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Abstract: This paper derives an elementary mathematical model for the movement of the shank
around the knee joint. The resulting equation of motion is a nonlinear differential equation. The
control purpose is to regulate the angle of the shank by manipulating the torque applied to
the knee joint. This model has applications in dynamical knee rigs and active orthoses. As the
system is nonlinear with a rather larger range of motion, a nonlinear predictive controller is
designed. The implemented control strategy is NEPSAC (Nonlinear Extended Prediction Self-
Adaptive Control). The effect of the filter parameter and the prediction horizon in the NEPSAC
algorithm are investigated using MATLAB/SIMULINK. The results show that for both the filter
parameter and the prediction horizon an optimal value can be chosen as a trade-off between
robustness and fastness of the response.

1. INTRODUCTION

The knee joint is the biggest and most complicated joint
in the entire human body. As a result, understanding its
biomechanics has been for decades the focus of research
(Maquet [1984], Pitkin [2010]). In order to develop new
treatments for injured knee joints or prevent future in-
juries, insight into the biomechanics of the knee joint is of
crucial importance.

As the knee joint is the most complicated joint in the
human body, it is also most exposed to injuries. There are
two major reasons for knee injuries. Firstly, statistics show
that knee injuries account for 15-50 % of all sports injuries
(De Loës [2000]). Secondly, demographics show that there
is a considerable aging in the population which coincides
with a high number of knee injuries resulting from wear
and tear. Two major courses of treatment for knee injuries
are: total knee replacement (TKR) or active orthosis.

The first course of treatment is a TKR which will even-
tually be unavoidable for many patients with severe knee
injuries. Consequently, the amount of TKRs performed in
the European Union (EU) has increased more than 25%
in the last five years to 109 TKR surgeries per 100000
population in 2012 (OECD [2012]). In the EU, a TKR
surgery has an average cost of 9000 Euro per procedure
(Surgery Price [2013]). An important device to evaluate
the performance of TKR, develop new surgical techniques
and gain insight in knee abnormalities, is a dynamical
knee rig (Shaw [1973], Walker [1997], Van Haver [2013],
Miller [1998], Luyckx [2009]). A dynamical knee rig is
designed to mimic the natural movement of the knee
joint and to impose this movement to post-mortem knee
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joints or mechanical knee joints. The knee rig imposes a
squat movement of the knee as occurs in daily movements
such as riding a bicycle, climbing chairs, sitting down or
rising from a chair (Zavatsky [1997]). However, nonlineari-
ties, parameter uncertainties, modeling errors and external
disturbances, imply a necessity for a robust closed-loop
controller in order to guarantee natural movement of the
knee joint.

A second course of treatment are active orthoses (Saber
[2013]). Active orthoses help patients living with knee
injuries regain natural movement by assisting and empow-
ering the human movement. Orthoses include actuators
that produce the joint torques needed both to compensate
gravity and loading forces and to recreate natural human
movements. In order to apply the correct torques to the
knee joint, closed loop control is again necessary.

Current control strategies include visual control or control
of the quadriceps force for the dynamical knee rig Kirsch
[1998]. Active orthoses are currently controlled by PI, PD
or PID controllers (Nikitczuk [2006], Pratt [2004], Costa
[2006]) but also through measurements of electromyogram
(EMG) signals (Fleischer [2008]).

This paper describes an elementary model of the move-
ment of the lower part of the leg, i.e. the shank, around
the knee joint. The movement of the shank around the
knee joint is defined by a nonlinear equation of motion. To
control the angle of the shank during the movement, the
authors choose to design a nonlinear predictive controller
(De Keyser [2003]).

This paper is structured as follows: the next section gives
the derivation of the theoretical and mathematical model
of the movement of the shank around the knee joint.
Section three explains the applied nonlinear predictive
controller i.e. NEPSAC. The fourth section gives simu-
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lations and results. A summary of this paper is given in a
conclusion section.

2. MODELING

In order to design a control strategy for the shank move-
ment around the knee joint, a 2D mathematical model
is necessary to derive the nonlinear equation of motion
of the system, i.e. only movement in the sagittal plane is
considered. Figure 1 shows the biomechanical model of the
movement of the shank when the upper leg is fixed in a
horizontal position i.e. the patient is laying in a supine
position (on the back).

A sketch of an active orthosis for the human leg is
shown in figure 2. This system is related to the derived
mathematical model.

The biomechanical model is made up by two segments
representing the upper part of the leg i.e. the femur and the
lower part of the leg i.e. the shank (combination of tibia
and fibula). A revolute joint connects both segments. The
input of the biomechanical model is the applied torque T
on the knee joint. In this model the range of motion of the
angle θ is limited to 90◦ i.e. the shank can move from a
horizontal position to a vertical position (for a larger range
of motion, the current model needs to be extended which
is the focus of future work). The value θ = 0 corresponds
with the position in the middle of this range of motion, i.e.
a position at 45◦ from the vertical line. Therefore θ = 45◦

𝜃 

𝐿𝑇 

𝑚𝑇𝑔  

𝑟𝑇 

𝑇 

0° 

45° 

Fig. 1. Biomechanical model of the shank movement (see
text for nomenclature).

UPPER LEG 

Fig. 2. Sketch of human system related to the model.

corresponds to full extension of the knee joint. The angle
θ is the output of the described system.

This model contains the following model parameters:

• LT which represents the length of the shank (0.435
m),

• rT which is the distance between center of mass of
the shank and the knee joint axis (0.188 m),

• mT which is the mass of the shank (3.72 kg),
• g which is the gravitational constant (9.81 N/kg).

Values for these model parameters (given in SI units) can
be found in literature (Winter [2009]).

To derive the equation of motion for this model, we observe
all of the torques around the knee joint:

• a torque caused by gravity,
• a torque caused by the inertia of the shank,
• a torque due to viscous damping,
• a torque as a result of the joint stiffness,
• the applied torque T (t).

Summing all these torques and taking into account their
direction we get the following equation:

IT
d2θ(t)

dt2
+B

dθ(t)

dt
+Kθ(t) +mT grT sin(θ(t)) = T (t)

(1)
with:

• IT the inertia of the shank around the knee joint,
• B the viscous damping coefficient of the knee joint

and
• K the knee joint stiffness.

The value for the inertia of the shank can be found in
Winter [2009] as 0.4419 kgm2. The values for the viscous
damping coefficient and the joint stiffness were determined
in Zhang [1998] (K = 42.2102 Nm/rad and B = 6.7453
Nms/rad).

The obtained equation of motion for this model is a second
order nonlinear equation:

0.44
d2θ(t)

dt2
+ 6.75

dθ(t)

dt
+ 42.21θ(t) + 6.86 sin(θ(t)) = T (t)

(2)

There are different possibilities to deal with nonlinearities
in models. Linearization is a possible solution. Here the
nonlinearities are approximated by linear equivalents. This
is possible if the dynamics of the system stay in a narrow
range around an operating point. However, for this system
the range of motion is rather large i.e. 90◦. Therefore,
linearization is not the appropriate method. Another pos-
sibility to deal with nonlinearities in models is to design
a nonlinear controller. In the next section, a nonlinear
predictive controller will be designed for this model.

3. NONLINEAR PREDICTIVE CONTROL

The control purpose is to regulate the output angle θ by
manipulating the torque T applied to the knee joint.

The authors choose to design a nonlinear predictive con-
troller called NEPSAC (De Keyser [2003]). NEPSAC is an
acronym for ‘Nonlinear Extended Prediction Self-Adaptive
Control’. In this methodology, a process model is used to
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Fig. 3. Block diagram of NEPSAC strategy.

calculate a prediction of the future system output and
for optimizing future control actions. The difficulty to
this method is that performance of the controller depends
highly on the quality of the available mathematical process
model.

A block scheme of the NEPSAC algorithm is shown in
figure 3. In this scheme we can see that at each current
time instant the nonlinear model is used to predict the
future outputs. These outputs are predicted over a certain
prediction horizon N2. We can see that the model uses
information from past inputs and outputs and the future
control scenario to predict the future outputs.

Over the prediction horizon N2, a reference trajectory is
defined which goes to the setpoint in a way defined by the
prefilter.

An optimizer is used to calculate the control output
vector. Optimization is done by minimizing a certain cost
function.

3.1 Process Model

The process is modeled as:

y(t) = x(t) + n(t) (3)

with y(t) the process output, x(t) the model output and
n(t) the process/model disturbance. The disturbance n(t)
can be modeled by a colored noise signal:

n(t) =
C(q−1)

D(q−1)
e(t) (4)

with e(t) a white noise signal and C(q−1) and D(q−1) are
monic polynomials in the shift operator q.

The model output x(t) represents the effect of the process
input u(t), i.e. the control output, on the process output
y(t). It is calculated using the following equation:

x(t) = f [x(t− 1), x(t− 2), . . . ;u(t− 1), u(t− 2) . . . ] (5)

where f [.] is the known nonlinear process model. Using
this equation, also the future model outputs x(t+k|t) can
be calculated for k = 1..N2.

In a next step the disturbance at the current time t is
calculated as:

n(t) = y(t)− x(t) (6)
Afterwards, the future disturbances are predicted at time
instant t using a filtered disturbance signal nf (t):

n(t+ k|t) =
C(q−1)

D(q−1)
nf (t+ k|t) k = 1..N2 (7)

with nf (t+ k|t) = 0, k = 1..N2 and nf (t) = D(q−1)
C(q−1)n(t).

3.2 The predictive controller

The future response can be expressed as:

y(t+k|t) = ybase(t+k|t)+yopt(t+k|t) k = 1..N2 (8)

The first component ybase is the effect of the future
disturbances, the past control and the future control
scenario. It is calculated as follows:

ybase(t+ k|t) = x(t+ k|t) + n(t+ k|t) k = 1..N2 (9)

The second component yopt is the effect of optimizing the
future control actions using a cost function. The future
control scenario is structured using a control horizon Nu

after which the control strategy remains constant. It can
be calculated as: yopt(t+N1|t)
yopt(t+N1 + 1|t)
. . .
yopt(t+N2|t)

 =

 gN1−Nu+1

gN1−Nu+2

. . .
gN2−Nu+1


 δu(t|t)
δu(t+ 1|t)
. . .
δu(t−Nu − 1|t)


(10)

or in matrix form:

Yopt = G.U (11)

with N1..N2 the coincidence horizon and the elements of
the G-matrix are the coefficients of the unit step response
of the system. The optimal control output U∗ can then be
calculated as:

U∗ = (GTG)−1GT(R−Ybase) (12)

with R and Ybase the matrix notations of respectively the
reference trajectory and the signals ybase(t + k|t). U∗ is
the value that minimizes the following cost function:

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9267



N2∑
k=N1

[r(t+ k|t)− y(t+ k|t)]2 (13)

where r(.|.) represents the reference trajectory.

In the NEPSAC algorithm an iteration step is necessary to
find the absolute optimal control action U∗ that minimizes
the optimal future response yopt (value close to zero). This
means that the G-matrix has to be calculated for every
iteration (unlike EPSAC where the G-matrix is calculated
only once).

4. SIMULATIONS AND RESULTS

We have designed the NEPSAC controller for the sys-
tem of the knee and simulated the response in MAT-
LAB/SIMULINK. The SIMULINK scheme for the non-
linear model is shown in figure 4.

Fig. 4. SIMULINK scheme of the nonlinear model.

For implementation, the parameters of the controller are:

• the prediction horizon N2,
• N1 is taken to be 1 as the system does not have a

time delay,
• the control horizon Nu which is taken to be 1 (default

value),
• filter parameter α.

In the simulations, we looked at the effect of the prediction
horizon and the filter parameter α.

The setpoint signal for all simulations is the block signal
shown in figure 5.

4.1 Effect of filter parameter

This filter parameter α is used in the prefilter between the
setpoint w(t+ k|t) and the reference trajectory r(t+ k|t):
r(t+k|t) = αr(t+k−1|t) + (1−α)w(t+k|t), k = 1..N2

(14)
with initialization r(t|t) = y(t). To investigate the effect
of α, we fixed the prediction horizon N2 to 5 and changed
the values of α between 0 and 1. A magnification of the
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Fig. 5. Setpoint signal.

4 4.5 5 5.5
−5

0

5

10

15

Time [s]
P

ro
ce

ss
 O

ut
pu

t
 

 

Setpoint
alpha=0.1
alpha=0.7
alpha=0.9

4 4.5 5 5.5
−1000

0

1000

2000

Time [s]

C
on

tr
ol

 E
ffo

rt

Fig. 6. The effect of the filter parameter α (magnification).

results is shown in figure 6. The complete figure is shown
in figure 7.

When α is taken to be zero the reference trajectory will be
a pure step which will result in a high peak in the control
output. Therefore, we can see that the control effort has
high peaks for low values of α. However, by changing the
value of α between 0 and 1, the reference trajectory will go
smoother to the desired set point and result in a normal
control output. But higher values of α result in a slower
response as can be seen in figure 7. Therefore a trade-off
between control effort and fast response is necessary. We
desire an output response which is as fast as possible with
a reasonable control effort. Therefore, for next simulations,
the value of α is set to 0.7.

4.2 Effect of prediction horizon

The prediction horizon N2 is related to the system’s time
constant and is usually taken between N1 +1 and N1 +10.
We varied therefore the value of N2 between 2 and 11. The
result is shown in figure 8. A magnification of figure 8 is
shown in figure 9.

Figure 9 shows that for lower values of N2 the output
reaches the setpoint faster, while the response for higher
values of N2 is longer. Notice in the control effort, the
sharper peaks when N2 has a lower value. Therefore, we
need a trade-off between a fast response and a normal
control effort. We desire an output response which is as fast
as possible with a reasonable control effort. We conclude
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Fig. 7. The effect of the filter parameter α.
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Fig. 8. The effect of the prediction horizon N2.

that a value of N2 = 5 will result in a controller that is
still fast enough and has a high robustness.

Notice in figures 7 and 8 that different values of α and N2

will result in responses ranging from underdamped to over-
damped systems. As an overshoot is highly undesirable in
the controller knee joint, the underdamped systems have to
be avoided. By taking into account the physical limitations
of the knee joint when selecting a reference signal, this
highly undesirable effect can be avoided.

5. CONCLUSION

In this research a nonlinear model for the movement of
the shank around the knee joint is derived. The control
purpose is to regulate the output angle θ by manipulating
the torque T applied to the knee joint. In order to deal
with the nonlinearity in the model a nonlinear predictive
controller is applied to the system as the range of motion
is too large to apply linearization.

The nonlinear predictive control strategy applied in this
paper is NEPSAC (Nonlinear Extended Prediction Self-
Adaptive Control). To design the controller, the filter pa-
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rameter and the prediction horizon need to be determined.
The effect of both parameters on the results are discussed.
It can be concluded that for both the filter parameter and
the prediction horizon an optimal value can be found as
trade-off between normal control effort without high peaks
and fastness of the response.
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Fig. 9. The effect of the prediction horizon N2 (magnifica-
tion).
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