1

is fixed, then the weight W1 that leads to the best upper
bound �F is given by zeroing ∆. The increase in the upper
bound �F if another weight W1 is chosen is also shown.

Theorem 4. If the weight W1 is given by letting ∆ to be
zero for ω1 that does not minimise (1c) in a predetermined
sense, the best upper bound needs not be given by (1c).

Proof: A counterexample is provided in Section 3.2. 2

Now, an analysis analogous to the above performed one
will be done. Three estimators are considered, N = 3, it is
supposed that WC = [W1,W2,W3], WC ∗ [I, I, I]T = I.
Further, PC is constructed analogously to (2) and �C has
the blocks P1, P2, P3 on its diagonal, where P1 = �1/ω1,
P2 = �2/ω2, P3 = �3/ω3 and ω1 + ω2 + ω3 = 1. Again,
�F is constructed as �F = WC�CWT

C . Then it holds

�F = W1P1W
T
1 + W2P2W

T
2 +

+ (I−W1 −W2)P3(I−W1 −W2)T = W1P1W
T
1 +

+ W2P2W
T
2 + P3 + W1P3W

T
1 + W2P3W

T
2 −W1P3−

− P3W
T
1 −W2P3 − P3W

T
2 + W1P3W

T
2 + W2P3W

T
1 .
(6)

Lemma 5. For N = 3, the upper bound �F is given by

�F = ∆

([
P1 0
0 P2

]
+

[
I
I

]
P3 [I I]

)
∆T + P3−

− P3 [I I]

([
P1 0
0 P2

]
+

[
I
I

]
P3 [I I]

)−1 [
I
I

]
P3, (7a)

∆ = [W1 W2]− P3 [I I]

([
P1 0
0 P2

]
+

[
I
I

]
P3 [I I]

)−1
.

(7b)

Proof: Complete (6) to square. 2

Corollary 6. For N = 3, �F can be written as

�F = ∆

[
P1 + P3 P3

P3 P2 + P3

]
∆T + (P−11 +P−12 +P−13 )−1,

(8a)
∆ = [W1 W2]−(P−11 +P−12 +P−13 )−1

[
P−11 P−12

]
, (8b)

Proof: Apply the identities (22) and (23) on (7). 2

Remark 7. It can be observed that if the parameters ω1,
ω2 are fixed, then the weights W1, W2 that lead to the
best upper bound are given by letting ∆ to be zero. An
analysis for N > 3 would be analogous and it is not done.

3.2 Example – full state estimation

In this example, the dependence of the value of the upper
bound �F on the values of the weight W1 and of the
parameter ω1 is inspected numerically.

Suppose that the upper bounds of the mean square error
of two local estimators are given as �1 = 1 and �2 = 2. Let
the linear combination of the estimators (1a) be convex,
i.e. 0 ≤ W1 ≤ 1. The proposed upper bound is given by
(3). For the purpose of a comparison, a function of the
weight W1 is considered, namely ωW = W1�1/(W1�1 +
(1 −W1)�1). Note that the value ωW is the value of ω1

that produces the weight W1 according to (1b). According
to the Covariance Intersection fusion, the proposed upper
bound is given by (1c) for the given ωW .

ω
1

ω
W

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 1. Contours of �F (contours 1.25, 1.5, . . . , 3 – solid
lines, contours 1.125, 1.375, . . . , 1.875 – dotted lines,
�F achieves its minimum 1 at ωW = 1, ω1 = 1). The
best choice of ωW for given ω1 (thick solid line), the
best choice of ω1 for given ωW (thick dashed line).

This example shows that for fixed weight W1, i.e. for fixed
ωW , there can exist a better upper bound �F than the
value obtained by substituting ω1 by ωW in (1c).

Fig. 1 shows the contours of the upper bound (3) for
the choices of ωW and ω1. If the parameter ω1 is fixed
first, then the value of W1 that minimises �F is given by
(1b), see (5), that means that the value of ωW is given by
ωW = ω1. However, if the weight W1 is fixed first, that
means if ωW is fixed, then the value of ω1 that minimises
�F is not given by ω1 = ωW , see the thick dashed line
in Fig. 1. The exceptions are the limit cases ωW = 0,
ωW = 1 and the case when ωW minimises (1c). In this
example however, (1c) is minimised by ωW = 1.

Thus, if the Fast Covariance Intersection is used, see
Niehsen [2002], Fränken and Hüpper [2005], then ωW =
�2/(�1 + �2) = 2/3 is used in (1). That means that
W1 = 0.8 and (1c) gives an upper bound 1.2. However,
the minimal upper bound is approximately equal to 1.17
for ω1 approximately equal to 0.73. If a consensus is used,
i.e. if the value of ωW is equal to the inverse of the number
of local estimators, ωW = 1/2, then W1 = 2/3 and an
upper bound 4/3 is suggested. However, the minimal upper

bound is approximately equal to 1.23 for ω1 = 2−
√

2.

4. PARTIAL STATE FUSION ANALYSIS

In this section, it is supposed that the local estimators
do not estimate X , but only linear combinations of its
components. That means suppose that X̂n estimates TnX ,
where Tn is a matrix. This settings is usual in large-
scale systems, Kim et al. [2007], Khan and Moura [2008],
Maestre et al. [2010], where the state is too big to be
estimated in one stroke. Further, suppose that the matrix
TC , TC = [TT

1 , . . . ,T
T
N ]T has full column rank. Roughly

speaking, suppose that each component of X is estimated
by at least one estimator. Next, suppose that the local
upper bounds �n of the mean square error matrices are
known and finite. According to Arambel et al. [2001],
Julier [2009], the Covariance Intersection fusion now pro-
poses weights Wn that are given by free parameters ωn,
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0 ≤ ωn ≤ 1,
∑N

n=1 ωn = 1, and fulfil
∑N

n=1 WnTn = I.
Namely, the weights are given by

Wn = (

N∑
m=1

ωmTT
m�−1m Tm)−1ωnTT

n�
−1
n , (9a)

and the proposed upper bound �F is given by

�F = (

N∑
n=1

ωnTT
n�
−1
n Tn)−1. (9b)

In the following section, the analysis that has been made in
Section 3 is extended to partial state fusion. For simplicity,
two estimators are considered, N = 2.

4.1 Expression of the upper bounds

The analysis starts with the assumption T2 = I. Now, the
off-diagonal blocks of (2) are not square. Similarly to (3),
the proposed upper bound �F is given by

�F = W1
�1

ω1
WT

1 +(I−W1T1)
�2

1− ω1
(I−W1T1)T. (10)

Lemma 8. The upper bound �F can be expressed as

�F =∆(
�1

ω1
+ T1

�2

1− ω1
TT

1 )∆T +
�2

1− ω1
− (11a)

− �2

1− ω1
TT

1 (
�1

ω1
+ T1

�2

1− ω1
TT

1 )−1T1
�2

1− ω1
,

∆ =W1 −
�2

1− ω1
TT

1 (
�1

ω1
+ T1

�2

1− ω1
TT

1 )−1. (11b)

Proof: Complete (10) to square. 2

Corollary 9. The upper bound �F is also given by

�F =∆(
�1

ω1
+ T1

�2

1− ω1
TT

1 )∆T+

+ (TT
1 ω1�

−1
1 T1 + (1− ω1)�−12 )−1, (12a)

∆ =W1 − (TT
1 ω1�

−1
1 T1 + (1− ω1)�−12 )−1TT

1 ω1�
−1
1 .
(12b)

Proof: Apply the identities (22) and (23) on (11). 2

Remark 10. Again, if ω1 is fixed, the weight W1 that leads
to the best upper bound �F is obtained by letting ∆ to
be zero. Also, the relation between (12) and (9a), (9b) is
evident. The choice of ω1 for a fixed W1 is discussed in
Section 4.2.

Now, suppose that T2 6= I. For simplicity, suppose also
that T1, T2 choose components of X according to

T1 =

[
I 0 0
0 I 0

]
, T2 =

[
0 I 0
0 0 I

]
, (13)

where the second block row of T1 is the same as the
first block row of T2. Next, partition the matrices �1/ω1,
�2/(1− ω1) accordingly,

�1

ω1
=

[
PA PB

PC PD

]
,

�2

1− ω1
=

[
PE PF

PG PH

]
. (14)

From the definition of T1 and T2 and the requirement
W1T1 + W2T2 = I, it follows that W1, W2 have the
following form,

W1 =

[
I WA

0 WB

0 WC

]
, W2 =

[ −WA 0
I−WB 0
−WC I

]
, (15)

where WA, WB, WC have corresponding dimensions.

Proposition 11. If the upper bound �F is constructed as
before, the completion to square leads to

�F = ∆(PD + PE)∆T+

+

[PA − PBYDEPC PBYDEPE PBYDEPF

PEYDEPC PDYDEPE PDYDEPF

PGYDEPC PGYDEPD PH − PGYDEPF

]
,

(16a)

∆ =

WA + PB(PD + PE)−1

WB − PE(PD + PE)−1

WC − PG(PD + PE)−1

 , (16b)

where the shorthand notation YDE = (PD + PE)−1 has
been used in the right hand side matrix in (16a).

Now, the identities (22) and (23) have to be used multiple
times in order to arrive at (9a), (9b). Using the notation
J = (PA − PBP−1D PC)−1, L = (PH − PGP−1E PF)−1,

K = P−1D + P−1D PCJPBP−1D + P−1E + P−1E PFLPGP−1E ,
it is needed to show that for ∆ = 0, it holds

�−1F =

 J −JPBP−1D 0
−P−1D PCJ K −P−1E PFL

0 −LPGP−1E L

 . (17)

The equality (17) can be proved with the use of (21). If
M is given by the right hand side matrix in (17) and M
is given by A = J, B = [−JPBP−1D ,0], C = BT and
D given by the remaining block, then E in (21a) can be
inverted by (21b). Due to the lack of space, full details
are not provided in the paper, nevertheless, (22), (23) and
(19) are repeatedly used in the derivation.

Remark 12. The weight WB given by ∆ = 0 and the cen-
tral block of the matrix in (16a) show that the components

of X that are estimated by both X̂1 and X̂2 are combined
by the full state Covariance Intersection fusion, see (5),
(23) and (19). Further, if ∆ = 0, then the components of

X that are estimated by either X̂1 or X̂2 are updated only
if they are correlated with the common component, i.e. if
PB 6= 0, PG 6= 0. The blocks on the block diagonal above
the main block diagonal of the proposed upper bound �F

are then given by PBWT
B and (I−WB)TPF. That means

that the original blocks PB and PF are multiplied by the
corresponding fusion weight.

In a general case, the matrices T1, T2 need not be
given by (13). Instead of components of X , their linear
combinations can be chosen by T1, T2. Nevertheless, there
are linear combinations that are estimated by both X̂1 and
X̂2 and those estimated by either X̂1 or X̂2. So, considering
a change of coordinates of X , the above proposed insights
do not lack generality.

4.2 Example – partial state estimation

In this example, the dependence of the determinant of the
upper bound �F on W1 and ω1 is inspected.

Suppose that the estimator X̂1 estimates the first compo-
nent of X , that means that T1 = [1, 0], and the estimator

X̂2 estimates full state, T2 = I. Let the upper bounds of
the mean square error of the local estimators be given by

�1 = 0.25, �2 =

[
1 0.5

0.5 1

]
. (18)
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Fig. 2. Contours of the determinant of �F (contours
0.75, 1, . . . , 3 – solid lines, contours 0.625, 0.875 –
dotted lines, the determinant of �F achieves its min-
imum 0.5625, at ωW = ω1 = 1/3). The best choice
of W1(ωW) for given ω1 (thick solid line), the best
choice of ω1 for given W1(ωW) (thick dashed line).

and consider the weight W1 to be given by W1(ωW) =
4ωW/(1 + 3ωW) · [1, 0.5]T, where ωW fulfils 0 ≤ ωW ≤ 1.
Note that the value ωW is the value of ω1 that produces the
weight W1 according to (9a). The proposed upper bound
is given by (10). According to the Covariance Intersection
fusion, the proposed upper bound is given by (9b) for the
given ωW .

This example shows that for fixed weight W1, i.e. for fixed
ωW , there can exist a better upper bound �F than the
value obtained by substituting ω1 by ωW in (9b).

Fig. 2 shows the contours of the upper bound (10) for the
choices of ωW and ω1. If the parameter ω1 is fixed first,
then the value of W1(ωW) that minimises �F is given by
(9a), see (12), that means that the value of ωW is given
by ωW = ω1. However, if the weight W1(ωW) is fixed
first, that means is ωW is fixed, then the value of ω1 that
minimises the determinant of �F is not given by ω1 = ωW ,
see the thick dashed line in Fig. 2. The exceptions are the
limit case ωW = 0 and the case when ωW minimises the
determinant of �F in (9b), i.e. when ωW = 1/3. Note
that in the limit case ωW = 1, the Covariance Intersection
fusion proposes �F with infinite determinant, while the
optimal upper bound has determinant equal to 0.75 in such
a case.

5. SUMMARY

The paper has dealt with unknown cross-correlations of
the estimation errors. It has been shown that it is sufficient
to parametrise the upper bounds of general matrices with
two blocks on the diagonal by a scalar parameter. The up-
per bound of the mean square error matrix of the estimator
given by the linear fusion has been expressed by using the
completion to square. The fusion has been analysed for
full state as well as for partial state estimators. Also, it
has been shown that the upper bounds provided by the
Covariance Intersection fusion need not be optimal for all
admissible values of the free parameters of the fusion rule.
The proposition of better upper bounds without numerical
optimisation is a possible direction of the future research.

APPENDIX

In this section, some useful lemmas are given and the
parametrisation of upper bounds is discussed.

First, consider two invertible matrices A and B. It holds,

A(A + B)−1B = (A−1 + B−1)−1 = B(A + B)−1A. (19)

Second, consider an invertible block matrix M with blocks
A, B, C and D, where A and D are invertible. It is pos-
sible to perform the following two matrix decompositions,

M =

[
A B
C D

]
=

[
I 0

CA−1 I

] [
A 0
0 D−CA−1B

] [
I A−1B
0 I

]
,

(20a)

M =

[
I BD−1

0 I

] [
A−BD−1C 0

0 D

] [
I 0

D−1C I

]
. (20b)

It is easy to observe that M−1 can be written in the
following two equivalent forms,

M−1 =

[
{A−1 + A−1BECA−1} −A−1BE

−ECA−1 E

]
, (21a)

M−1 =

[
F −FBD−1

−D−1CF {D−1 + D−1CFBD−1}

]
, (21b)

where E = (D − CA−1B)−1 and F = (A − BD−1C)−1

is used to shorthand the notation. Comparing the corre-
sponding blocks, the following identities are obtained,

(A−BD−1C)−1 = A−1 + A−1B(D−CA−1B)−1CA−1,
(22)

(A−BD−1C)−1BD−1 = A−1B(D−CA−1B)−1. (23)

Last, let the matrix M be symmetric, C = BT, and the
blocks A, D be positive semidefinite. Decompose A and
D as follows, A = SAST

A, D = SDST
D. Then, it holds

M =

[
A B
BT D

]
=

[
SA 0
0 SD

] [
I Ω

ΩT I

] [
SA 0
0 SD

]T
, (24)

where Ω = S−1A B(ST
B)−1. Using (20a), the middle matrix

in (24) can be decomposed as[
I Ω

ΩT I

]
=

[
I 0

ΩT I

] [
I 0
0 I−ΩTΩ

] [
I Ω
0 I

]
(25)

and it is evident that the matrix M is positive semidefinite
if and only if the eigenvalues of ΩTΩ are not greater than
one. That means that Ω has to be a contraction matrix,
i.e. its singular values must not be greater that one.

In Covariance Intersection, the matrix M with unknown
off-diagonal block B is replaced by an upper bound M that
uses only the diagonal blocks of M. The upper bounds
use the parameter ω, 0 ≤ ω ≤ 1, and scales the diagonal
blocks. So, the matrix M can be decomposed as follows,

M =

[
SA 0
0 SD

] [
1/ω I 0

0 1/(1− ω) I

] [
SA 0
0 SD

]T
. (26)

If a reparametrisation is used, namely γ = (1−ω)/ω, then
0 ≤ γ and the diagonal blocks of the middle matrix on the
right hand side of (26) becomes (1 + γ)I and (1 + 1/γ)I.
Subtracting M from M and using the decompositions (26),
(24), the following decomposition is obtained.

M−M =

[
SA 0
0 SD

] [
γI −Ω
−ΩT 1/γ I

] [
SA 0
0 SD

]T
. (27)
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Applying (20a) on the middle matrix on the right hand
side of (27), it is evident that the difference M −M is a
positive semidefinite matrix.

There arises the question if another diagonal blocks of the
middle matrix on the right hand side of (27) can lead to
a better upper bound M. So, the positive semidefiniteness
of matrix N,

N =

[
E −Ω
−ΩT F

]
, (28)

is inspected for arbitrary symmetric positive definite ma-
trices E, F and all contraction matrices Ω.

Using (20a) again, N is positive semidefinite if and only if
F − ΩTE−1Ω is positive semidefinite. Since the semidef-
initeness is required for all contraction matrices Ω, the
matrix F has to be an upper bound of the identity matrix
scaled by the maximum eigenvalue of E−1, i.e. by the
inverse of the minimum eigenvalue of E. However, if the
minimum upper bound F is chosen, than in order to
provide as small N as possible, the matrix E should be
replaced by the identity matrix scaled by the minimum
eigenvalue of E. So, the answer is negative, there is no
better upper bound M than the one given by (26).
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