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Abstract: We present an opinion formation model in which individuals are supposed to seek
a consensus on the truth. All agents are boundedly confident in the sense that an agent
communicates with another one if their opinion difference is not greater than a threshold which
is called the bound of confidence. When facing the truth, they are also boundedly confident
such that they take the truth into account if the truth is inside their bound of confidence. Any
agent influenced by the truth is viewed as a leader, and thus, the role of leader is endogenous
with the evolution of opinions. For any pair of bound of confidence and position of truth, we
provide a possible range of the strength of the attraction of truth that can guarantee the whole
group converging to the truth. We also find that there always exists a suitable strength of the
attraction of truth leading the whole group to a consensus on the truth as long as the whole
group converge to a consensus in the absence of the attraction of truth.
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1. INTRODUCTION

Multi-agent models are widely used to study the opinion
dynamics in social networks, such as the formation of
consensus (DeGroot [1974]), information spreading (Ace-
moglu et al. [2010]), and wisdom of crowds (Golub and
Jackson [2010]). Multi-agent models allow us to investi-
gate the relationship between local interactions and global
behavior at a level of higher resolution compared with
the models studied in the field of statistical mechanics
(Sznajd-Weron and Sznajd [2000], Slanina and Lavicka
[2003], Clifford and Sudbury [1973], Holley and Liggett
[1975]), most of which can trace back to the Ising model
in statistical physics. Generally, multi-agent models are
formulated as dynamical systems, and both transient state
and steady state can be studied (see e.g., Olfati-Saber et al.
[2007], Touri and Nedić [2011], Chen et al. [2013]).

Whether opinions of all agents reach a consensus in the
long run is one of the questions frequently mentioned
in most opinion formation models. A consensus is very
important in the situations such as negotiating, consult-
ing, and making decisions. In some other situations, we
might not be satisfied with just reaching a consensus, but
also expect the consensus value to be a desired one. For
example, when a decision has its payoff, we are supposed
to make an optimal decision which has the best payoff;
the governments or the big companies would make use
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of the mass media to lead the public opinions reaching a
consensus in favor of their own benefits. To model these
desired-value seeking problems, an external or global influ-
ence is usually introduced besides the local interactions. In
Hegselmann and Krause [2006], a constant in the opinion
space, representing the value of truth, is introduced to the
original Hegselmann-Krause model (HK model for short).
The influence of local interactions and the global influence
of truth are merged together in the form of convex com-
bination. A similar schedule is examined in the Deffuant
model (Malarz [2006]). Other mathematical models are
also proposed in the context of consensus tracking in the
field of control theory (Ren [2008, 2007]).

The agents observing or influenced by the external or
global signals are regarded as informed agents or leaders,
and correspondingly, other agents are uninformed agents
or followers. In the literature, the role of leader or follower
is usually assigned exogenously in the sense that it is ap-
pointed by outside environment or system designers rather
than the system itself (Molavi and Jadbabaie [2011], Liu
and Wang [2013]). The leaders might be chosen randomly,
and the role is fixed during the evolution of opinions.
In this paper, we present a truth seeking model with
endogenous leaders. All agents are set to be boundedly
confident in the sense that each agent only communicates
with those whose opinion difference is not greater than a
given threshold, call the bound of confidence. In addition,
there exists a truth in the opinion space, and all agents
are confronted with the attraction of truth in a bounded-
confidence way: an agent is influenced by the truth (be-
comes a leader) if and only if her opinion differs from
the truth not greater than her bound of confidence. It is
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obvious that rather than assign the role of leaders among
the agents exogenously, we let the leaders emerge auto-
matically once certain conditions are satisfied. In respect
of the opinion updating rule, the leaders add the influence
of truth to the average opinions of neighbors in the form
of convex combination, while the followers update their
opinions simply by averaging opinions of neighbors. If at
the equilibrium all agents reach a consensus on the truth,
we call it a correct consensus. Our work is to seek the con-
ditions under which the correct consensus can be achieved.
We find that there always exists a suitable strength of the
attraction of truth resulting in a correct consensus as long
as the whole group reach a consensus in the absence of the
influence of truth.

The remainder of this paper is organized as follows: In
Section 2, our opinion formation model is presented. In
Section 3, theoretical analyses and main results are given.
The paper ends by concluding remarks and open questions.

2. MODEL DESCRIPTION

2.1 Opinions and Bounded Confidence

Consider a set of agents as V = {1, 2, · · · , n}, and the
opinion of agent i at time t is denoted by xi(t) ∈ [0, 1].
The initial opinions {xi(0), i ∈ V } are set to be uniformly
distributed in the interval [0,1].

Each agent is endowed a bound of confidence ϵ such that
any pair of agents trust and communicate with each other
only if their opinion difference is not greater than ϵ. All
the agents who can communicate with agent i compose
her neighbor set Ni(t), i.e., Ni(t) = {j ∈ V : |xi(t) −
xj(t)| ≤ ϵ}.

2.2 The Truth and Endogenous Leaders

The truth is represented by a constant in the opinion
space, denoted by T ∈ [0, 1]. Any agent i is attracted by
the truth only when T is inside her bound of confidence,
i.e., |xi(t) − T | ≤ ϵ. These agents are called leaders in
the sense that they have the potential to lead the whole
group to the truth. Correspondingly, other agents are
called followers. It is easy to see that the role of leaders is
endogenous during the evolution of opinions.

2.3 Updating Rule

At each time step t, each agent i updates her opinion
simply by averaging the opinions of her neighbors if the
truth is out of her bound of confidence; otherwise the
attraction of truth is considered. In summary, the updating
rule can be described as follows:

xi(t+ 1) = αi(t)T + (1− αi(t))
∑

j∈Ni(t)

1

|Ni(t)|
xj(t), (1)

where αi(t) > 0 if agent i is a leader at time t, and αi(t) =
0 otherwise; |S| is the cardinality of the corresponding set
S. For simplicity, we assume that the truth has a common
strength of attraction on all leaders, i.e., αi(t) = α ∈ (0, 1]
if αi(t) > 0.

Remark 1: The models studied in the literature most relat-
ed to ours are those in Hegselmann and Krause [2006] and

Carletti et al. [2006]. In Hegselmann and Krause [2006],
a mathematical model similar to (1) is proposed, while
the role of leaders are exogenous, i.e., either all agents are
leaders or some agents are chosen randomly in advance,
and the role is fixed all the time. In Carletti et al. [2006],
an opinion formation model with endogenous leaders is
presented based on the original Deffuant model (Deffuant
et al. [2002]), and the attraction of truth (“propaganda”
in their work) periodically appears.

Remark 2: It is worth pointing out that the rule (1) is not
intentionally followed by the agents. If they realize T is the
truth, then they will converge to it immediately, regardless
of the opinions of other agents. The interpretation of (1)
should be that some signals reflecting the truth to a certain
extent can be observed, and accordingly, the agents update
their opinions based on the noisy observations (see Hegsel-
mann and Krause [2006] for more detailed discussion).
Here we blind out the philosophical discussions and focus
on the dynamical system governed by (1).

Even though the updating rule (1) is similar to the
formal HK model, and even more similar to the truth-
seeking model in Hegselmann and Krause [2006], they
have essential difference. In the HK model, the question of
interest is whether the opinions converge to a consensus,
while, once the truth and opinion leaders are introduced,
the question of interest becomes whether the opinions
influenced by the leaders can reach the pre-defined truth.
Some of our main results provide the range of influence
of truth in which a consensus on truth can be achieved.
The main difference between the model with endogenous
leaders and that with exogenous leaders is that the role of
leaders is time-varying based on the evolution of opinions,
which makes the performance of the model quite different
(e.g., order-preserving property shown in the following).

3. THEORETICAL ANALYSES AND MAIN RESULTS

3.1 Order-Preserving Property

The order-preserving property of the original HK model
is well known and proved in both Krause [2000] and
Blondel et al. [2009]. Once leaders or heterogenous agents
are introduced, the order-preserving property might not
hold anymore. For instance in Hegselmann and Krause
[2006] exogenous leaders are introduced to the HK model,
and it is shown that the opinions of agents might change
their order as the opinions evolves. In our work, leaders
are endogenous, and the following proposition shows that,
unlike the truth-seeking model with exogenous leaders, the
updating rule (1) preserves the order of opinions.

Proposition 1. For any pair of agents updating opinions
according to (1), the order of their opinions is preserved,
i.e., for all t ≥ 0, if xi(t) ≤ xj(t), then xi(t+1) ≤ xj(t+1).

Proof. Suppose that xi(t) ≤ xj(t). Let Ñi(t) be the set

of agents only communicating with i and not j, Ñj(t) the
set of agents only communicating with j and not i, and

Ñij(t) the set of agents communicating with both i and

j. For any k1 ∈ Ñi(t), k2 ∈ Ñij(t), and k3 ∈ Ñj(t), we
have xk1(t) ≤ xk2(t) ≤ xk3(t). Thus, xÑi(t)

≤ x
Ñij(t)

≤
x
Ñj(t)

, where x
Ñi(t)

, x
Ñij(t)

, and x
Ñi(t)

, respectively, is
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the average of opinions in the corresponding set. Next we
discuss the order-preserving property of (1) in different
situations classified by different positions of T .

(a) T is outside the bound of confidence of both i and j.

Due to αi(t) = αj(t) = 0 in (1), we have

xi(t+ 1) =
|Ñi(t)|xÑi(t)

+ |Ñij(t)|xÑij(t)

|Ñi(t)|+ |Ñij(t)|
≤ x

Ñij(t)
(2)

and

xj(t+ 1) =
|Ñj(t)|xÑj(t)

+ |Ñij(t)|xÑij(t)

|Ñj(t)|+ |Ñij(t)|
≥ x

Ñij(t)
(3)

Thus, xi(t+ 1) ≤ xj(t+ 1).

(b) T is inside the bound of confidence of i and not j.

In this situation, αi(t) = α > 0 and αj(t) = 0. For any

k ∈ Ñij(t), we have T ≤ xk(t). Therefore, T ≤ x
Ñij(t)

. By

(1) we have

xi(t+ 1) = αT + (1− α)
|Ñi(t)|xÑi(t)

+ |Ñij(t)|xÑij(t)

|Ñi(t)|+ |Ñij(t)|
≤ αT + (1− α)x

Ñij(t)

≤ x
Ñij(t)

Due to αj(t) = 0, we have xj(t + 1) ≥ x
Ñij(t)

by (3).

Therefore, xi(t+ 1) ≤ xj(t+ 1).

(c) T is inside the bound of confidence of j and not i.

Here αi(t) = 0 and αj(t) = α > 0. For any k ∈ Ñij(t), we
have T ≥ xk(t). Therefore, T ≥ x

Ñij(t)
. By (1) we have

xj(t+ 1) = αT + (1− α)
|Ñi(t)|xÑj(t)

+ |Ñij(t)|xÑij(t)

|Ñj(t)|+ |Ñij(t)|
≥ αT + (1− α)x

Ñij(t)

≥ x
Ñij(t)

In addition, xi(t + 1) ≤ x
Ñij(t)

by (2) since αi(t) = 0.

Therefore, xi(t+ 1) ≤ xj(t+ 1).

(d) T is inside the bound of confidence of both i and j.

In this case, we have

xj(t+ 1)− xi(t+ 1)

= (1− α)

 |Ñj |xÑj
+ |Ñij |xÑij

|Ñj |+ |Ñij |
−

|Ñi|xÑi
+ |Ñij |xÑij

|Ñi|+ |Ñij |


≥ 0

Considering (a), (b), (c), and (d), we obtain that xi(t +
1) ≤ xj(t+1) regardless of the position of T . Because of the
arbitrarily of t, we have that, for all t ≥ 0, if xi(t) ≤ xj(t),
then xi(t + 1) ≤ xj(t + 1). Thus, the order of opinions is
preserved.

3.2 Influence of the Strength of the Attraction of Truth on
Truth Seeking

Most studies on opinion formation models focus on
whether all agents reach a consensus. This question is
also very important to our model. However, since we have
introduced the influence of truth, the opinions of agents are
expected not only reaching a consensus but also converging
to the truth. Therefore, we propose a new concept: reach-
ing a correct consensus, which means all agents collectively
converge to the truth. For a given number of agents and
uniformly distributed initial opinions, whether a correct
consensus can be achieved depends on three factors:

- the bound of confidence, ϵ;
- the position of truth, T ;
- the strength of the attraction of truth, α.

Our goal is to find the possible range of α under any given
T and ϵ to obtain a correct consensus. To deal with this
issue, we set up a (T, ϵ)-plane, where for any given point
in the plane, α is the only factor affecting the performance
of the system.

To obtain a glance of the (T, ϵ)-plane, we perform a
simulation on the model with n = 100. In the matter
of fact, according to simulations with different number
of agents, the layout in the (T, ϵ)-plane does not have
apparent difference as the number of agents changes.
Figure 1 shows the upper bound of α for a correct
consensus in the (T, ϵ)-plane. Due to the symmetry, we
only need to show the half part of the (T, ϵ)-plane. Here
we choose the part with T ≤ 0.5. The upper bound of α
equal to one means that, at the corresponding point in
the (T, ϵ)-plane, a correct consensus can be achieved, and
α can be as large as one. The upper bound of α equal to
zero means that we cannot find a suitable α to lead the
whole group to the truth. Figure 2 shows the lower bound
of α for a correct consensus. Here the lower bound of α
being very close to zero means that the lower bound of α
for a correct consensus at the corresponding point in the
(T, ϵ)-plane can be extremely small, and α = 1 means that
we cannot find a suitable α to lead the whole group to the
truth.

By checking the upper bound and lower bound shown in
Fig. 1 and Fig. 2, respectively, we obtain a clear division
of the (T, ϵ)-plane shown in Fig. 3, which is a full picture
of the (T, ϵ)-plane. There exist four zones, and in each of

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1
0

0.5

1

T

ε

α

Fig. 1. The upper bound of α for a correct consensus.
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Fig. 2. The lower bound of α for a correct consensus.

them we have a different range of α to obtain a correct
consensus. In Zone I, we can set α to be any value in the
interval (0,1]. In the rest part of the plane, at least an
upper bound constrains the value of α. In Zone II, there
exists no lower bound for α. The strength of the attraction
of truth in the zones other than Zone I and Zone II at least
needs a lower bound and an upper bound to lead the whole
group to the truth. In Zone III, we can still find a suitable
α to achieve this goal, while in Zone IV there is no suitable
α.

Now we introduce a parameter, the critical bound of confi-
dence ϵc, which is the smallest bound of confidence keeping
the whole group reaching a consensus (not necessarily a
correct consensus) without the influence of T . An analyti-
cal expression of ϵc for any given initial condition has not
been established yet. Here we obtain ϵc by simulations. It
is shown in Fig. 4 that the approximate value of ϵc is 0.225
when n = 100.

Let us turn back to the (T, ϵ)-plane shown in Fig. 3. The
dashed line represents the critical bound of confidence,
which is near the boundary between Zone III and Zone IV.
That is to say, the critical bound of confidence separates
Zone IV from other parts. We know that Zone IV is the
only region that we cannot find a suitable α to achieve
a correct consensus. This implies that there always exists
a suitable strength of the attraction of truth to lead the

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T

ε
Zone I

Zone III

Zone IV

Zone III
ε
c

Zone II

Fig. 3. Four zones in the (T, ϵ)-plane.
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Fig. 4. The critical bound of confidence as a function of
the number of agents.

opinions of all agents to the truth as long as the whole
group reach a consensus in the absence of the influence of
truth.

3.3 Theoretical Analysis about the (T, ϵ)-Plane

An opinion formation model with bounded confidence
has a strong coupling between opinions and neighbor-
ing relationships. The dynamical property of the sys-
tem under certain conditions might be quite subtle and
unpredictable. Therefore, many studies on the bounded-
confidence models usually resort to computer simulations.
In this section, we theoretically explain the positions of
Zone I and Zone II in the (T, ϵ)-plane, while leave the
positions of Zone III and Zone IV unsolved. Considering
the high complexity of the model, especially the involve-
ment of endogenous leaders, our results, although not quite
complete, are still meaningful, and might shed a light on
future work.

We first explain the position of Zone I where the upper
bound of α can be one.

Proposition 2. In the case of α = 1, the condition of
ϵ ≥ 3

5 max{T, 1−T} is necessary and sufficient for a correct
consensus.

Proof. Note that the region of ϵ ≥ 3
5 max{T, 1 − T} is

symmetric with respect to T = 1/2. Thus, we only focus
on the half part with T ≤ 1/2, and the result on the other
part is straightforward. In addition, we only discuss the
evolution of opinions inside the interval [T, 1], and the
analysis can be applied to the interval [0, T ] directly.

Let us start at the initial time period. Due to α = 1,
any agent i satisfying xi(0) − T ≤ ϵ must converge to T
immediately at the next time step, i.e., xi(1) = T . For
the agent i with the smallest opinion satisfying xi(0) −
T > ϵ, if 1 − xi(0) ≥ ϵ, her opinion does not change at
the next time step, i.e., xi(1) = xi(0), since the average
of the opinions of her neighbors is exactly her current
opinion. According to the order-preserving property of the
updating rule (1) we have proved in Proposition 1, all the
opinions of her neighbors at t = 1 are greater than hers,
and thus, all the agents with opinion greater than xi(1)
are separated from the influence of truth for all t ≥ 1.
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Thus a correct consensus fails. To avoid this situation, the
smallest opinion xi(0) satisfying xi(0) − T > ϵ must be
greater than 1 − ϵ, and thus, it moves towards T rather
than stays unchanged. Under this situation, we also have
T + 2ϵ < 1.

We next investigate the distribution of the opinions at
t = 1. For simplicity, we index the agents based on the
order of their initial opinions, i.e., x1(0) ≥ x2(0) ≥ x3(0) ≥
· · · ≥ xn(0). Due to the uniform distribution of the initial
opinions, x1(1) = 1− ϵ/2 1 . Furthermore, we have

x2(1) = 1− 1

n− 1
− (ϵ− 1

n− 1
)/2 = 1− ϵ

2
− 1

2(n− 1)

x3(1) = 1− 2

n− 1
− (ϵ− 2

n− 1
)/2 = 1− ϵ

2
− 2

2(n− 1)

...

xk(1) = 1− k − 1

n− 1
− (ϵ− k − 1

n− 1
)/2 = 1− ϵ

2
− k − 1

2(n− 1)

where k = [1 − (T + ϵ)](n − 1) + 1 is the agent with the
smallest opinion that does not converge to T at t = 1.
Thus,

xk(1) =
1

2
(1 + T ).

It is obvious that {x1(1), x2(1), · · · , xk(1)} is uniformly
distributed, and the distance between any two sequential
opinions is 1

2(n−1) . More importantly, we have

x1(1)− xk(1) = 1− ϵ

2
− 1

2
(1 + T ) =

1

2
(1− T − ϵ) <

1

2
ϵ

which means that any pair of the k agents are neighbors.
We also have that all other agents are converge to T at
t = 1. Therefore, agents {1, 2, · · · , k} compose a cluster
with no neighbors outside. At the time step t = 2, any
agent i with xi(1) − T ≤ ϵ converges to T , and other
agents belonging to {1, 2, · · · , k} reach a consensus value

x∗ =
1

2
[1− ϵ

2
+

1

2
(1 + T )] =

1

4
(3− T − ϵ). (4)

All the agents converge to the truth if and only if x∗ −
T ≤ ϵ. Thus, we have ϵ ≥ 3

5 (1− T ).

By applying the similar argument to the opinion interval
[0, T ], we have ϵ ≥ 3

5T . Since T ≤ 1
2 , we have ϵ ≥ 3

5 (1 −
T ) ≥ 3

5T . Therefore, we obtain the final range of ϵ as

ϵ ≥ 3
5 (1− T ).

As for the rest part of the (T, ϵ)-plane, i.e., T ≥ 1
2 , the

proof is similar, and thus omitted.

Next we prove why the lower bound of α in the region of
ϵ ≥ max{|T − 1/2|, ϵc} shown in Fig. 3 is close to zero.

Proposition 3. For ϵ ≥ max{|T − 1/2|, ϵc}, there exits
no lower bound for α which can lead the whole group
converging to T .

Proof. To prove the statement, we only need to consider
the extreme situation when α is small enough such that

1 One might notice that the accurate value of x1(1) should be
between 1− ϵ/2 and 1− (ϵ− 1

n−1
)/2. Ignoring the influence of 1

n−1
here does not affect our result apparently, and it releases the analysis
from tedious details.

its effect can be neglected for a large enough number of
steps. Then the whole group will evolve simply as if there
exists no influence of T . Since ϵ ≥ ϵc, the whole group
must converge to a common value (not necessarily T )
without the influence of T . In addition, due to the uniform
distribution of initial opinions, the final common value
must be 1/2. Obviously, after the single opinion cluster
is established, it can be attracted by and converge to T
if and only if ϵ ≥ |T − 1/2|. Recalling that this result is
based on ϵ ≥ ϵc, we have ϵ ≥ max{|T − 1/2|, ϵc}.

In Fig. 3 we can see a concave on the bottom of Zone II
around T = 1/2 . In fact this bottom line is very close to
the critical bound of confidence, at which the dynamical
system is quit sensitive to small changes of parameters.
The opinions of the group might switch between division
and consensus even the value of α changes slightly. Basical-
ly, the influence of α is quite irregular when the bound of
confidence is near ϵc, as we can see from the fluctuation of
the boundary between Zone III and Zone IV. Even though
the whole group converge to a consensus because of the
influence of T , the common value generally is very close
to the central value of initial opinions, which is 1/2 in our
context. The final consensus opinion converges to the truth
only when T is close enough to 1/2; otherwise, a correct
consensus fails.

At last, for Zone III and Zone IV, as we have mentioned
above, their boundary is quite difficult to identify, and
simulation is our only tool. As it is shown in Fig. 1
and Fig. 2, we can always find a suitable α to reach a
correct consensus in Zone III, while in Zone IV the bound
of confidence is too small that the truth only has local
influence on the opinions of agents, which cannot change
the division of the whole group.

4. CONCLUSIONS AND FUTURE WORKS

We have studied an opinion formation model with truth
seeking and endogenous leaders. We mainly focus on the
conditions under which all agents converge to the truth.
More precisely, for any pair of bound of confidence and
position of truth, we provide a possible range of the
strength of the attraction of truth that can guarantee the
whole group converging to the truth. We find that as long
as the whole group reach a consensus in the absence of the
influence of truth, there always exists a suitable strength
of the attraction of truth resulting in a correct consensus,
and its range of value changes with respect to the bound of
confidence and the position of the truth. Although a part of
our results is obtained by simulations, it is still instructive
and shows the possibility of driving multiple agents to a
desired state without any constraint on connectivity.

As for the important aspects of future work, on the
one hand, a complete theoretical analysis is necessary;
on the other hand, extending the model to the two-
dimensional case is also very meaningful. It is worth
pointing out that the two-dimensional HK model can be
regarded as a rendezvous problem. Thus, extending our
endogenous-leader model to the two-dimensional situation
might provide some insight into the research on consensus
tracking problems in the cooperative control of multi-agent
systems.
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