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Abstract: This paper deals with the tracking problem for a class of uncertain nonlinear systems subjected 
to actuator saturation constraint. Despite most of proposed control schemes for saturated systems which 
employed linear in parameter neural networks (LPNNs), in the present work nonlinear in parameter 
neural network (NLPNN) is introduced to support global approximation property. To compensate the 
effect of the input saturation constraint an auxiliary system is introduced and the error dynamics are 
modified based on the auxiliary states. Then, learning rules are achieved based on the back propagation 
(BP) algorithm and by adding two robustifying terms to the standard BP learning rules the stability of the 
overall system is ensured via Lyapunov direct method. Finally simulations performed on a ’’generalized 
pendulum’’ nonlinear system to illustrate the effectiveness of the proposed tracking control scheme. 

Keywords: Adaptive tracking control, Back propagation algorithm, Input saturation, Neural networks, 
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1. INTRODUCTION 

Feedback linearization technique is known to be effective in 
designing controller for nonlinear systems. In standard form, 
it is based on the cancellation of known nonlinearities 
(Slotine, 1991). In order to handle uncertainty, robust 
feedback linearization schemes have been developed 
(Kanellakopoulos et al., 1991). However a drawback with the 
given schemes is that uncertainties are assumed to be 
bounded with known or partially known bounds. Uncertainty 
with known or partially known bounds is a restrictive 
constraint which may not be satisfied for all practical 
systems, therefore relaxing this condition makes control of 
the system challenging. 

Neural network (NN) capability in approximating uncertain 
nonlinear functions makes it a valuable tool in control of 
systems with high degree of nonlinearities. Different control 
schemes have been introduced by incorporating feedback 
linearization approach and NN universal approximation 
capabilities (Goa and Selmic, 2004; Yuan et al., 2011). 
Saturation is one of the most common actuator nonlinearities 
which has a theoretical and practical significant aspects. 
Adaptive controllers which are designed without considering 
saturation constraint may cause loosing good performance, 
damaging actuators and instability of the system. Hence, 
guaranteeing that control signal remains in the desired range 
while simultaneously achieving good tracking performance 
and ensuring stability of the close loop system is a desired 
goal to be achieved. One approach to compensate saturation 

is adjustment of command or feedback signal. In Goa and 
Selmic (2004), Li et al., (2011b), Wen and Ren (2012) 
authors used LPNN and introduced an approach to control 
uncertain saturated systems. In Kiirason and Annaswamy 
(1994) an auxiliary system and modified tracking error are 
used in order to compensate saturation constraint in linear 
time invariant (LTI) systems. In Li et al., (2011a) authors 
used auxiliary system and backstepping method to design a 
LPNN based adaptive controller for nonlinear saturated 
systems.  

In Chen et al., (2011), Kim and Ha (2000), Goa and Selmic, 
(2004) authors assumed that nonlinear functions are 
completely or partially known and also bound of nonlinear 
functions is available. In the present approach we have 
relaxed these restrictive assumptions. Hence, the proposed 
approach is applicable to a large class of nonlinear systems. 
In order to use global approximation properties of NN, unlike 
most of the previous approaches in the literatures on the 
saturated systems, we will use NLPNN in the designing 
procedure which makes stability analysis more complicated. 
By employing NLPNN our proposed approach is applicable 
to the systems with high degree of uncertainties. It has been 
proven that BP algorithm is a valuable learning rule which is 
applicable to the different engineering problems. Therefore, 
in this paper learning rules are derived based on the standard 
BP algorithm and by adding two robustifying terms to the 
standard BP algorithm, the stability analysis is presented via 
Lyapunov direct method. 
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Some of the prominent characteristics of the proposed 
approach lies in (a) NLPNN is employed in designing 
procedure (b) uniformly ultimately boundedness (UUB) of all 
signals is guaranteed using Lyapunov direct method (c) due 
to the description of the system and employing NLPNN, 
proposed scheme is applicable to a large class of nonlinear 
systems (d) tracking problem of nonlinear systems has been 
solved using BP learning algorithm (e) there is no need to 
have a lot of priori knowledge about uncertain nonlinear 
functions. 

The rest of the paper is organized as follows: problem 
description and some preliminaries are introduced in Section 
2, adaptive NLPNN-based controller is presented in Section 
3, and stability analysis is presented in Section 4. To illustrate 
effectiveness of the proposed scheme, simulations performed 
on the generalize pendulum in Section 5. Section 6 contains 
conclusion.  

2. PROBLEM FORMULATION AND SOME 
PRELIMINARIES 

2.1  System description 

Consider a class of uncertain saturated nonlinear systems in 
the following form: 

 ( ) ( )sat( )ox f x g x u d= + +   (1) 

where 1nx R ×∈  is the state vector, 1 1( ) : n n
of x R R× ×→  and 

1 1( ) : n ng x R R× ×→  are unknown nonlinear functions, 
1nd R ×∈  is the unknown but bounded disturbance vector that 

d d≤  (Wen et al., 2011; Yuan et al., 2011; Li et al., 2011b) 
and sat( )u  denotes the plant input subjected to saturation 
nonlinearities. Throughout this paper, the following 
assumptions are made: 

Assumption 1. The plant input ( )sat u  satisfies saturation 
nonlinearity expressed by 

 
max max

min max

min min

( )
sat( ( )) ( ) ( )

( )

u u t u
u t mu t u u t u

u u t u

>
= ≤ ≤
 <

  (2) 

where maxu  and minu  are known bounds of saturation.  

Assumption 2 (Chen et al., 2011). ( )g x  is an unknown 
nonlinear function, and there exists unknown constant g  
such that ( )g x g≤ .  

Assumption 3 (Li et al., 2011a,b; Wen 2011). The desired 
trajectory vector dx  is assumed to be bounded. 

Remark 1. Assumption 1 is common in the literatures. In 
Chen et al. (2011), Kim and Ha (2000), ( )g x  is assumed 
partially known and its bound is also supposed to be known. 
In Li et al. (2011b), it is assumed that ( )g x  has an unknown 

constant upper and lower bounds or it is assumed that ( )g x  
is completely known (Goa and Selmic, 2004). 

The control objective is to design a NN-based controller for 
system (1) such that the control signal respects saturation 
constraints and all the states track the desired trajectories in 
the presence of uncertainties and unknown bounded 
disturbances. 

2.2  Neural network 

The motivation of using NN in this paper is to take 
advantages of NN global approximation capabilities to handle 
nonlinearities and identify a feedback linearization controller. 
Based on the universal approximation theorem a wide range 
of nonlinear functions can be estimated by a NN with 
sufficient neurons, at least one hidden layer and a linear 
combination of sigmoidal functions, as follows: 

 ( ) ( ) ( )σ ε= +T
NN NN NNf x W Vx x   (3) 

where W and V  are the output and hidden layers ideal 
weights, respectively, NNx  is the input vector and ( )NNxε  is 
the NN approximation error. The NN approximation error is 
bounded on a compact set S by ( )NNxε ε≤ . (.)σ  is the 
activation function of hidden layer that is usually considered 
sigmoidal function (Cybenko, 1989). 

2

2( ) 1
1

σ −= − +
+ i NNi NN V xVx

e
 

where iV  is the ith row of V  and (.)iσ  is the ith element of 
(.)σ . Hence the nonlinear function ( )NNf x  can be 

approximated by ˆ ˆ ˆ( ) ( )T
NN NNf x W Vxσ= . Note that it is 

assumed that ideal weights are not known a priori, NN 
approximation error is bounded and first and second layer 
weights are tunable. 

3. ADAPTIVE NLPNN-BASED CONTROLLER 

By adding Ax  to and subtracting it from (1), we obtain: 

 ( ) ( )sat( )x Ax f x g x u d= + + +   (4) 

where ( ) ( )of x f x Ax= −  while A  is a Hurwitz matrix. If the 
nonlinear functions ( )f x  and ( )g x  were known and there 
were no disturbances and saturation constraint, then the 
feedback linearization based controller, defined by 

1( )( ( ) ( )) ( ( ) )T T
d du g x g x g x f x x Ax−= − + − , was able to 

linearize (4) and make the states to track desired trajectories. 

3.1  Nonlinear in Parameter Neural Network (NLPNN) 

Since the nonlinear functions ( )f x  and ( )g x  are unknown, a 
two-layer NN given in (3) is employed for nonlinear control 
signal: 
 ( ) ( )NN NNu W Vx xσ ε= − −   (5) 
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The implemented NN is an approximation of the ideal NN 
and can be expressed as follows  

 ˆ ˆˆ ( )σ= − NNu W Vx   (6) 

In order to take full advantages of global approximation 
theory NLPNN is considered, where ˆ ,W W W= −  ˆV V V= −  
denote weights approximation errors. 

3.2  Saturation compensation 

To remove the effect of the input saturation constraint the 
following auxiliary system is proposed 

 , (0) 0K h uς ς ς= + ∆ =   (7) 

where sat( )u u u∆ = −  is the control signal that cannot be 
implemented by the actuator, 1nRς ×∈  is the auxiliary state 
vector, K  is  Hurwitz matrix and h  is considered as a 
constant vector. It is clear that ( )tς  is convolution of an 
exponential term with ( )u t∆  and converges to zero if and 
only if ( )u t∆  converges to zero. In other words, ς  denotes a 
filtered version of u∆  and remains zero as long as 0u∆ = , 
and once 0u∆ ≠  auxiliary states becomes nonzero. Hence, 
by modifying tracking error as ( ) ς= − − de q x x  (where q  is 
a constant which let us to give different importance to the 
tracking error), we can remove saturation constraint and 
rewrite system (4) as follows: 

 ( ) ( )= + + +x Ax f x g x u d   (8) 

Note that since we do not have any knowledge about u∆  , we 
did not modify error based on u∆ . 

4. STABILITY ANALYSIS 

In this section BP algorithm learning rule, which seems the 
most popular learning rule for control problems, is used in 
designing procedure of NLPNN-based controller. As we 
know the most important issue in the control problems is to 
ensure the stability of the system. Most of the previous 
approaches using BP algorithm for control suffers from lack 
of mathematical stability analysis (e.g. Talebi et al., 2000). 
Therefore, we will present a novel learning rule based on BP 
algorithm for tracking problem then the stability of the 
overall system is proved in the presence of saturation and 
external disturbances based on Lyapunov direct method. 

Theorem 1. Consider the uncertain nonlinear system (1) with 
input constraint (2) and auxiliary system (7). Given that full 
state measurement is available. Controller given in (6) makes 
the states to track the desired trajectories and keeps all the 
signals of the closed loop system UUB (Uniformly 
Ultimately Bounded) under the NLPNN weights learning 
rules (9), (10) and Assumptions 1-3. 

 1 1 2
ˆ ˆ ˆ

ˆη ρ ρ ς∂
= − − −

∂


JW e W W
W

  (9) 

 2 3 4
ˆ ˆ ˆ

ˆη ρ ρ ς∂
= − − −

∂


JV e V V
V

  (10) 

where ηi , 1, 2=i  are positive learning rate parameters, ρi , 

1 4≤ ≤i  are small positive design parameters and 1
2

=  

TJ e e  

is the cost function which should be minimized. 

Moreover with appropriate choice of parameters, tracking 
error and NN weights error can be made arbitrarily small 
while control signal will respect saturation constraint. 

Proof: 

Without loss of generality, let us assume , 1q m =  and derive 

ˆ
J
W

∂
∂

, ˆ
J
V

∂
∂

 separately by employing chain rule as follows 

 
ˆ ˆ

ˆ ˆ ˆˆ ˆ
∂ ∂ ∂ ∂ ∂ ∂

= =
∂ ∂ ∂∂ ∂ ∂

 





TJ J e u e ue
e u uW W W

  (11) 

 
ˆˆ ˆ( )

ˆ ˆ ˆ ˆˆ ˆ( ) ( )
∂ ∂ ∂ ∂ ∂ ∂ ∂

= =
∂ ∂ ∂∂ ∂ ∂ ∂

  

 



 

TJ J e u Ve e ue e
e u uV Ve V Ve

  (12) 

In order to compute ( )
ˆ ˆ ˆ ˆ ˆ

dx xe x
u u u u u

ς ς∂ −∂ ∂ ∂ ∂
= − = −

∂ ∂ ∂ ∂ ∂


, let us 

consider static approximation ( 0x = , 0ς = ) (Ye, 2008; 
Abdollahi et al., 2006). Using this approximation and 

considering (7), (8) yields 1 1
.1( ) 1

ˆ n
x A g x A
u

− −∂
≈ − ≈ −

∂
 and 

1

ˆ
K h u

u
ς −∂

== − ∆
∂

. 

where u∆  is defined as follows 

max min

min max

1
0

u u or u u
u

u u u
> <

∆ =  ≤ ≤
 

Therefore, by using described static approximation, 
considering (11), (12) and performing some manipulations we 
have 

 1 1
.1

ˆ( 1 )( ( ))ˆ
T T

n
J e A K h u Ve
W

σ− −∂
= − + ∆ −

∂
    (13) 

 1 1
.1

ˆ( 1 )( ( ))ˆ
TT T

n
J e A K h u W I e
V

− −∂  = − + ∆ − − Λ ∂
    (14) 

where Λ  denotes 2ˆ( ( ) )idiag Veσ  .  

By substituting (13), (14) in to the (9), (10) learning rules will 
be as follows: 

 
1 1

1 .1

1 2

ˆ ˆ( 1 )( ( ))
ˆ ˆ

T T
nW e A K h u Ve

e W W

η σ

ρ ρ ς

− −= − − + ∆ −

− −



 

  (15) 

 
1 1

2 .1

3 4

ˆ ˆ( 1 )( ( ))

ˆ ˆ

TT T
nV e A K h u W I e

e V V

η

ρ ρ ς

− − = − − + ∆ − − Λ 

− −



 

  (16) 
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Now let e  is defined as the tracking error vector, taking 
derivative of e  and substituting (8) in it gives 

 ˆ( ) ( )= − = + + + −   d de x x Ax f x g x u d x   (17) 

Further, since u  puts the system in the feedback linearization 
form and makes the states to track desired trajectories, we 
have ( ) ( ) d df x g x u x Ax= − + − . Considering this fact and 
substituting (5) and (6) in to (17) leads to 

 ˆ( )( ( ) ( ))e Ae g x W Ve a t dσ= + + +

    (18) 

where ˆW W W= −  is the NN weights error and 
ˆ( ) ( ( ) ( ))a t W Ve Veσ σ ε= − +  .  

Lemma 1. For a Hurwitz matrix A  and a symmetric positive 
definite matrix Q  there exists a positive definite matrix P  
such that satisfies Lyapunov equation: 

TA P PA Q+ = −  
In order to guarantee stability of the overall system the 
following Lyapunov candidate is proposed 

 1
1 2 1

1 1 1 ( )
2 2 2

ς ς ρ −= + +  

T T TL e Pe P tr W W   (19) 

where 1P  and 2P  are positive definite matrices such that 
triples of A , 1P , 1Q  and K , 2P , 2Q  satisfy Lemma 1. 
Throughout the proof the following equalities, inequalities and 
facts are used: 

sup( (.)) mσ σ= , sup( ) ,MW W= , ˆ ,W W W= −   
2

min, ( ),Te e e e Qe e Qς ς λ= − ≤ + − ≤ −   

( ( )) ( ).T
Mtr W W W W W W− ≤ −   

 
Fact 1. Since ideal weights, (.)σ  and NN approximation error 
ε  are bounded, there exists an unknown constant a  such that 

( )a t a≤ . 

Fact 2. Since ˆ( )i Veσ   is bounded, regardless of boundedness 

of V̂ , 2ˆ( ( ) )idiag VeσΛ =   is always bounded. 

Fact 3. Since W  are ideal fixed weights hence ˆW W= − 

 . 

Differentiating (19) along the system trajectory, yields 

1
1 1 2 2 1

1 1 1 1 ( )
2 2 2 2

ς ς ς ς ρ −= + + + + 

  

  

T T T T TL e Pe e Pe P P tr W W  

By using (6), (7), (15), (18) and employing Lemma 1 and Fact 
3 we have 

1 1

2 2

1 1 1
1 1 .1

1 2

1 ˆ( )( ( ) ( ))
2

1 ˆ ˆ( ( ) sat( ))
2

ˆ( ( ( 1 )( ( ))
ˆ ˆ ))

T T

T T

T T T
n

L e Q e e P g x W Ve a t d

Q P h W Ve u

tr W e A K h u Ve

e W W

σ

ς ς ς σ

ρ η σ

ρ ρ ς

− − −

 = − + + + 

− + − − +

− − + ∆

+ +

 







 

 

By selecting designing parameters ρi , 1, 2=i  such that 

1 2ρ ρ=  and using Fact 1, Assumption 2 and the described 
inequalities we rewrite the above equation as follows 

 
min 1

min 2

1. ( ) ( )
2
1. ( ) ( )
2

λ

ς λ ς

 ≤ − + − +  
 + − + − +  

  

 

L e Q e W C W B

Q W E W F
  (20) 

where  

1

1 1 1
1 1 1 .1

1 1 1
2 1 1 .1

2 min max

( . ),

1 ,

1 ,

( ), max{ , }.

m m n M

m m n M

M m

B P g a d

C P g A K h u W

E P h A K h u W

F P h W u u u u

σ η ρ σ

σ η ρ σ

σ

− − −

− − −

= +

= + − + ∆ +

= + + − + ∆ +

= + =

 

By completing squares in (20) we have 

 

2
2

min 1

2
2

min 2

1. ( ) ( )
2 2 4

1. ( ) ( )
2 2 4

λ

ς λ ς

 
≤ − − − + + 

 
 

+ − − − + + 
 

 



C CL e Q e W B

E EQ W F
  (21) 

Since min
1 ( ) .
2

λ− iQ  is always negative, we neglect this term 

and conclude that L  is guaranteed to be negative as long as  

 
2 2

max ,
2 4 4 2

  > + + + + = 
  



C C E EW B F c   (22) 

So far we conclude that if norm of NN weights error increase 
then L  is guaranteed to be negative. In order to show that if 
norm of e  or ς  is also increased then L  will become 
negative, let us rewrite (21) as follows 

2 2
min 1 min 2

2 2

1 1( ) ( )
2 2

( ) ( )
4 4

λ λ ς

ς

≤ − −

+ + + +

L Q e Q

C EB e F
 

In other words the square terms in (21) are eliminated. By 
completing squares, L  is guaranteed to be negative when 

 

2 2 2

2 2min 2

min 1 min 1 min 1 min 2

( )4 4 4( ) ( )
( ) ( ) ( ) ( )

C C EB B FQe a
Q Q Q Q

λ
λ λ λ λ

+ + +
> + + =  (23) 

or 

 

2 2 2

2 2min 1

min 2 min 2 min 1 min 2

( )4 4 4( ) ( )
( ) ( ) ( ) ( )

E C EF B FQ b
Q Q Q Q

λς
λ λ λ λ

+ + +
> + + =  (24) 
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Therefore if e  or ς  or W  become greater than a, b, c 

respectively, then L  is guaranteed to become negative. In 
other words, they are uniformly ultimately bounded (UUB). 
It should be mentioned that by properly choosing parameters 
we are able to make the bounds arbitrary small. 

To complete the proof we should guarantee that V  is also 
bounded. Since V  is ideal hidden layer weight, hence it is 

fixed and we have ˆV V= − 

 . By employing (16) we have 

 3 4
ˆ ˆ ˆ( , , , , (.), ) ( )oV V h e A K h W e Vσ ρ ρ ς= − = + +





   (25) 

where 1 1
2 .1

ˆ(.) ( 1 )( ( ))
TT T

o nh e A K h u W I eη − − = − + ∆ − − Λ   . 

We have proved boundedness of W  and since W  are ideal 
bounded weights, hence Ŵ  is ensured to be bounded. 
According to (23), (24) e  and ς  are also bounded therefore 

e  is guaranteed to be bounded and since A , K  are Hurwitz 
matrices, we conclude that (.)oh  is always bounded . Now 
we rewrite (25) in the following form 

 3 4 3 4( ) (. )( )oV e V h e Vρ ρ ς ρ ρ ς= − + + + +

    (26) 

Based on the boundedness of 3 4(.) ( )oh e Vρ ρ ς+ +  and 

positive definiteness of 3 4( )eρ ρ ς+ , we can consider (26) 
as a linear system with bounded input, that guarantees 
boundedness of V . This completes the proof. 

5.  SIMULATION RESULTS 

To verify the effectiveness of the proposed tracking 
controller scheme for uncertain nonlinear systems with input 
constraint, the following ’’general pendulum’’ system is 
considered. General pendulum is a nonlinear system which is 
a benchmark to show effectiveness of different control 
schemes for saturated systems (Goa and Selmic 2004; Labiod 
and Guerra 2008). 

1 2
3

2 1 25 2 sat( )

=

= − − +





x x
x x x u

 

 The desired trajectories are taken as 1 Sin( )dx t=  and 

2 Cos( )dx t= . Hidden and output layer of the NN are 
assumed to have 15 and 1 neurons, respectively and its 
weights are initialized randomly. Initial states and learning 
rates are considered [ ](0) 0.5 0.5 Tx = , 0.1η =i , 1, 2=i , 
respectively. Other parameters are chosen as below: 

[ ]5 , 0.3 , 1.7 1.7 ,
0.001, 1 4, 100

T

i

A I K I h
i qρ

= − = − =

= ≤ ≤ =
 

Hence for comparisons two controllers are designed based on 
the proposed scheme (without a priori knowledge about 

nonlinear functions) and standard feedback linearization 
approach (we assumed ( )f x , ( )g x  are completely known). 
Figs. 1 and 2, depict that proposed scheme has a better 
tracking performance and desired trajectories are tracked 
rapidly. Moreover according to Fig. 3, it is obvious that by 
selecting parameters properly, proposed scheme can easily 
compensate saturation.  

Note that comparing the results with the ones reported in Goa 
and Selmic (2004), show that a better tracking is achieved by 
the proposed approach; however the control signal was 
assumed smaller than what they have considered and also it 
should be mentioned that compare to their work a lot of 
assumptions such as availability of ( )g x  and knowing 
approximation of ( )f x  are relaxed.  

It should be mentioned that by reducing bounds on the 
control signal the proposed scheme compensates saturation 
well, while tracking error slightly increased. In these cases 
existence of tracking error in the simulations is not a 
drawback of our scheme, because in the case of perfect 
tracking always a control signal with amplitude of greater 
than 4 is required. Therefore, no control scheme is able to 
guarantee perfect tracking with such amplitude.  

 
Fig. 1. Tracking errors with feedback linearization (dotted) 
and with proposed scheme (solid), 4u ≤ . 

 
Fig. 2. Tracking errors with feedback linearization (dotted) 
and with proposed scheme (solid), 4u ≤ . 

 
Fig. 3. Control signal with proposed scheme, 4u ≤ . 
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Fig. 4. Control signal with feedback linearization, 4u ≤ . 

6. CONCLUSIONS 

This paper deals with the tracking problem for uncertain 
nonlinear systems subjected to input saturation and external 
disturbances. To compensate saturation an auxiliary system 
has been designed and error has been modified based on 
auxiliary states. By utilizing feedback linearization approach, 
nonlinear in parameter neural networks, BP algorithm, a 
novel adaptive controller is designed to achieve desired 
trajectories. UUB of all signals has been ensured by 
decomposing the closed loop system in to two subsystems 
and using Lyapunov direct method and bounds of tracking 
error is given in terms of design parameters. Finally to 
illustrate effectiveness of the proposed ’’general pendulum’’ 
system has been controlled.   
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