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Abstract: This paper presents a modelling design framework and results for human participants 
undergoing mental stress. A mental stressful scenario is achieved while participants perform operations 
in a simulated control process on an automation-enhanced Cabin Air Management System simulator. 
Recordings from a previous experiment using psychophysiological markers (Heart Rate Variability and 
Task Load Index) as inputs with an output performance marker (Time In Range) were used for offline 
modelling training and validation. Interval Type-2 Fuzzy Logic (IT2FL) architecture optimized with 
Genetic Algorithms and with an efficient type-reduction algorithm, was selected as the modelling 
technique. Results demonstrate the ability of IT2FL systems to cope with an additional level of 
uncertainty and to adapt to important input-output relation changes on validation of the model. These 
results surpass performance in validation of a type 1 Mamdani Fuzzy Logic system constructed and 
validated previously in a similar fashion. The constructed model provides an adequate framework that 
can be used for the prevention of operator breakdown. 
Keywords: fuzzy modelling; interval type 2 fuzzy logic modelling; ergonomics; mental workload; genetic 
algorithms. 

 

1. INTRODUCTION 

Psychophysiology is a field that identifies and studies the 
human body’s electrochemical changes normally originated 
in neurons, muscles and gland cells; in other words it is the 
study of physical and mental states in response to stimuli. 
Recordings taken from the body surface should provide 
meaningful responses to stressful events (Stern, Ray and 
Quigley 2001). These signals should enable one to identify 
certain bodily functions that respond to the environment, e.g., 
stimuli in the form of mental or physical stressors, for 
instance. 

Automation systems represent the archest rival to manual 
controls as they can perform similar tasks better and faster 
than any human can do. However, these are designed for 
specific scenarios but cannot challenge the cognitive 
capabilities of a human when presented with an unseen 
situation, i.e. they lack generalising features. Ergonomics, 
which is born from the use of biological and behavioural 
sciences for the design of machines and human – machine 
systems (HMS), focuses in the study of the human normally 
centric to an automation system that needs to be monitored to 
ensure ‘optimal’ as well as safe operations. 

When safety is critical for a HMS, operators continually 
adjust and adapt for the dynamic process under control 
(Meshkati 2003). Decision on which tasks should be 
allocated to the human and which should be automated in 
order to avoid threats to safety and reliability is becoming 
increasingly complex as well as crucial with increasing 

demands, complex environments and potential operator stress 
and fatigue (Hancock and Desmond 2001). 

The advantages of HMS are acknowledged in many 
developments such as those reported by Billings (1996). In 
these systems, both human and machine are ergonomically 
analysed for dynamic and effective allocation of tasks 
(Hancock 2007). The identification of the criteria which 
should drive this allocation is not a trivial exercise, although 
the detection of high risk operational function states (OFS) 
should prevent operator breakdown and as a result should 
avoid potential catastrophe. 

As far as the HMS interaction framework is concerned, the 
issue of measurements is of prime importance. Two questions 
arise: 1. Are we measuring what we think we are measuring? 
2. Can we access (non-invasively) measurements that have 
never been accessed before? As far as the first question is 
concerned, one should expect some measurements to 
represent the direct measurements rather than the 
measurements themselves. The second question should 
represent an incremental exercise which coincides with 
developments in hardware technologies by means of new 
sensors and integrated electronics. For instance, mental stress 
has been proven to correlate with cardiovascular bodily 
responses such as Heart Rate Variability (HRV) (Akselrod et. 
al. 1981, Vincent, Craik and Furedy 1996, Kuriyagawa and 
Kageyama 1999) as well as cognitive processes such as 
planning strategies and attention, reasoning, problem solving 
and decision making (Royall et. al. 2002, Shallice 2005). 
These cognitive demands are assumed to be facilitated by the 
activity in the prefrontal cortex of the brain, where frontal 
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midline theta activity and “task load index” (TLI) (Gevins 
1997, Gevins 2003, Luu and Posner 2003) relate to mental 
stress in complex task environments (Smith et. al. 2001, 
Lorenz and Parasuraman 2003, Hockey et. al. 2009). 

In a previous experimental setup, recordings of HRV and TLI 
were found to correlate sufficiently with performance 
measured in terms of Time in Range (TIR), a performance 
measurement in the automation-enhanced Cabin Air 
Management System (aCAMS) simulation model (Ting et. 
al. 2008; 2010). With this set of data previously acquired for 
ten healthy participants, modelling was performed utilising 
Interval Type 2 Fuzzy Logic (IT2FL) with the efficient 
Enhanced Iterative Algorithm with Stop Condition (EIASC) 
type reduction algorithm. Parameters were optimized via a 
Genetic Algorithm (GA) and compared with previously 
designed models represented by type 1 fuzzy logic models 
optimized in a similar fashion. 

This work is organised as follows. Section 2 gives a brief 
overview of the previous experimental setup as well as a brief 
description of the automation-enhanced Cabin Air 
Management System. In section 3 all steps followed in the 
modelling phase are described. Finally, sections 4 and 5 deal 
with results and conclusions respectively. 

2. EXPERIMENTAL SETUP 

For the experimental setup the automation-enhanced Cabin 
Air Management System (aCAMS) simulator (Fig. 1), was 
used to provide a means of major mental demands on the 
operator’s mental resources (Ting et. al. 2008; 2010). The 
objective was to manually control an increasing and 
decreasing number of key system parameters of breathable 
air quality. Nine consecutive 15-minute task periods were 
applied in cyclic-loading manner increasing and decreasing 
manual control in a stepwise form for two sessions. The 
experiment provided a means of inducing mental workload 
and allowing detection of near breakdown periods as well as 
recovery ones. (Ting et. al. 2008; 2010) 

 

Fig. 1. aCAMS model with interacting subsystems (Ting et. 
al. 2010). 

In terms of psychophysiological markers used, Electro-
cardiographic (ECG) and Electro-encephalographic (EEG) 
measurements were recorded. The Active Two System by 
BioSemi was used for acquisition. Ocular artifact (EOG) 
detection was also recorded for correction of EEG. More 
information on the experimental setup can be found in: (Ting 
et. al. 2008; 2010). 

3. MODELLING 

3.1  Inputs and Output description 

As inputs to the system, Heart Rate Variability (ECG) and 
Task Load Index (EEG) were selected. HRV can be 
represented by two indicators, HRV1 and HRV2. HRV1 
represents the 0.1-Hz component in the heart rate (HR) 
signal. It was calculated by averaging the power spectrum of 
the HR signal collected in a 7.5 min period in the frequency 
range from 0.07 to 0.14 Hz. HRV2 is the ratio between the 
standard deviation over the mean value of the HR signal in 
the same period. TLI is based on presence of high levels of 
brain theta activity at frontal midline sites accompanied with 
attenuation of alpha power in parietal sites (Gevins and Smith 
1999). This indicator reflects fatigue or strategic 
disengagement from the tasks at hand. (Ting et. al. 2008; 
2010) 

In previous experiments in the Human Performance 
Laboratory of the University of Sheffield (Nickel, Roberts 
and Hockey 2006, Ting et. al. 2008; 2010), HRV1 and TLI2 
were found to correlate better in the modelling procedures 
and for this reason, were used as inputs for a type 1 fuzzy 
logic system model. 

Time in Range (TIR) output for the model denotes the current 
performance state in the aCAMS. It represents the time 
during which the variables (oxygen, carbon dioxide, 
humidity, pressure, temperature, etc.) remain in their normal 
range. It is given in percentage.  

3.2  General Rule-Base 

In (Ting et. al. 2008; 2010) two categories of type 1 fuzzy 
modelling techniques were selected for analysis, namely, 
Mamdani (MFLS) and Takagi-Sugeno (T-SFLS). These two 
models were tuned via hybrid learning in an ANFIS 
configuration and with the use of GA. Results demonstrated 
an improved performance in both training and validation 
(session 1 and session 2 respectively) for a “hand-crafted” 
rule base MFLS optimized with GA. Based on these previous 
results, the elicited “hand-crafted” general rule-base was 
selected for use with the IT2FLS modelling. The term 
“general” acknowledges a subjacent uniform response in all 
participants, meaning that inputs (HRV1, TLI2) were related 
to the output (TIR) in a similar fashion. This relationship 
information in terms of linguistic variables was poured into 
the rule-base shown in Table 1. 

Table 1.  General rule base 

 
In Table 1, S, M, B, VB stand for input linguistic levels 
small, medium, big and very big respectively. Output TIR 
linguistic levels L, N, H and VH stand for low, neutral, high 
and very high respectively. 
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3.3  Interval Type-2 Fuzzy Logic modelling 

Zadeh devised fuzzy sets in 1965 and type 2 fuzzy sets (T2 
FS) in 1975 (Zadeh 1975). Type 1 fuzzy sets (T1 FS) such as 
the MFLS previously designed (Ting et. al. 2008; 2010), 
have limited capabilities to directly handle data uncertainties. 
A T1 FS has a grade of membership that is crisp, whereas a 
T2 FS has grades of membership that are fuzzy (Mendel, 
John and Liu 2006, Mendel 2007). T2 FS are useful in 
circumstances where it is difficult to determine the exact 
membership grade for an input, instead, they give each input 
mapped into one or two membership functions not one but a 
collection of possible or uncertain grades of membership with 
different weights (second membership) associated with them. 
Since T2 FS are unpractical and difficult to compute, an 
Interval Type 2 Fuzzy Logic System (IT2FLS) comes to be 
when all weights (second memberships) associated with each 
possible grade of membership for a corresponding input is 
equal to one. In this manner, an IT2FLS is completely 
defined by a sketch that is called a footprint of uncertainty 
(FOU). The FOU depicts an area of a collection of infinite (in 
a continuous space) T1 membership functions whose union 
defines the IT2FLS membership function at hand. This way it 
is easy to visualize the additional dimension of uncertainty 
for each input. 

A FOU is bounded by a lower and an upper membership 
functions (LMF and UMF). IT2FLS are computationally 
simple to implement since only two values are computed 
throughout the inference. This way, uncertainties are retained 
and presented in the output, which is a type-reduced set 
(Wang and Mahfouf  2012). 

In an IT2FLS model inputs can have FOU with two very 
common shapes as can be observed in Fig. 2. The first shape 
corresponds to a fixed variance with an uncertain mean (Fig. 
2a), second shape is the opposite, having a fixed mean with 
an uncertain variance (Fig. 2b). A third shape could also 
exist, where uncertainty exists in the maximum level of 
membership of the LMF as depicted by the discontinuous 
line in Fig. 2b. 

 
Fig. 2. Gaussian IT2FL Membership functions. (a) IT2FL 
MF with fixed variance. (b) IT2FL MF with fixed mean. 

 

Although IT2FLS are very similar in essence to a T1 fuzzy 
logic system (T1FLS), the T1 simple defuzzification process 
becomes a two-phase type-reduction and defuzzification 
system for IT2FLS. In Fig. 3 the structure of an IT2FLS is 
observed. 

The type-reduction process in an IT2FLS is the most 
important block (Fig. 3), and is the more computationally 
intensive of all. This block reduces the resulting IT2FLS into 
a T1 interval output set characterised by its left and right 
endpoints. The defuzzifier block is normally implemented by 
a mathematical mean when crisp outputs are required (Wang 
and Mahfouf 2012). 

Fig. 3. Structure of an IT2FLS. 

 

The most popular type-reduction algorithm is the Karnik-
Mendel Algorithm (Mendel 2007), but it is also the most 
computationally intensive. Since the final aim of this 
modelling project is the construction of an adaptive control 
system for the HMS, a more computationally efficient 
alternative was implemented to simplify a future real-time 
construction. The Enhanced Iterative Algorithm with Stop 
Condition (EIASC) was selected (Wu and Nie 2011). 

3.4  Optimization with Genetic Algorithms 

Genetic Algorithms (GA) are computational algorithms that 
work in analogy to the way evolution and natural selection is 
thought to happen to life on Earth. They start with a random 
pool of possible parameter values for a fitness function to 
optimize. In a stepwise manner, the algorithm modifies (with 
evolution inspired operations) the population of individual 
solutions searching for an optimum (commonly minimum or 
maximum, depending on the fitness function). 

For the modelling of a human operator undergoing a mentally 
stressful task, GA were used to optimize an IT2FLS model 
with the general rule base described in section 3.2. Thus, a 
general IT2FLS model shell was constructed. As described 
before, this shell takes two inputs, HRV1 and TLI2 with four 
membership functions each as can be observed in Table 1. 
Output for the model is TIR and has four overlapping levels 
as can be appreciated in Table 1 as well. This general shell 
was then optimized with a minimum square error function 
like: 

𝑀𝑆𝐸 = !
!

𝑦 𝑘 − 𝑦!(𝑘) !!
!!!              (1) 

Where y(k) is the actual recorded output and yM(k) is the 
estimated IT2FLS output at sample instant k. The number of 
samples is N. 

To respect the logic in the general rule base of section 3.2, 
initial ranges were defined for the parameters to optimize. 
Seven IT2FLS models were optimized with slightly different 
characteristics. Table 2 addresses these differences. 

(a) IT2FLS Membership function with uncertainty on the mean. Fixed variance
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M
em

be
rs

hi
p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9882



 
 

     

 

From Table 2 it is clear that IT2FLS models 1 to 3 have input 
MF similar to the one in Fig. 2b. All other models have 
membership functions similar to Fig. 2a. 

 

Table 2.  IT2FLS constructed models 

 
 

4. RESULTS 

All model evaluations, comparisons and optimizations were 
performed in MatLab environment. GA Optimization was 
performed with the ‘Optimization Graphical User Interface’. 
The IT2FLS model was programmed with the EIASC type-
reduction algorithm (Wu and Nie 2011) inside the fitness 
function of MSE. 

Following the optimization of the IT2FLS models described 
in Table 2, a comparison of their performance against a 
Mamdani T1 FLS was obtained (Ting et. al. 2010). The 
comparison included an overall MSE value and Correlation 
for training and validation data. Results in this paper show 
performances related to healthy participant two (P02) for a 
detailed analysis. Brief results are also presented for P03. In 
Fig. 4, recorded training and validation inputs and output for 
P02 can be observed. Validation inputs and output are 
observed in Fig. 5.  

 
Fig. 4. Training and validation inputs (HRV1 and TLI2) and 
output (TIR) for P02. Experimentation session 1 and 2. 

 

From Fig. 4 similar behaviours for training and validation can 
be observed in terms of shape of the curves. However, upon 
closer examination it should be noted that important 
variations exist. For example, it is clear that the minimum 
percentage value of the recorded output TIR in validation is 
smaller that the training one for similar input values. 

Table 3 shows evaluation results for the different IT2FLS 
models constructed and optimized. In this table the 
previously designed and optimized MFLS evaluation is also 
shown for comparison purposes. 

Table 3.  MFLS and IT2FLS comparison for P02 

 
From Table 3 it can be observed that training and validation 
MSE for models designed with IT2FLS models are able to 
cope with unseen data with a smaller error, which is to be 
expected given that T2 FS systems achieve an additional 
level of uncertainty. Between the different IT2FLS models, 
which have in some cases uncertainty on variance and in 
other cases uncertainty on mean (see Table 2), no important 
difference can be observed. It is clear that there is a trade-off 
with this added uncertainty since errors are bigger in training. 
This is also expectable since additional uncertainty makes the 
model less prone to over fitting training data. 

Continuing with the comparison between the MFLS model 
and the IT2FLS models, Figs. 5 through 12 show fuzzy 
membership functions as well as estimated and recorded TIR 
outputs for selected best performance IT2FLS models and for 
the MFLS. 

 
Fig. 5. Estimated and recorded TIR for MFLS. Training and 
Validation. 

 
Fig. 6. Input (HRV1 and TLI2) and output (TIR) membership 
functions. MFLS model. 
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Fig. 7. Estimated and recorded TIR for IT2FLS No.1. 
Training and Validation. 

 
Fig. 8. Input (HRV1 and TLI2) and output (TIR) membership 
functions. IT2FLS No.1 model. 

 
Fig. 9. Estimated and recorded TIR for IT2FLS No.3. 
Training and Validation. 

 
Fig. 10. Input (HRV1 and TLI2) and output (TIR) 
membership functions. IT2FLS No.3 model. 

 
Fig. 11. Estimated and recorded TIR for IT2FLS No.4. 
Training and Validation. 

Fig. 12. Input (HRV1 and TLI2) and output (TIR) 
membership functions. IT2FLS No.4 model. 

From inspection of the MF of the several models in Figs. 6, 
8, 10 and 12, it can be observed that there is no similarity in 
their shapes. However, analysing TIR outputs in Figs. 5, 7, 9 
and 11 there are not big differences for training data. In terms 
of validation it is easy to observe better performance in the 
T2 FS models. 

Table 4 presents a comparison for a MFLS and an IT2FLS 
for P03. 

Table 4.  MFLS and IT2FLS comparison for P03 

 
From Table 4, similar results than the ones in Table 3 can be 
observed. Validation values are improved, but there is a 
trade-off with training. 

5. CONCLUSIONS 

The presented work addresses a modelling framework with 
IT2FLS models optimized using Genetic Algorithms (GA). 
Type-reduction of the IT2FLS is performed with the EIASC 
computationally efficient algorithm. Models for different 
participants in the experiment share a common rule-base, 
obtained from a previous close inspection among 
relationships between the inputs, HRV1 and TLI2, and the 
output, TIR. Working with this assumption, IT2FLS models 
were optimized and demonstrated their ability to use an 
additional level of uncertainty to map inputs with output. 
When compared with a previously trained MFLS, IT2FLS 
showed a more generalising feature in validation with 
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unseen data. However, there was a trade-off in the training 
fitting results. For this paper, a simple mean was utilised as 
the defuzzification process to produce crisp outputs. Future 
work is planned to address a more effective way of obtaining 
crisp outputs. 
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