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Abstract: Skilled human welders are so far the only to be capable of producing quality welds against 

perturbations. They adjust welding parameters based on their observation on 3D weld pool surface. 

Modelling their response to the 3D pool surface thus leads to next generation intelligent welding robots 

without human physical limitations. This paper first models this response as a human intelligence based 

controller. Its controlled process, with 3D pool surface as output and welding parameters as input in gas 

tungsten arc welding (GTAW), is then Hammerstein modelled in order to analyse its effectiveness. 

Analysis shows that this controller robustly controls the 3D pool surface under various perturbations. 

Closed-loop control welding experiments further validated this effectiveness. A foundation is thus 

established to rapidly transform skilled human welder's intelligence into robotic welding systems. 



1. INTRODUCTION 

GTAW (O’Brien, 1998) is the most widely used arc welding 

process for precision joining which typically requires a full 

penetration (Fig. 1) whose state is primarily specified by the 

back-side bead width bw . While its control is an essential 

capability for next generation automated welding machines, 

its measurement typically requires top-side sensing methods 

due to the inconvenience in placing back-side sensors. The 

penetration state is thus not directly measured. To estimate, 

various top-side sensing techniques have been studied (Li and 

Zhang, 2001; Ma and Wei, 2010; Fan, Lv, and Chen, 2009; 

Song and Zhang, 2009), including pool oscillation, ultrasonic 

sensing, infrared sensing, and vision-based sensing method. 

Among all information which may be measured from the top-

side, the weld pool surface may provide valuable insights into 

the weld penetration. In fact, skilled welders can successfully 

control the penetration state only based on their observation 

on the weld pool surface. Its scientific root is that the top-side 

and back-side weld pool surfaces must obey the volume 

constraint. 

Monitoring weld pool surface is challenging due to the 

fluctuation of the liquid weld pool surface, being specular 

like a mirror, and the presence of the strong arc. The 

University of Kentucky is the first to make this realistic. A 

laser pattern was projected on the weld pool surface and the 

laser reflected from the specular surface was intercepted at a 

distance from the arc (Song and Zhang, 2009). While the 

reflected laser remains its intensity, the arc radiation reduces 

its intensity cubically with the distance. Clear images of the 

reflected laser can thus be obtained despite the strong arc. 

With the known incident rays of the projected laser and the 

surface continuity as a constraint, the reflection law has been 

used to analytically calculate the weld pool surface in real-

time (Zhang, Wang, and Zhang, 2013).  

However, to correlate/estimate the penetration state to/from 

any top-side measurements including the weld pool surface, 

models are needed. Empirical modelling has been studied to 

certain extent (Song and Hardt, 1994; Liu, Zhang, and Zhang, 

2013; Liu and Zhang, 2013). Unfortunately, for the most 

promising top-side measurement (3D weld pool surface), 

success in empirical modelling has been limited. Numerical 

models (Traidia and Roger, 2011; Mougenot, Gonzalez, 

Freton and Masquere, 2013) may be promising, yet their 

extensive calculations needed restricted their application in 

real-time monitoring and control.  

Skilled human welders can adjust the welding parameters to 

produce quality welds for desired penetration implies (1) they 

can derive the penetration state from the weld pool surface 

and (2) they can successfully adjust the welding parameters 

based on the weld pool surface as the feedback. Hence, a 

skilled human welder naturally executes a model that 

correlates the penetration state to the weld pool surface and 

an algorithm to determine how to adjust the welding 

parameters per the weld pool surface as feedback. However, 

the model and feedback control algorithm are combined as a 

human response model whose outputs are the welding 

parameters (inputs of the controlled process) and inputs are 

the parameters which characterize the weld pool surface 

(outputs of the controlled process).     

As such, the authors propose to control the weld pool surface 

based on human welder response model. The estimation 

model unavailability and control algorithm design issues are 

both resolved. The resultant robotic control system may 

produce quality welds like a skilled welder without their 

  
Fig.1 Weld pool and full penetration. 
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physical limitations (inconsistent concentration, fatigue, 

stress). To verify the effectiveness of the human welder 

response model based control, its effect on the welding 

process under various conditions needs to be studied. To this 

end, weld pool surface as a dynamic process with welding 

parameters as the inputs needs to be modelled.  

The authors have established a linear state space model to 

correlate the weld pool surface as specified by their 

characteristic variables to the inputs of the welding process 

(Zhang, Liu, Wang, and Zhang, 2012; Liu and Zhang, 2013). 

However, the fundamental nonlinear characteristic as will be 

demonstrated in this paper is not comprehensively 

represented. Hammerstein model, on the other hand, is 

considered an effective method to model nonlinear dynamics 

(Zhao, 2010; Cai and Bai, 2011) for many practical systems. 

Hence, this paper will Hammerstein model the weld pool 

surface and use the resultant model to analyse the human 

welder response model based control proposed.   

In Section 2, response of a skilled human welder to 3D weld 

pool surface will be modelled using Adaptive Neuro-Fuzzy 

Inference System (ANFIS). Then the weld pool surface 

specified by its characteristic variables will be Hammerstein 

modelled in Section 3. In Section 4, the proposed control 

system for 3D weld pool surface based on human welder 

response model will be analysed revealing the robustness of 

the system against perturbations. Control experiments are 

thus then conducted to further verify the effectiveness of the 

proposed control system in Section 5. Conclusions are finally 

drawn in Section 6. 

2. MODELING SKILLED HUMAN WELDER RESPONSE 

2.1 Experimental System 

A manual control system (Liu, Zhang, and Zhang, 2013) is 

developed combining the 3D weld pool sensing system with 

a manual control mechanics (Fig.2). In this system a skilled 

human welder holds the current regulator while observing the 

weld pool surface and adjusts the welding current 

accordingly in an effect to produce desired full penetration. 

The pipe weld application is made using the Direct-Current 

Electrode-Negative GTAW. The material of the pipe is 

stainless steel 304. The outer diameter and wall thickness of 

the pipe are 113.5mm and 2.03 mm, respectively. The pipe 

rotates during experiment while the torch stays stationary. 

The rotation speed and motion of torch are controlled by a 

computer to achieve required welding speed and arc length. 

In the sensing system, a 20mw illumination laser generator 

projects a 19-by-19 dot matrix structured light pattern on the 

weld pool region. Part of the dot matrix projected on the weld 

pool is reflected by the specular mirror-like weld pool surface 

which has been distorted by the arc pressure. An imaging 

plane is installed with a distance about 100 mm from the 

torch. A camera is located behind the imaging plane directly 

aiming at it. Since the reflected laser remains its intensity 

while the arc radiation reduces cubically, reflected laser (in 

milliwatts) dots are clearly imaged on an imaging plane while 

the arc (in kilowatts) is not. By using specific image 

processing and 3D reconstruction scheme (Zhang, Wang and 

Zhang, 2013), the 3D weld pool surface can be reconstructed 

in milliseconds which is considered truly real-time (see Fig. 3 

for a weld pool image and reconstructed weld pool surface). 

Fig.4 shows the illustration of the variables which 

characterize the weld pool surface. After the weld pool 

boundary is acquired, the weld pool width and length can be 

calculated straightforwardly. The convexity is defined as the 

intercepted area divided by the length of the weld pool (i.e., 

the average height of the weld pool surface).  

Nine dynamic experiments are conducted with the welding 

speed to vary within reasonable ranges in order to change the 

weld pool surface. Then the skilled welder adjusts the current 

to try to maintain the same penetration state despite the 

changed welding speed. During experiments, the 

characteristic variables of the 3D weld pool surface are 

recorded together with the adjustments in the current. 

2.2 Modelling Human Welder Response 

It is found that the welder response can be modelled as  

( )= ( ( 3), ( 3), ( 3), ( 1))f f fI k f W k L k C k I k     
       

(1) 

 
Fig.2 Manual control system of GTAW process (Liu, Zhang, 

and Kvidahl, 2014). 

 
Fig.3 GTAW weld pool. Left: pool Image; right: reconstructed 

pool surface (Liu and Zhang, 2013). 
 

 
Fig.4 Illustration of weld pool characteristic parameters (Liu 

and Zhang, 2013). 
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where , ,f f fW L C  are the low-pass filtered weld pool width, 

length, and convexity measurements, respectively. The 

sampling period in the model is 0.5 s because the human 

welder is found to scan the weld pool approximately at 2Hz. 

The delay, 3 periods or 1.5 s, is estimated from step response 

experiments and should be a result of the neuromuscular and 

central nervous latencies.  

The simplest form from (1) can be expressed by  

1 2 3 4( )= ( 3)+ ( 3)+ ( 3)+ ( 1)f f fI k W k L k C k I k         (2) 

Using the standard least squares algorithm this linear model 

can be fitted from the experimental data:  

( )= 0.16 ( 3) 0.082 ( 3)

+1.81 ( 3)+0.26 ( 1)

f f

f

I k W k L k

C k I k

    

              
(2A) 

As a human inference mechanism, the human welder 

response should inevitably be fuzzy and nonlinear. However, 

the abstract thoughts or concepts in human reasoning are 

difficult to extract from the domain knowledge. In neuro-

fuzzy modelling, abstract thoughts or concepts in human 

reasoning are incorporated with numerical data so that the 

development of fuzzy models becomes more systematic and 

less time consuming. In this study, a neuro-fuzzy modelling 

technique, ANFIS (Jang, 1993), is used to model skilled 

human welder response represented by Equation (1).  

The fuzzy input variables are partitioned by 2. The resultant 

model root mean square error (RMSE) and average model 

error are listed in Table I. Both criteria are improved by the 

proposed ANFIS model. One may think that the model 

improvement from Table I (4% to 7% for two criteria used in 

this study) is not significant. However, ANFIS model is 

derived in analytical form and can be implemented in real-

time. The resultant model improvement is achieved at no 

additional costs. In addition, the human welder response is 

better modelled and understood. In this sense, the ANFIS 

model is considered a better way to represent the intrinsic 

nonlinear and fuzzy inference human welder possesses. 

3. MODELING 3D WELD POOL SURFACE 

In Hammerstein model (Fig.5) a static input nonlinearity is 

followed by a linear dynamical part. Various static 

experiments have been first carried out. Results show that for 

the width and length, incorporating nonlinearity does not 

improve the fitting results significantly. For the convexity, 

nonlinearity does provide significant improvements. The 

identified nonlinear static model for the convexity (mm) is: 

2 2

1 1 2 2 1 21.36 0.09 4.75 1.53 0.31 6.17nC u u u u u u      (3) 

where 
1= /10u I and 2 1u s with I and s being the welding 

current (A) and speed (mm/s), respectively. The affined 

inputs to be inputted into the convexity model can thus be 

defined as: 

2

1 1 1 1 2

2

2 2 2

1.36 0.09 0.31

4.75 1.53 6.17

v u u u u

v u u

   


                       
(4) 

Thirteen dynamic experiments have been conducted in order 

to obtain data to model the complex correlation between the 

welding process inputs (welding current and speed) and 3D 

weld pool surface characterized by its width, length, and 

convexity. It is observed that the weld pool surface varies 

substantially resulting from fluctuations of the welding 

current and speed. Specifically, the ranges for the weld pool 

width, length, and convexity are [1 mm, 6.42 mm], [1.2 mm, 

6.9 mm], and [0.05 mm, 0.27 mm], respectively. Modelling 

trails reveal that linear models have noticeable fitting errors 

which can be improved by incorporating nonlinear factors 

representing the cross-coupling between three weld pool 

parameters. 

The following models are thus proposed for the width, 

length, and convexity, respectively: 

2 2

11 1

3

21

( )= ( ) ( ) ( ) ( )

( ) ( )

W Wj j

W W Wj

W k j W k j j u k j

j u k j c NF

 



 



  

   

 

   
(5A) 

2 3

11 1

6

21

( )= ( ) ( ) ( ) ( )

( ) ( )

L Lj j

L L Lj

L k j L k j j u k j

j u k j c NF

 



 



  

   

 

      
(5B) 

2 3

11 1

3

21

( )= ( ) ( ) ( ) ( )

( ) ( )

C Cj j

C C Cj

C k j C k j j v k j

j v k j c NF

 



 



  

   

 

   
(5C) 

where  , , , , , , ,P P P P Pc NF P W L C    are the parameters to 

be identified. 
PNF s are the residuals of the model and 

account for the cross-coupling between three weld pool 

TABLE I. MODEL COMPARISON BETWEEN NEURO-FUZZY MODEL AND 

LINEAR MODEL 

 Average Model 

Error (A) 
RMSE (A) 

Linear Model 0.52 0.79 

ANFIS Model 0.50 0.76 

 
TABLE II. WELD POOL MODEL PARAMETERS 

 P  
P  (mm/A) 

P  

( /mm mm s )  

Pc  

(mm) 

Width [0.802  0.099] [0.19  -0.054] 
[0.029  0.386  

0.131] 
-0.941 

Length [0.708  0.187] 
[0.06  -0.01  

0.001] 

[-0.039 -0.581  

0.416  -0.338 
0.516  -0.041] 

0.231 

Convexity [0.584  0.201] 
[-0.006  0.002 

0.001] 

[-0.014 -0.001 

0.012] 
0.071 

 
TABLE III. WELD POOL MODEL ERRORS 

 
 Average Model 

Error  (mm) 

RMSE 

(mm) 

Width 0.1797 0.2326 

Length 0.2218 0.2929 

Convexity 0.0114 0.0147 

 

 

 

 
Fig.5 Hammerstein model. 
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characteristic parameters. The model orders are selected by 

evaluating the RMSE. ANFIS technique (Jang, 1993) is 

utilized to model the residuals 
PNF  with other two pool 

parameters at the current instant. The identified model 

parameters are listed in Table II, and the obtained model 

errors are shown in Table III. 

The steady state models for the width, length, and convexity 

can be derived from equation (5A)-(5C) together with 

parameters specified in Table II: 

1 2=1.36 5.46 9.41W u u 
                      

(6A) 

1 2=0.486 0.638 2.2L u u 
                      

(6B) 

1 20.0152 0.0152 0.36C u u   
               

(6C) 

For the weld pool width, the static gains for 
1= /10u I and 

2 1u s  are 1.36 mm/A and 5.46 /mm mm s , 

respectively. This makes sense because an increase in the 

welding current and a decrease in the welding speed should 

both increase the heat input into the weld pool and the pool 

width. For the weld pool length, increasing the welding 

current also increases the heat input, yet the increasing rate is 

not as significant as the width (0.486 mm/A compared to 1.36 

mm/A). When the welding speed is decreased, the length is 

supposed to decrease with a negative coefficient of -

0.638 /mm mm s . This is understandable because the 

increase of the speed causes the weld pool to elongate as the 

dragging effect. For the convexity, increasing the welding 

current and decreasing the welding speed are likely to 

decrease the weld pool convexity with both coefficients being 

-0.0152 mm/A. The linear model (6C) might not be sufficient 

in understanding this complex nonlinear relationship. Fig. 6 

plots the model calculated width, length, and convexity for 4 

cases of welding speeds (1mm/s, 1.2mm/s, 1.4mm/s and 

1.6mm/s) when the welding current increases from 56 A to 

68A. For the weld pool width, as the welding current 

increases, the width also increases. For a given welding 

current, an increase in the welding speed implies a decrease 

in the weld pool width. This coincides with our analysis on 

the steady state model (6A). For the weld pool length, as the 

current increases, the length becomes larger. For a given 

welding current, an increase in the welding speed increases 

the length. This observation also agrees with our previous 

analysis. The nonlinear correlation between the convexity 

and welding process inputs is depicted in Fig. 6. For small 

welding speed (e.g. 1 mm/s), as the welding current 

increases, the pool convexity firstly increases, then starts to 

decrease. Actually when the current increases, more metals 

are melted, resulting in larger convexity. However, as the 

current becomes larger, the increase in the arc pressure 

becomes the dominant factor. The pool becomes more 

concave and the penetration becomes deeper. Thus, the pool 

convexity starts to decrease. Similar phenomena occur for 

other welding speeds, while the dominant factor might be 

different for different welding currents. The increasing rates 

for different welding speeds are also different as opposed to 

the linear models for the width and length (shown in Fig. 6). 

It is apparent that these nonlinear models play an important 

role in accurately modelling the weld pool surface and 

understanding this complex correlation. 

4. SYSTEM ANALYSIS 

The system schematic is illustrated in Fig. 7. Skilled human 

response model (1) constructed in Section 2 outputs the 

current adjustment and the adjustment is applied to the 3D 

weld pool surface model described in Section 3. This 3D 

weld pool surface model outputs the estimated weld pool 

surface by its width, length, and convexity which are then 

inputted into the welder response model. Fig. 8 depicts the 

system response when the welding speed is 1.0 mm/s with 

initial currents ranging from 52A to 58A. It is observed that 

despite the difference in the initial current, the system 

converges to steady state with 63.7A steady state welding 

current. As the initial current approaches the current steady 

 
Fig.7 System schematic. 
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Fig.8 System response for speed=1.0 mm/s. Upper left: width; 

upper right: length; lower left: convexity; lower right: current. 
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Fig.6 Model estimated pool parameters. Upper left: width; 

upper right: length; lower left: convexity; lower right: current. 
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state value, the convergence time becomes shorter. The 

width, length, and convexity converge to 5.14mm, 4.32mm, 

and 0.18mm, respectively. The robustness of the system 

against initial current variation is thus verified. Fig. 9 depicts 

the system response when the welding speed is 1.2 mm/s to 

verify the robustness again. Compared to Fig. 8, the system 

takes longer time to converge, and the current steady state 

value is 67.96A. This makes sense because an increase in the 

welding speed decreases the heat input, and the human 

welder (response model) should increase the current in order 

to maintain the needed penetration. The robustness of the 

system against welding speed is thus also demonstrated. Fig. 

10 shows the system steady state values with respect to 

different welding speeds. Since the process model changes 

with the welding speed and the welder only adjusts the 

welding current to control the penetration rather than the 

characteristic parameters, their steady-state values change 

with the welding speed. When the speed is slow, the pool 

width could be slightly greater than the length. This may be 

due to heat transfer condition difference in two directions.     

5.  CONTROL EXPERIMENTS 

The developed closed-loop control system is illustrated in 

Fig. 11. A computer connected to the camera processes the 

captured image, reconstructs the weld pool surface, and 

extracts three characteristic variables in real-time. The skilled 

human intelligence model then outputs the current. In the first 

experiment, the arc length and welding speed are set at 5 mm 

and 1 mm/s, respectively. The experimental results are given 

in Fig.12-14. The process begins with an open-loop period 

(about 38 s - period A with initial current 52A), which brings 

the back-side bead width to about 3 mm. In first 42 s after 

period A, no error exists between the calculated current and 

applied current. The skilled human welder model is able to 

control the back-side bead width to about 5 mm (Fig. 14) by 

increasing the current to about 62 A (Fig. 13). In t = 103 s, 

the current disturbance is applied. The welding current is set 

at 50A, which is about 12A smaller than the calculation. The 

welder model adjusts the current to about 61 A in an effect to 
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Fig.9 System response for speed=1.2 mm/s. Upper left: width; 

upper right: length; lower left: convexity; lower right: current. 
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Fig.10 Steady state values versus welding speeds. 

 
Fig.11 Illustration of the closed-loop control system. 
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Fig.12 Back-side weld for current disturbance experiment. 
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Fig.13 Control signals for current disturbance experiment. 
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Fig.14 Offline measured back-side bead width for current 

disturbance experiment. 

 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10644



 

 

     

 

compensate this artificial current disturbance (Fig. 13) such 

that the back-side bead width be maintained around 5 mm. 

The controller's robustness against welding current 

disturbance is thus verified. In the second experiment, a step 

change in the welding speed is applied. The results are shown 

in Fig. 15 to 16. After an open-loop period (A), the controller 

is applied. The speed changes from 1mm/s in the first control 

period (B) to 1.1 mm/s in the second control period (C). The 

weld pool width and length immediately decrease, while the 

weld pool convexity increases due to the step speed change. 

The controller adjusted the current from 58 A to about 60A.  

6. CONCLUSIONS 

Controlling 3D weld pool surface based on human welder 

response model possesses two major advantages: ability to 

control the weld penetration despite unavailability of the 

penetration estimation model and ability to facilitate rapid 

design of control algorithm. The identified nonlinear 3D weld 

pool surface model facilitated the ability to analyse the 

effectiveness of the human welder response based controller. 

Analysis and welding experiments both verified the 

effectiveness of this human welder response model based 

control system against perturbations.  
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Fig.15 Control signal in speed change experiment.  
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Fig.16 Pool surface parameters in speed change experiment. 
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